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Abstract

This paper tackle the preservation of positive real properties in Multi-Input Multi-
Output transfer functions, when performing substitutions of the Laplace variable s by
strictly positive real functions of relative degree equal to zero. We consider also the
preservation of stability properties of a class of unforced linear time-invariant systems
affected by a memoryless, possibly time-varying nonlinear, input which depends on the
system output.

1 Introduction

As is pointed out in [9], the concept of positive realness of a transfer function plays a central
role in Stability Theory. The definition of rational Positive Real functions (PR functions)
arose in the context of Circuit Theory. In fact, the driving point impedance of a passive
network is rational and positive real. If the network is dissipative (due to the presence
of resistors), the driving point impedance of the network is a Strictly Positive Real transfer
function (SPR function). Thus, positive real systems, also called passive systems, are systems
that do not generate energy. The celebrated Kalman-Yakubovich-Popov (KYP) lemma (see
for instance the Lefschetz-Kalman-Yakubovich version of this result in [9]), established the
key role that strict positivity realness plays in the obtention of Lyapunov functions associated
to the stability analysis of a particular class of nonlinear systems, i.e., Linear Time Invariant
systems (LTI systems) with a single memoriless nonlinearity. In fact, positive realness has
been extensively studied by the Automatic Control community, see for instance the studies
concerning: absolutely stability [7], characterization and construction of robust strict positive
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real systems [3], relationships between positivity realness of proper and stable LTI systems
and stabilizing solutions of Riccati equations [12], stability of adaptive control schemes based
on parameter adaptation algorithms [1], and passive filters [2]. As far as the frequency-
described continuous LTI systems are concerned, the study of control-oriented properties
(like stability) resulting from the substitution of the complex Laplace variable s by rational
transfer functions have been little studied by the Automatic Control community. However,
some interesting results have recently been published:

As far as robust stability of polynomial families is concerned, some results are given in
[10] (for a particular class of polynomials), when interpreting substitutions as nonlinearly
correlated perturbations on the coefficients. More recently, in [4], some results for proper
and stable real rational SISO functions and coprime factorizations were proved, by making
substitutions with « (s) = (as +b) / (¢s + d), where a, b, ¢, and d are strictly positive real
numbers, and with ad-bc # 0.

Section 2 is dedicated to some preliminaries, mainly concerning the characterization of sev-
eral classes of real positive functions. We tackle in Section 3 the preservation of positive real
properties in Multi-Input Multi-Output transfer functions, when performing substitutions
of the Laplace variable s by strictly positive real functions of relative degree equal to zero.
Our Section 4 deals with the preservation of stability properties of a class of unforced lin-
ear time-invariant systems affected by a memoryless, possibly time-varying nonlinear, input
depending on the system output.

2 Preliminaries

In this section, we give the notation, the basic definitions and some necessary results for the

sequel.
Notation : CT ={o+jwe C : 0 >0}, ImC ={z2€ C : Re(z) =0},
R = (-00,00), . = C* U{oc} UImC, C" = C*tUImC, C = C* U {o}.

Definition 2.1. Let RC be the FEuclidean domain of the proper, stable and rational real
functions, R(s) the field of real rational functions, Ry(s) the ring of real rational and proper
functions and R][s| the ring of the real polinomials.

Definition 2.2. Let p(s) € R(s) be a rational function of complex variable s = o + jw.

1. [7] p(s) is Positive Real (PR) if:
(a) p(s) is real for s real; (b) Re[p(s)] > 0 for all Re[s] > 0.

2. [7] p(s) is Strictly Positive Real (SPR) if p(s-¢) is PR for some & > 0.

3. [7], [5] p(s) of zero relative degree is SPR (SPRO function ) if and only if:
(a) p(s) is analytic in Re[s] > 0; (b) Re[p(jw)] > 0 for allw € R.
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4. [8] p(s) is Extended Strictly Positive Real (ESPR) if it is SPR and Relp(joo)] > 0.

5. [8], [6] p(s) is Strongly Strictly Positive Real (SSPR) if it is SPR and Re[p(o0)] > 0.
Definition 2.3. [9] SPR0 := {G(s) € RH> | G(s)} is SPRO.

Some properties of SPRO functions are:

1. If p(s) is a SPRO function, then 1/p(s) is also a SPRO function.

2. If pi(s) and pa(s) are SPRO functions, then ap;(s) + Bp2(s) is a SPRO function for
a, >0 (see [9]).

We can at this level present our:

Lemma 2.1. [5] Consider a transfer function p(s) be given.

1. If p(s) € RH* with q(s) any SPRO function, then p(q(s)) € RH™.
2. If p(s), q(s) € SPRO, then p(q(s)), q(p(s)) € SPRO.
3. If the function q(s) € SPRO, then q(@j) C Ct.

4. If p(s) € SPRO, then p(s) is ESPR.

Proof. Ttems 1, 2 and 3 were proved in [5].

Item 4:

Since p(s) has zero relative degree, then Re[p(jw)] has also zero relative degree, while
Im[p(jw)] has n relative degree, with n denoting of the degree of the denominator of p(s)
(which coincides with the degree of its numerator). Then, lim, . Re[p(jw)] is a positive
real number and lim,,_,o, Im[p(jw)] = 0. O

The following is a well-known result:

Lemma 2.2. If p(s) € R(s), then:
Relp(jw)] = Re [p(—jw)]
and:
Im [p(jw)] = —Im [p(—jw)]

forallw € R.



3 Results for MIMO systems

We present in this section some results concerning the preservation of real positivity prop-
erties in Multi-Input Multi-Output (MIMO) systems, when performing the substitution of
the Laplace variable s by SPRO functions.

Definition 3.1. [7] A p x p proper rational transfer function matriz Z(s) is called Positive
Real (PR) if:

1. All elements of Z(s) are analytic for Re[s] > 0.

2. Any pure imaginary pole of any element of Z(s) is a simple pole and the associated
residue matrix of Z(s) is positive semidefinite Hermitian, and:

3. For all real w for which jw is not a pole of any element of Z(s), the matriz Z (jw) +
ZT(-jw) is positive semidefinite (Z(jw) + ZT(-jw) >0).

Remark 3.1. Again, a p X p proper rational transfer function matriz Z(s) is called Strictly
Positive Real (SPR), if Z(s-€) is PR for some ¢ > 0. Note also, that if Z(s) is SPR, then
there exist some € > 0 such that Z(s-€) is PR.

Lemma 3.1. Let Z(s) be a p x p proper rational transfer function matriz, and suppose
det [Z(s) + Z(—s)] is not identically zero. Then, Z(s) is SPR if and only if:

1. Z(s) is Hurwitz i.e., Z(s) € RH> where RH™ is the set of matrices with elements in
RH®>,

2. Z(jw) + Z"(—jw) > 0 for all real w, and
3. one of the following three conditions is satisfied:
(a) Z(o0) + Z"(o0) > 0;

(b) Z(o0) + Z7(00) = 0 and lim, o w? [Z(jw) + Z"(—jw)] > 0;

(¢) Z(0) + Z" (o) > 0 and there exist positive constants g and wo such that
W20min [Z(jw) + ZT(—jw)] > o0, ¥ |w| > wo.

Definition 3.2. A p x p proper rational transfer function matriz Z(s) is called Extended
Strictly Positive Real (ESPR) if it is SPR and Z(joo) + ZT(-joo) > 0.

Definition 3.3. [8/ Let Z(s) be a p x p proper rational transfer function matriz. Then:
1. Z(s) is called strongly SPR (SSPR), if Z(s) is SPR and Z() + ZT(o0) > 0.

2. Z(s) is called weak SPR (WSPR), if Z(s) is SPR and: Z(jw) + ZT(-jw) > 0 for all
w e R.



3. Z(s) is called MSPR, if Z(s) is PR and Z(jw) + ZT(-jw) > 0 for allw € R.
The following result is evident:

Lemma 3.2. Let Z(s) be a p x p proper rational transfer function matriz. then:

1. If Z(s) is a SPR function matriz, then Z(s+¢) is a SPR p X p proper rational transfer
function matrix, for each e > 0.

2. If Z(s) is a PR function matriz, then Z(s+¢) is a SPR function matriz for each ¢ > 0.
We can at this level present our:

Theorem 3.1. Consider a transfer function matriz Z(s) € RH™ be given.

1. If Z(s) € RH™, then Z(p(s)) € RH*for each p(s) € SPRO,

2. if Z(s) is a SPR p X p proper rational transfer function matriz, then Z(p(s)) is a ESPR
p X p proper rational transfer function matriz, for each p(s) € SPRO.

3. If Z(s) is a PR p X p proper rational transfer function matriz, then Z(p(s))is a ESPR
p X p proper rational transfer function matriz, for each p(s) € SPRO.

Proof. We proceed now to prove Theorem 3.1 item by item:

1. Each element Z;;(s) of the matrix Z(s) is in RH*, then by Lemma 2.1 Z;;(p(s)) €
RH®.

2. For the proof of item 2 we consider two cases:
(a) When:
det [Z(s) + Z"(—s)] # 0,

except for a finite number of s € R. In this case we can use Lemma 3.1 for Z(p(s)),
and noting that item 1 of Lemma 3.1 corresponds to item 1 of this Theorem 3.1.
Therefore, we only need to prove items 2 and 3 of Lemma 3.1.

e Item 2 in Lemma 3.1: since Z(s) is SPR, then Z(jw) + Z7(—jw) > 0 for all
real w. In consequence:

Z(p(jw)) + Z" (p(—jw)) =
Z(Re [p(jw)] + jIm [p(jw)]) + Z" (Re [p(—jw)] + jIm [p(—jw)])

for each p(s) €SPRO. Now by item 2 in Definition 3.1, Re [p(jw)] > 0 for all
real w. Taking n(w) = Re [p(jw)], 6(w) = Im [p(jw)], noting that by Lemma
2.2 Re[p(jw)] = Re[p(—jw)] and Im [p(jw)] = —Im [p(—jw)] for all w € R,
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and considering that Re [p(jw)] and I'm [p(jw)] are real numbers for all real
w, we have that:

Z(p(jw)) + Z" (p(—jw))
Z(n(w) + jo(w)) + Z" (n(w) — jé(w))

for allw € R. Thus, we can consider Z(s+¢) instead of Z(p(s)), but by item
2 of Lemma 3.1 and item 3 (b) of Definition 2.2:

Z(e+jw) + Z¥ (e — jw) > 0
for all real w. Then, we conclude that:
Z(p(jw)) + Z" (p(—jw)) > 0

for each p(s) €SPRO and for all real w.

e Item 3 Lemma 3.1: since Z(s) is SPR, by Lemma 3.2 Z(s + ¢) is also a SPR
function for each £ > 0. Thus, by item 2 of Lemma 3.1 we have that:

Z(e+jw) + Z¥ (e — jw) > 0
for all real w and for all € > 0. In particular for w = 0:
Z(e)+ Z"(e) > 0,

for all real ¢ > 0. Now taking €, = lim, ,~ p(s) and considering that ¢, > 0
for each p(s) €SPRO, we obtain that:

Z(&O) + ZT(€0) >0
Z(p(o0)) + Z*(p(o0)) > 0

for each p(s) €SPRO.
(b) When:

det [Z(s) + Z"(—s)] = 0.

In this case, by Definition 3.2 and Remark 3.1 we need to prove that Z(p(s —ey))
is PR for some £y > 0. Since Z(s) is SPR, item 1 of the Lemma 3.2 is similar to
item 1 of this Theorem 3.1. Moreover:

Since Z(s) is SPR, it has not purely imaginary poles. Now, Re [p(jw)] > 0 (for all
real w) and Z(p(s)) € RH™ for each p(s) €SPRO, then the elements of Z(p(s))
has not purely imaginary poles, for each p(s) €SPRO.
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Now, we proceed to prove that:

Z(p(jw)) + Z" (p(—jw)) = 0.

Suppose that p(s — ¢1) is a PR rational function for some £; > 0. Then, by an
elemental argument of continuity of the SPRO function p(s), there exists ¢ such
that 0 < g9 < €1 and p(s—ep) €SPRO. Then as Z(s) is SPR and p(s—¢g) €SPRO,
we have for Z(p(s — ¢¢)) that:

Z(Rep(jw — 0)] + jIm [p(jw — €0)])+
Z"(Re [p(—jw — £0)] + jIm [p(—jw — &)]) > 0

for all real w, by item 2, case (a) (i.e., det [Z(s) + ZT(—s)] # 0) of this Theorem
3.1. Thus, Z(p(s — g9)) is PR and then Z(p(s)) is SPR for each p(s) € SPRO.

Now, it only is necessary to prove that:
Z(p(joo)) + Z" (p(—jo0)) > 0,

for each p(s) €SPRO. By Lemma 2.1 item 4, it is always true that g, :=
Re[p(joo)] > 0 and I'm[p(joo)] = 0, for each p(s) €SPRO. Then:

Z(p(joo)) + Z" (p(—jo0)) = Z(epr) + Z" (epr).-

But Z(epr)+Z7T (gpr) > 0 for all real g, > 0, therefore Z(p(joo))+Z% (p(—joo)) >
0 for each p(s) eSPRO.

3. We proceed now to prove that if Z(s) is a PR p X p proper rational transfer function

matrix, then Z(p(s)) is a ESPR p X p proper rational transfer function matrix, for each
p(s) € SPRO. Assuming positive realness of Z(s), we first prove that Z(p(s)) € RH*
and that each element of Z(p(s)) has not purely imaginary poles. Finally, we prove
that Z(p(jw)) + Z"(p(—jw)) > 0 for all real w and that Z(p(joo)) + Z7 (p(—joo)) > 0.

(a)

Each element Z;;(s) of the matrix Z(s) is analytic for Re[s] > 0, now by Definition
2.2, item 3 (a) p(s) is analytic for Re[s] > 0. By Lemma 2.1 item 3 p(éj) cct,
then Z;;(p(s)) is analytic for Re[s] > 0, and in consequence Z;;(p(s)) € RH®,
i.e., Z(p(s)) € RH™ for each p(s) eSPRO.

Note that any purely imaginary pole of some element of Z(s) is simple pole (its
multiplicity order is just equal to one) and it is of the form:

1
s2 4 k2’

then substituting s by the SPRO function p(s) = gZ—EZ;

with Ny(s), D,(s) € R[s],

we obtain:

1 Di(s)

pA(s) + k2 NZ(s)+k2D3(s)
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But k2 is an SPRO function and by properties 1) and 2) of SPRO functions, the
sum of SPRO functions is also a SPRO function, and the multiplicative inverse of
an SPRO function is a SPRO function, then the function m a SPRO function

and has not purely imaginary poles and the same statement is valid for each
element of Z(p(s)), for each p(s) €SPRO.

(c) Now, it is necessary to prove that Z(p(jw)) + Z7 (p(—jw)) > 0 for all real w and
for each p(s) €SPRO. Suppose that p(s — £1) is PR rational function for some
g1 > 0. Then, by an elemental argument of continuity of the SPRO function p(s),
there exists ¢ such that 0 < gy < &1 and such that p(s — ¢y) €SPRO. Now, as
Z(s) is PR and p(s — g9) €SPRO, by a similar argument to the proof of the item
2 case (a) in this theorem we have that:

Z(Re [p(jw — €o)] + jIm [p(jw — €0)])+
Z"(Re [p(—jw + 0)] + jIm [p(—jw + £0)])

Z(o(w) + jy(w)) + Z" (o(w) — jy(w)),

where o(w) = Re [p(jw — &0)] and y(w) = Im [p(jw — &y)], and by Lemma 2.2 we
have that:

Rep(jw = 20)] = Re [p(=jw + £0)]

and:

Imp(jw —eo)] = —Im [p(—jw + £0)] .

We profit at this level from the following fact: if Z(s) is PR, then Z(s+¢) is SPR
for £ > 0. In consequence:

Z(o(w) + jy(Ww)) + Z" (0 (w) = jy(w)) > 0.

Therefore, Z(p(jw)) + Z* (p(—jw)) > 0 for all real w and for each p(s) eSPRO.
Therefore, since Z(p(s —ep)) is PR for some ¢y > 0, then Z(p(s)) is SPR for each
p(s) €SPRO. The constraint Z(p(joc)) + ZT(p(—joc)) > 0 is just proved as in
item 2 of this proof.

O

Please remark that by the definition of SSPR, if Z(s) is either SPR or PR, then Z(p(s))
is SSPR for each p(s) € SPRO, too. In what follows we apply the results corresponding to
Theorem 3.1 to the matrix function classes introduced in Definition 3.2.

Definition 3.4. Let Z(s) be a p X p proper rational transfer function matriz.
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1. [6] Z(s) is called bounded real (BR) if:

(a) All elements of Z(s) are analytic for Re[s] > 0, and:

(b) I -ZT(-jw)Z(jw) > 0 for allw € R. Equivalently, the condition b) can be replaced
by:
(c) [12(s)]lo < 1.

2. [6] Z(s) is called strictly bounded real (SBR) if:

(a) All elements of Z(s) are analytic for Re[s| > 0, and:
(b) I - ZT(-jw)Z(jw) > 0 for allw € R. Again, the condition b) can be replaced by:
(c) [12(s)lloe < 1.

Remark 3.2. If the transfer function matriz Z(s) is SBR, then I - DTD > 0, where D :=
Z(0).

The following corollary follows:

Corollary 3.1. If Z(s) is ESPR, SSPR, WSPR or MSPR p x p proper rational transfer
function matriz, then Z(p(s)) is ESPR and SSPR p X p proper rational transfer function
matriz, for each p(s) € SPRO.

Lemma 3.3. [1/, [11] Consider a p X p proper rational transfer function matriz Z(s) be
gwen. Then:

1. Suppose that Z(s) satisfies det (Z(s) + I) # 0 for Re[s] > 0, then Z(s) is ESPR if and
only if:

H(s) = (I = Z(s)) (I +Z(s)) "

is SBR. Also, Z(s) is PR if and only if H(s) is BR.
Equivalently, item 1 can be replaced by:

2. Consider a pX p proper rational transfer function matriz H(s) satisfying det (I + H(s)) #
0, for Re[s| > 0. Then, H(s) is SBR if and only if:

Z(s) = (I + H(s))" (I - H(s))
is ESPR. Also, H(s) is BR if and only if Z(s) is PR.

Proposition 3.1. Suppose that Z(s) and H(s) are p X p proper rational transfer function
matrices, such that det (Z(s) + I) # 0 and det (I + H(s)) # 0 for Re[s] > 0, then:
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1. If Z(s) is PR, SPR, ESPR, SSPR, WSPR or MSPR p X p proper rational transfer
function matriz, then H(p(s)) is SBR for each p(s) € SPRO.

2. If H(s) is either SBR or BR px p proper rational transfer function matriz, then Z(p(s))
is ESPR for each p(s) € SPRO.

3. If H(s) is either SBR or BR pX p proper rational transfer function matriz, then H(p(s))
is SBR for each p(s) € SPRO.

4. IfG(s) € RH™ is such that either ||G(s)|| . <7 or||G(s)| ., <7, then ||G(p(s))|l <
for each p(s) € SPRO.

Proof. 1. By Theorem 3.1, and Corollary , if Z(s) is PR, SPR, ESPR, SSPR, WSPR or
MSPR, then Z(p(s)) is ESPR and SSPR for each p(s) €SPR0O. Now by Lemma 3.3
item 1, Z(p(s)) is ESPR if and only if the transfer function matrix:

H(p(s)) = (I = Z(p(s))) (I + Z(p(s))"
is SBR for each p(s) eSPRO.
2. By Lemma 3.3 item 2, if H(s) is either SBR or BR, then H(s) is SBR if and only if:
Z(s)= (I + H(s))" (I - H(s))
is ESPR or PR, respectively. Now, by Theorem 3.1 Z(p(s)) is ESPR for each p(s) €SPRO.

3. This item is easily proved just applying item 2 of this theorem and as a consequence
of Lemma 3.3 item 1.

4. From Definition 3.4 items 1 (c) and 2 (c), item 3 of this Proposition 3.1 can be written
as follows:

If M (s) € RH™ is such that either ||M(s)||,, < 1or |[M(s)| < 1, then || M(p(s))|l, <

1 for each p(s) €SPRO. Now define M(s) := v~ 'G(s). Remark that v > 0 implies

17 *G(9)]l, = 7 |G(8)], by item 3 of this Proposition 3.1, we obtain the result.
L

4 Results on absolute stability

Consider the unforced system described by:

z= Az (t) + Bu(t),
y=C()z, (4.1)
u(t) =-¢(t,y @),
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where: z € R", u,y € R?, (A, B) is controllable, (A, C') is observable, and ¢ : [0, 00) X R? —
R? is a memoryless, possibly time-varying nonlinearity which is piecewise continuous in ¢ and
locally Lipschitz in y. A, B and C' are real constant matrices The so-called sector condition
for ¢ is given by:

[o(t, y)-Kminy] [0t y)-Kmaxy] <0, Vt>0,VyeTl C R (4.2)

For some real matrices K i, and K., where K = K .- K, is a positive definite symmetric
matrix and the interior of I' is connected and contains the origin. If I' = R”, then ¢ satisfies
the sector condition globally, in which case it is said that ¢ belongs to a sector [Kin, Kmax)-
We define now the following systems:

Gr(s) = G(s)[I + KuinG(s)]",
Zr(8) = [I + KunaxG(8)][I + KuinG(3)] 1,
G(s) = C(sI-A)'B.

Definition 4.1. Consider the system (4.1), where ¢ satisfies a sector condition (4.2). The
system is absolutely stable if the origin is globally uniformly asymptotically stable for any
nonlinearly in the given sector.

We can now present the main result of this section:

Proposition 4.1. Consider the system (4.1), where (A, B) is controllable, (A, C') is observ-
able, and ¢(t,y) satisfies the sector condition (4.2) globally. If Gr(s) € RH* and Zr(s) is
a PR function matriz (i.e., the system is uniformly asymptotically stable). Then:

z (t) = Ayx (t) + Byu(t),
y(t) = Gy (t) + Dyu 1), 4.3)
u(t) = -ty (1)),

is absolutely stable for each p(s) € SPRO, where (Ay, By, Cyp, D) is a minimal realization of
the following p x p proper rational transfer function matriz: G(p(s)) = Cp(sI-Ap) 1B, + D,.

Proof. First note that p(s) is a zero relative degree rational transfer function, then in general
for realization of G(p(s)), D, # 0,x,. The multivariable circle criterion (Theorem 10.1 in
[7]) establishes that under the conditions of this theorem, absolutely stability of the system
(4.1) is obtained, if Gr(s) € RH™ and Zr(s) is SPR. Observe that:

Gr(p(s)) = G(p(s))I + KuinG (p(s))]
Zr(p(s)) = [I + KumaxG (p(s))I[ + KuninG(p(s))] -

Now, by Theorem 3.1 item 1: if Gr(s) € RH*, then Gr(p(s)) € RH™ for each p(s) €SPRO.
Moreover, by Theorem 3.1 item 3: if Zp(s) is PR, then Z7(p(s)) is SPR for each p(s) €SPRO.
Therefore, by the multivariable circle criterion, the system (4.3) is absolutely stable. (|
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Remark 4.1. This result is a generalization of the multivariable circle criterion. Under the
same hypothesis of the multivariable circle criterion, absolutely stability of the system (4.3)
is obtained for each p(s) € SPRO.

Corollary 4.1. Consider the sistem (4.1) where A is Hurwitz, (A, B) is controllable, (A, C)
is observable, and ¢(y) is a time-invariant nonlinearly that satisfies the sector condition (4.2)
globally with Kyin = 0 and a positive definite symmetric Kpax. Suppose that Kpaxe(y) is
the gradient of a scalar function and foy T (T)Kpaxdr > 0,V y € T C R? , or is satisfied
globally. Then, the system:

T (t) = pr (t) + Bpu (t),
y(t) = Ty (1) + Dypu (1), (4.4)
u(t) = -p(y(t))

18 absolutely stable, where (ﬁp, Ep, 6],, 3]3) is a minimal realization of the px p proper rational
transfer function matriz Z(p(s)) = (1 +np(s))G(p(s)), if there exists n > 0 (with —% not an
eigenvalue of A, for p(s) €SPRO) such that Z,(s) = I + (1 +ns)G(s) is PR.

Proof. By Theorem 3.1 item 3: Z;(p(s)) is SPR if Z;(s) is PR for each p(s) €SPRO such
that n > 0, where —% is not an eigenvalue of A,. Now, since I + Ky, (1 +np(s))G(p(s)) is
SPR, using the Lemma 10.3 in [7] for the system Z(p(s)), absolute stability of the system
(4.4) is obtained for each p(s) € SPRO such that n > 0, where —% is not an eigenvalue of

A, O

Remark 4.2. The multivariable Popov criterion (Theorem 10.3 in [7]), establishes that un-
der the conditions of this corollary, absolute stability of the system (4.1) with u =-p(y) is
obtained if Z1(s) = I + (14 1s) KmaxG(8) is SPR. This corollary is a partial extension of the
multivariable Popov criterion and the Lemma 10.3 in [7].
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