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1 Introduction

In [4] a gradient method for discrete-time H2-approximation was developed which proceeds

recursively with respect to the order n of the approximants. Here, the Douglas-Shapiro-

Shields factorization (or inner-unstable factorization, see [3]) is utilized to reduce the H2-

approximation problem into an optimization problem over inner (or, equivalently, stable

all-pass) functions of order n, by optimizing analytically with respect to the unstable fac-

tor. To implement this approach, the space of inner functions of order n is parametrized by

means of an atlas of overlapping generic charts, obtained from application of the tangential

Schur algorithm in the spirit of [1]. This construction supports the possibility to embed any

given approximant of order n − 1 into the boundary of a chart of approximants of order n.

If an approximant of order n − 1 constitutes a local minimum for the “concentrated crite-
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rion function” in the space of order n − 1 approximants, then the corresponding embedded

boundary point of a chart of systems of order n is taken as the starting point for the next

iteration run of the gradient-based approximation algorithm.

It can be shown that: (i) a boundary point does not constitute a local minimum if the given

system to be approximated is at least of order n; (ii) if the gradient of the “concentrated”

criterion is well-defined – which may depend on the precise choice of parameters in this

approach but can easily be achieved by making certain natural choices – then it is orthogonal

to the boundary of the chart; if in addition it is nonzero then it points outwards.

The result (ii) is in some sense not very surprising, because, due to normalization within

the tangential Schur algorithm which underlies the construction at hand, the boundary of

each generic chart consists entirely of lower order systems, over which optimization has just

taken place in the previous iteration run. Improvement of the criterion should therefore

initially be looked for in a direction orthogonal to the boundary.

In the present paper we focus on a state-space implementation of the same idea. In this

set-up, the “concentration step” corresponds to analytic optimization of the (C,D) pair for

a fixed reachable input pair (A,B), which without loss of generality can be assumed input

normal. The space of input normal pairs (A,B) is parametrized using overlapping charts

constructed with FU,V -mappings defined in Section 3. This construction employs products of

unitary matrices, having distinguished numerical advantages. As before, it remains possible

to embed any given approximant of order n−1 into the boundary of a chart of input normal

pairs of order n. However, the boundary of a chart in this construction, in contrast to the

tangential Schur approach described above, does not consist exclusively of input normal pairs

of order n− 1, but instead generically of input normal pairs of order n. Nevertheless, it can

be shown that properties (i) and (ii) also apply to the present construction, establishing

feasibility of this state-space analogue of the recursive gradient-based algorithm for H2-

approximation.

2 A state-space approach to the discrete-time H2-ap-

proximation problem

In this paper we consider stable linear time-invariant causal systems of finite dimension

in discrete-time. Such systems are studied from an input-output point of view, and they

are therefore identified with their associated transfer function matrices, which are (complex)

proper rational matrices of finite McMillan degree. Discrete-time stability is defined as BIBO

stability, which comes down to the property that all the poles of the transfer function are

strictly inside the open complex unit disk. We shall be pursuing a state-space approach. From

realization theory it is well known that a q×p proper rational matrix Ĝ(z) of McMillan degree

n̂ always admits a minimal state-space realization (Â, B̂, Ĉ, D̂) ∈ C
n̂×n̂×C

n̂×p×C
q×n̂×C

q×p,

so that it holds that Ĝ(z) = D̂ + Ĉ(zIn̂ − Â)−1B̂. Minimality in this context is equivalent

to the state-space realization being both reachable and observable, i.e., the reachability
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matrix R̂ =
(

B̂ ÂB̂ . . . Ân̂−1B̂
)

has full row rank n̂ and the observability matrix Ô =(
Ĉ∗ Â∗Ĉ∗ . . . (Â∗)n̂−1Ĉ∗

)∗
has full column rank n̂. From a given minimal realization

(Â, B̂, Ĉ, D̂) the space of all minimal realizations of Ĝ(z) is obtained by the action of the

general linear group, representing the freedom to choose a basis for the state space, which

generates the minimal quadruples (TÂT−1, T B̂, ĈT−1, D̂) for invertible T ∈ C
n̂×n̂. This

freedom is commonly exploited to impose additional structure on the matrix quadruple of

the state-space realization, e.g., when designing a canonical form. Stability of a minimal

state-space realization is equivalent to asymptotic stability of the dynamical matrix Â, since

its eigenvalues then coincide with the poles of Ĝ(z). See also [6].

A discrete-time stable proper rational transfer function Ĝ(z) admits a Laurent series ex-

pansion about z = ∞, denoted by Ĝ(z) = Ĝ0 + Ĝ1z
−1 + Ĝ2z

−2 + . . ., for which it holds that

the sequence of Markov matrices {Ĝ0, Ĝ1, Ĝ2, . . .} is defined by Ĝ0 = D̂, Ĝk = ĈÂk−1B̂ (for

k = 1, 2, . . .), converging exponentially to zero. The H2-distance between two stable transfer

functions Ĝ(z) and G(z) can now be introduced as follows.

Definition 2.1. Let Ĝ(z) and G(z) be two q×p discrete-time stable proper rational transfer

function matrices, of which the Laurent series expansions about z = ∞ are denoted by

Ĝ(z) = Ĝ0 + Ĝ1z
−1 + Ĝ2z

−2 + . . . and G(z) = G0 + G1z
−1 + G2z

−2 + . . ., respectively. Then

the (squared) H2-distance between Ĝ(z) and G(z) is defined as

‖Ĝ(z) − G(z)‖2
H2

= tr

{ ∞∑
k=0

(Ĝk − Gk)(Ĝk − Gk)
∗
}

, (2.1)

where tr {·} denotes the trace operator, and ∗ denotes Hermitian transposition (i.e., the joint

action of complex conjugation and matrix transposition).

Here, convergence of the infinite sum follows from the stability assumptions on Ĝ(z) and

G(z).

The H2-approximation problem can now be stated as the problem of finding a stable ap-

proximant G(z) of McMillan degree ≤ n of a given stable transfer function Ĝ(z) of McMillan

degree n̂, which minimizes the H2-distance between Ĝ(z) and G(z).

Obviously, as in the definitions above, one may study this problem in the function theoretic

language of the frequency (transfer function) domain, but a state-space approach is also

possible. In the latter case, with obvious notation, the H2-criterion expressing the squared

H2-distance to be minimized, attains the form

V (A,B,C,D) = tr
{

(D̂ − D)(D̂ − D)∗
}

+ (2.2)

+tr

{ ∞∑
k=1

(ĈÂk−1B̂ − CAk−1B)(ĈÂk−1B̂ − CAk−1B)∗
}

.

For our purposes, the following definition will be useful.
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Definition 2.2. Let (A,B) ∈ C
n×n × C

n×p be an input pair. Then (A,B) is called weakly

input normal if it holds that AA∗ + BB∗ = In. If in addition (A,B) is reachable, it is called

input normal.

From the literature it well known that if n ≤ n̂, then any local minimizer of V cor-

responds to a quadruple (A,B,C,D) of McMillan degree n, see [2]. Therefore, one may

impose minimality of (A,B,C,D) without loss of generality. It is also clear that state-space

basis transformations do not affect the value of the H2-criterion. Any reachable input pair

(A,B) with an asymptotically stable matrix A can always be brought into input normal form

(TAT−1, TB), e.g., by choosing T = P−1/2 where P is the (unique, positive definite, Hermi-

tian) solution to the discrete-time Lyapunov-Stein equation P − APA∗ = BB∗. Therefore,

one may also impose input normality of (A,B) without loss of generality. For our considera-

tions it will be essential, however, to relax this condition somewhat and also to admit weakly

input normal pairs (A,B), as this will enable us to embed approximants of order n− 1 into

boundaries of charts of approximants of order n and to study this in a consistent way. The

following lemma characterizes weakly input normal pairs to some extent.

Lemma 2.1. Let (A,B) ∈ C
n×n × C

n×p be an input pair which is weakly input normal.

Then there exists a unitary matrix Q for which the transformed matrices Ã := QAQ∗ and

B̃ := QB admit the block-partitions

Ã =

(
Ã1 0

0 Ã2

)
, B̃ =

(
B̃1

0

)
, (2.3)

for which Ã1 is asymptotically stable of size r× r, Ã2 is unitary of size (n− r)× (n− r) and

B̃1 is of size r × p such that (Ã1, B̃1) is (discrete-time) input normal, where r denotes the

rank of the controllability matrix
(

B AB · · · An−1B
)
.

We are now in a position to characterize all the optimal choices of C and D globally

minimizing V for a fixed weakly input normal pair (A,B), and to give an expression of the

corresponding “concentrated” criterion value.

Proposition 2.1. Let (Â, B̂, Ĉ, D̂) be a minimal state-space representation of a q×p discrete-

time stable proper rational transfer function Ĝ(z) of finite McMillan degree n̂. Let (A,B) ∈
C

n×n × C
n×p be a given, fixed, weakly input normal pair and consider the associated linear

space of q×p proper rational transfer functions G(z) = D+C(zIn−A)−1B of McMillan degree

≤ n. Then there is a unique transfer function Gopt(z) within this space which minimizes the

discrete-time H2-distance to Ĝ(z). The associated set of corresponding optimal state-space

realizations (A,B,Copt, Dopt) is given by Dopt = D̂ and Copt = ĈP2 + Γ, where P2 denotes

the unique solution to the discrete-time Sylvester equation P2 − ÂP2A
∗ = B̂B∗ and Γ is any

q × n matrix of which all the rows are in the left kernel of the reachability matrix associated

with (A,B). The corresponding value of the (squared) H2-distance between Ĝ(z) and Gopt(z)
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is then given in terms of the weakly input normal pair (A,B) by

Vc(A,B) = ‖Ĝ(z) − Gopt(z)‖2
H2

=

= tr
{

ĈP1Ĉ
∗
}
− tr

{
ĈP2P

∗
2 Ĉ∗

}
, (2.4)

where P1 denotes the unique solution to the discrete-time Lyapunov-Stein equation P1 −
ÂP1Â

∗ = B̂B̂∗.

This proposition makes clear how the H2-approximation problem can be rephrased in

state-space terms as a minimization problem over the space of weakly input normal pairs

(A,B) ∈ C
n×n × C

n×p, using the ‘concentrated H2-criterion’ Vc(A,B).

3 Schur parametrization of balanced realizations of sta-

ble all-pass systems and of input normal pairs

A practical implementation of the state-space approach to the H2-approximation problem

still needs to be supplied with a suitable parametrization of the space of input normal pairs

(A,B) of order n. These may be derived from balanced state-space realizations of (multi-

input multi-output) discrete-time stable all-pass systems (see also [8, 5]). The parametriza-

tions studied in the present paper are based on the constructions of [9] and employ ‘realization

matrices’ of stable all-pass systems which are constructed as products of structured unitary

matrices. The construction of the charts in the atlas described here, employs mappings FU,V

acting on p×p proper rational discrete-time stable all-pass transfer functions G(z) as follows:

FU,V (G(z)) = F1(z) +
F2(z)F3(z)

z − F4(z)
, (3.5)

where

F (z) =

(
F1(z) F2(z)

F3(z) F4(z)

)
= V

(
1 0

0 G(z)

)
U∗, (3.6)

with U and V unitary matrices of size (p + 1)× (p + 1) and with F (z) partitioned such that

F4(z) is scalar.

Each of the mappings FU,V takes the set of rational stable all-pass transfer functions into

itself. In state-space terms it holds that if (A,B,C,D) is a state-space realization of G(z)

with A of size n× n, then a state-space realization (Ã, B̃, C̃, D̃) of G̃(z) = FU,V (G(z)), with

Ã of size (n + 1) × (n + 1), is given by

(
D̃ C̃

B̃ Ã

)
=

(
V 0

0 In

) 
 1 0 0

0 D C

0 B A


(

U∗ 0

0 In

)
. (3.7)

This demonstrates that if the McMillan degree of G(z) is equal to n, then the McMillan

degree of G̃(z) is ≤ n + 1. It can be established (see [9]) that if the left bottom corner
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entries of U and V have different modulus, then the McMillan degree of G̃(z) is n + 1.

In that case the mapping FU,V can also be rewritten into the form of a linear fractional

transformation associated with a particular J-inner matrix of McMillan degree 1, as employed

in the tangential Schur algorithm. A particular choice for the unitary matrices U and V which

makes this connection with the tangential Schur algorithm explicit and which provides G̃(z)

with a balanced state-space realization when starting from a balanced state-space realization

of G(z), is given by

U =




√
1−|w|2√

1−|w|2‖v‖2
u Ip − (1 +

w
√

1−‖v‖2√
1−|w|2‖v‖2

)uu∗

w̄
√

1−‖v‖2√
1−|w|2‖v‖2

√
1−|w|2√

1−|w|2‖v‖2
u∗


 , (3.8)

V =




√
1−|w|2√

1−|w|2‖v‖2
v Ip − (1 −

√
1−‖v‖2√

1−|w|2‖v‖2
) vv∗
‖v‖2√

1−‖v‖2√
1−|w|2‖v‖2

−
√

1−|w|2√
1−|w|2‖v‖2

v∗


 , (3.9)

where w ∈ C with |w| < 1 is an interpolation point in the open unit disk, u ∈ C
p×1 with

‖u‖ = 1 is a normalized direction vector, and v ∈ C
p×1 with ‖v‖ < 1 is a Schur vector,

through which the actual parametrization of a corresponding chart of stable all-pass systems

takes place.

Each chart in the atlas constructed recursively along these lines, is then indexed by a

fixed set of n interpolation points w1, . . . , wn and n normalized direction vectors u1, . . . , un,

while the local coordinates are specified through the set of n Schur vectors v1, . . . , vn and an

initial (constant) unitary matrix D0 of size p×p. When using this approach just to generate

charts for the manifold of reachable input normal pairs (A,B) of order n, the freedom of the

unitary group is factored out naturally, by choosing D0 = Ip. This leads to the following

parametrization of a chart in this atlas of reachable input normal pairs (A,B) of order n:

(
B A

)
=

(
0 In

) (
Vn 0

0 In−1

)
· · · (3.10)

· · ·
(

In−1 0

0 V1

)(
In−1 0

0 U∗
1

)
· · ·

(
U∗

n 0

0 In−1

)
,

where the matrix blocks Uk and Vk are of the form described by Eqns. (3.8)–(3.9) with

w = wk, u = uk and v = vk (for k = 1, 2 . . . , n).

4 Embedding of a lower order approximant into the

boundary of a generic chart

In the construction above, a generic chart of reachable input normal pairs (A,B) of order

n requires Schur vectors v1, . . . , vn of norm strictly less than 1. Points on the boundary of
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such a chart are obtained when one or more of these Schur vectors have norm equal to 1.

For ‖v‖ = 1, the unitary matrices U and V given by Eqns. (3.8)–(3.9) attain the form

U =

(
u Ip − uu∗

0 u∗

)
, V =

(
v Ip − vv∗

0 −v∗

)
, (4.11)

and w no longer plays a role. The following lemma establishes a necessary and sufficient

condition for a boundary point of the chart to correspond to a stable all-pass system of

McMillan degree n.

Lemma 4.1. For a given vector u of norm 1, a given vector v of norm 1 and a given

stable all-pass function G(z) of McMillan degree n − 1, the stable all-pass function G̃(z) =

FU,V (G(z)) is of McMillan degree n if and only if there does not exists a scalar λ of modulus

1 such that v = −λ−1G(λ)u.

For given u and stable all-pass G(z), the set {v | v = −λ−1G(λ)u, |λ| = 1} is obviously

non-empty, so that there are always stable all-pass systems of order < n on the boundary of

a chart of stable all-pass systems of order n. For any vector u, any vector v of norm 1 may

give rise to some G̃(z) of McMillan degree < n, depending on the specific choice of G(z). In

case n = 1, however, when using the prescribed initialization G(z) = D0 = Ip, the choice of

G(z) is restricted so that G̃(z) is again of McMillan degree 0 if and only if v = −λ−1u for

some |λ| = 1. In that case it is easily computed that G̃(z) = Ip if and only if v = u.

It follows in the scalar case p = 1 for fixed stable all-pass G(z) of McMillan degree n−1 and

fixed (scalar) u and v of modulus 1, that FU,V (G(z)) = uv∗ is a constant unimodular scalar,

because Ip − uu∗ = Ip − vv∗ = 0, so that the McMillan degree is 0. In the multivariable

case p > 1, however, the set {v | v = −λ−1G(λ)u, |λ| = 1} constitutes a manifold of real

dimension 1, whereas the boundary set {v | ‖v‖ = 1} has real dimension 2p − 1 > 1. This

implies that the boundary of the chart in that case generically consists of stable all-pass

systems of McMillan degree n, while on the other hand a ‘thin’ subset of lower order stable

all-pass systems does always occur.

The construction procedure above for a state-space parametrization of stable all-pass systems

of McMillan degree n with the help of the mappings FUk,Vk
can be extended in a simple way

to embed an arbitrary fixed stable all-pass system of McMillan degree n into the boundary

of a corresponding chart of stable all-pass systems of McMillan degree n+1. This is achieved

by the application of an extra initial mapping FU0,V0 which takes D0 = Ip to itself. We have

already indicated that FU0,V0(Ip) = Ip if and only if v0 = u0. In this case, the state-space

realization (Ã, B̃, C̃, D̃) of G̃(z) = G(z) becomes non-minimal and attains the form

(
D̃ C̃

B̃ Ã

)
=


 D C 0

B A 0

0 0 −1


 . (4.12)
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The construction gives rise to an extra state component, which is obviously both uncontrol-

lable and unobservable and may simply be removed by mere truncation of the state vector.

When using the above way of embedding a stable all-pass system of McMillan degree n into

the boundary of a chart of stable all-pass systems of order n + 1 within the context of H2-

approximation, where we have to focus on the associated input pairs (A,B), the concentrated

H2-criterion takes the form

Ṽc(Ã, B̃) = tr
{

ĈP1Ĉ
∗
}
− tr

{
ĈP̃2P̃

∗
2 Ĉ∗

}
, (4.13)

where P1 − ÂP1Â
∗ = B̂B̂∗ and P̃2 − ÂP̃2Ã

∗ = B̂B̃∗. This is an immediate consequence of

Prop. 2.1, upon noting that all boundary points of the chart of input normal pairs (A,B)

are weakly input normal because of continuity. Partitioning P̃2 =
(

P̃21 P̃22

)
with P̃22

consisting of a single column, leads to

(
P̃21 P̃22

) − Â
(

P̃21 P̃22

) (
A∗ 0

0 −1

)
= B̂

(
B∗ 0

)
. (4.14)

Working out the partition, it is obtained that P̃21 − ÂP̃21A
∗ = B̂B∗ and P̃22 + ÂP̃22 = 0,

from which it follows that P̃2 =
(

P2 0
)

yields the unique solution. As a consequence

Ṽc(Ã, B̃) = tr
{

ĈP1Ĉ
∗
}
− tr

{
ĈP̃2P̃

∗
2 Ĉ∗

}
= tr

{
ĈP1Ĉ

∗
}
− tr

{
ĈP2P

∗
2 Ĉ∗

}
= Vc(A,B),

which shows that the embedding is well-behaved with respect to the current context of

H2-approximation.

5 The gradient of the concentrated H2-criterion at a

lower order embedded approximant

The foregoing exposition has made clear that the value of the concentrated H2-criterion

Vc(A,B) at a weakly input normal pair (A,B) inside or on the boundary of one of the charts

in our construction, can be computed as

Vc(A,B) = tr
{

ĈP1Ĉ
∗
}
− tr

{
ĈP2P

∗
2 Ĉ∗

}
(5.15)

where P1 − ÂP1Â
∗ = B̂B̂∗ does not involve (A,B), and P2 − ÂP2A

∗ = B̂B∗ does. Any

directional derivative V̇c(A,B) is therefore given by

V̇c(A,B) = −tr
{

ĈṖ2P
∗
2 Ĉ∗ + ĈP2Ṗ

∗
2 Ĉ∗

}
(5.16)

where Ṗ2 can be computed from the discrete-time Sylvester equation

Ṗ2 − ÂṖ2A
∗ = ÂP2Ȧ

∗ + B̂Ḃ∗. (5.17)
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Note that the structure of the left-hand side of this linear matrix equation is similar to that

of the Sylvester equation determining P2, so that a unique solution for Ṗ2 exists provided

that the right-hand side matrix is well-defined. Since this involves directional derivatives of

A and B, the particular parametrization of (A,B) at hand plays a crucial role.

When the parameters are chosen as the entries of the Schur vectors vk (for all k =

1, 2, . . . , n), it follows that no problems of differentiability emerge as long as ‖vk‖ < 1 for

all k, i.e., inside the open charts. However, at the boundaries of the charts the entries in Uk

and Vk involving the expression
√

1 − ‖vk‖2 will cause differentiability problems. These can

be cured, in general, by employing local reparametrizations of the Schur vectors vk which

approach the boundary at a slow enough rate. One instance of such a local reparametrization

is offered by writing each Schur vector as vk = cos(rk)ṽk, with rk ≥ 0 and with ṽk a smoothly

parametrized vector of norm 1 (using any convenient smooth local parametrization of the

unit sphere in C
p), since then

√
1 − ‖vk‖2 = sin(rk) is a smooth function of rk exhibiting no

differentiability problems at rk = 0.

Above we have also seen that if (A,B) constitutes an input normal pair underlying an ap-

proximant G(z) of order n to the given transfer function Ĝ(z), and (A,B) is embedded into

the boundary of a chart of input normal pairs (Ã, B̃) of order n + 1 by the application of an

extra initial mapping FU0,V0 , then (A,B) is represented for v0 = u0 by the extended weakly

input normal pair (Ã, B̃) given by

(Ã, B̃) = (

(
A 0

0 −1

)
,

(
B

0

)
). (5.18)

Then the associated matrix P̃2 which uniquely solves the discrete-time Sylvester equation

P̃2−ÂP̃2Ã
∗ = B̂B̃∗ is of the form P̃2 =

(
P2 0

)
, with the zeros constituting a single column

and with P2 uniquely solving the discrete-time Sylvester equation P2 − ÂP2A
∗ = B̂B∗.

We are interested in computing directional derivatives of Ṽc(Ã, B̃) at the given boundary

point. If the local parametrization is such that ˙̃A and ˙̃B are well-defined (i.e., having finite

values), then also ˙̃P2 is well-defined and we have, upon partitioning ˙̃P2 =
(

˙̃P21
˙̃P22

)
where

˙̃P22 consists of a single column:

˙̃Vc(Ã, B̃) = −tr
{

Ĉ ˙̃P21P
∗
2 Ĉ∗ + ĈP2

˙̃P ∗
21Ĉ

∗
}

(5.19)

where ˙̃P21 satisfies the equation

˙̃P21 − Â ˙̃P21A
∗ = ÂP2

˙̃A∗
11 + B̂ ˙̃B∗

1 , (5.20)

with ˙̃A11 and ˙̃B1 denoting the directional derivative of the n × n left upper block of Ã and

of the n × p upper part of B̃, respectively.

Now suppose that (A,B) of order n constitutes a stationary point of Vc(A,B), then all the

directional derivatives of Vc(A,B) with respect to the parameters that compose the Schur
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vectors v1, . . . , vn, are zero. As a consequence, since Ṽc(Ã, B̃) = Vc(A,B) and since the

choice v0 = u0 makes that the additional (n + 1)-st state component is uncontrollable and

can be truncated, also the corresponding directional derivatives of Ṽc(Ã, B̃) with respect to

the parameters in v1, . . . , vn at the boundary point (Ã, B̃), are zero.

On the other hand, if we consider directional derivatives involving the Schur vector v0 only,

under the restriction that ‖v0‖ = 1, i.e., along the boundary of the chart (or more precisely,

along the boundary of the subchart obtained by keeping v1, . . . , vn fixed and varying only v0),

then the following proposition makes clear that these directional derivatives can alternatively

be obtained by jointly varying v1, . . . , vn in a specific way and keeping v0 = u0 fixed.

Proposition 5.1. For a given q × p discrete-time stable proper rational transfer function

Ĝ(z), with minimal state-space realization (Â, B̂, Ĉ, D̂) of order n̂, consider the associated

‘concentrated H2-criterion’ Ṽc(Ã, B̃) on a parametrized chart of weakly input normal pairs of

order n + 1, constructed in conjunction with a sequence of n + 1 mappings FUk,Vk
, with wk

and uk indexing the chart and vk containing the parameters as in Eqns. (3.8)–(3.9), such

that ‖vk‖ ≤ 1 for k = 0, 1, 2, . . . , n.

On the boundary of this chart, consider a parametrized curve of points, with Schur vectors

vk(t) given by v0(t) = etXu0 and vk(t) = etXv0
k for k = 1, 2, . . . , n, where X is a constant

skew-Hermitian p × p matrix satisfying (Ip − u0u
∗
0)X(Ip − u0u

∗
0) = 0. Then the function

Ṽc(Ã, B̃) is differentiable along this curve, having a stationary point at the lower order em-

bedded input pair on the boundary occurring for t = 0.

Note that for an arbitrary vector ν such that ν∗u0 + u∗
0ν = 0, it holds that X = −u0ν

∗ +

νu∗
0 + (ν∗u0)u0u

∗
0 is skew-Hermitian and satisfies the condition (Ip − u0u

∗
0)X(Ip − u0u

∗
0) = 0,

while v̇0(0) = Xu0 = ν. As a result, if the embedded boundary point corresponds to a

stationary point of order n, then also all the directional derivatives with respect to v0 ‘along

the boundary of the subchart’ are zero. It therefore follows that the gradient of Ṽc(Ã, B̃)

is orthogonal to the boundary of the chart at the embedded lower order stationary point of

Vc(A,B).

6 Conclusions

The H2-approximation problem may be reduced, in state space, to an optimization problem

over input normal pairs (A,B). These input normal pairs can be parametrized by means

of sparse products of unitary matrices, facilitating efficient numerical computation, as de-

scribed by [9]. A gradient-based approach may be followed along the lines of [4], proceeding

recursively with respect to the order n of the approximant. Starting the iteration run for

order n at an approximant constituting a local minimum for order n − 1, embedded at the

boundary of a chart in this atlas, corresponds to a gradient which is orthogonal to that

boundary. This method was implemented recently and is found to perform satisfactorily.
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