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Abstract

In this paper we study unconstrained global optimization of rational functions. We
give first few theoretical results and study then a relaxation of the initial problem.
The relaxation is solved using LMI techniques. Therefore, in general our procedure
will produce a lower bound of the infimum of the original problem. However, under
no degeneracies, it is possible to check whether the relaxation was in fact exact. The
algorithm is then applied to the H2 optimal model reduction problem.

1 Introduction

Many problems in systems theory can be reformulated as optimization problems where the

criterion function is a polynomial or rational function. For example in system identification

of linear systems, one may try to estimate from the data the transfer function of a system,

which is a (matrix) rational function, by the least squares method. The function to be

estimated depends in general on some parameters that need to be identified. This procedure

is nothing else than minimization of a multivariate rational function.

Another application area is the model reduction of the order of a system. There one wants

to approximate a given stable system by a stable system of a lower order. Finding the best

approximant (with respect to the H2 distance) reduces again to optimization of a rational

function. We believe however that the applications are much more numerous.

In these problems it is very important to know that the global minimum has been attained

but present optimization methods do not give such guarantees. The numerical procedures
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used in general might return a local minimum. The goal of this paper is to describe an

approach for obtaining the global minimum of an arbitrary rational function. For that we

follow the approach described in [6] used for (global) minimization of polynomial functions.

There, one defines a relaxation of the optimization problem, relaxation which can be solved

using linear matrix inequalities (LMI) techniques. It is argued that, under no degeneracies,

one can check whether the relaxation was exact. In this paper we give some theoretical

results which will allow us to extend the method of [6] to (global) optimization of rational

functions. An interesting criterion will be given for a rational function to have the infimum

at −∞.

We show then that the algorithm can be applied to the H2-model reduction problem. This

is in itself an interesting problem and has received a lot of attention.

2 Optimization of rational functions

We summarize in this section a general method for finding the global minimum of a mul-

tivariate rational function. First the problem is rewritten into an equivalent one. Then a

relaxation of the latter using linear matrix inequalities (LMI) is formulated.

2.1 An equivalent formulation

In this section we want to summarize some of the results that will be used in the paper. For

the proofs, see [5]. Let us state here a preliminary result which will prove essential in the

following.

Lemma 2.1. Let a(x)/b(x) be a rational multivariate function, with a(x), b(x) relatively

prime polynomials. If a(x)/b(x) ≥ 0, ∀x ∈ {Rn | b(x) 6= 0}, then one of the two following

statements holds:

• a(x) ≥ 0, b(x) ≥ 0 ∀x ∈ Rn,

• a(x) ≤ 0, b(x) ≤ 0 ∀x ∈ Rn.

The result was proved using results from real algebraic geometry. In the sequel, we will say

that a polynomial a in n variables changes sign on Rn if ∃x1, x2 ∈ Rn such that a(x1) > 0

and a(x2) < 0. Otherwise, by a slight abuse of terminology, we say that a has constant sign

on Rn.

Consider now the problem

inf
x∈Rn

p(x)

q(x)
, with p(x), q(x) ∈ R[x] relatively prime. (2.1)

In the following we use Lemma 2.1 in order to obtain a criterion for our problem.

Proposition 2.1. Let p(x)/q(x) be a rational function with p(x), q(x) relatively prime

polynomials. If q(x) changes sign on Rn then infx∈Rn p(x)/q(x) = −∞.
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Proof. We prove it by reduction to absurd. Assume ∃ α ∈ R a lower bound of the function.

We have

p(x)

q(x)
≥ α ∀x ∈ {Rn | q(x) 6= 0} ⇐⇒ p(x)− αq(x)

q(x)
≥ 0 ∀x ∈ {Rn | q(x) 6= 0}.

Applying Lemma 2.1, we deduce that both p(x)− αq(x) and q(x) have constant sign on Rn

which contradicts the hypothesis. �
The reciprocal is not true in general. However, we can reformulate now the problem (2.1).

Suppose now that q has constant sign on Rn.

Theorem 2.1. Let q have constant sign on Rn. Assuming, without loss of generality, that

q(x) ≥ 0 ∀x ∈ Rn, then the problem (2.1) is equivalent to

sup α

s.t. p(x)− αq(x) ≥ 0, ∀x ∈ Rn.
(2.2)

In other words, we search for the largest α which is a lower bound (finite or not) of the

rational function, as before. Note that if the rational function has no finite lower bound α,

then the feasibility domain of (2.2) is the empty set. In this case the supremum will be −∞.

The condition q(x) ≥ 0 ∀x ∈ Rn can be checked in the following way. Evaluate q at an

arbitrary point and suppose that it is indeed positive. Then q is non-negative on Rn if and

only if infx∈Rn q(x) ≥ 0. Hence we only need to compute the infimum of a polynomial on Rn

and this can be done using for example the algorithm described in [2]. One could also use

the algorithm of [6], [7], but we should strongly warn here against numerical errors.

To conclude, in this section we have rewritten the rational optimization problem as a

constrained polynomial optimization problem. In order to solve (2.2), we construct an LMI

relaxation of it.

2.2 An LMI relaxation

In this section we are going to relax the constraint in the problem (2.2) using the well-known

method (see [7], [6]) for checking the non-negativity of a polynomial. The method is based

on rewriting a given polynomial as a sum of squares of polynomials. If that succeeds, then we

know the original polynomial is non-negative. However not every non-negative polynomial

can be written as a sum of squares of polynomials, therefore this is just a relaxation of the

original problem.

To be more precise, we construct the matrix N such that

p(x)− αq(x) = zT Nz, , zT = [1, x1, x2, . . . , xn, x1x2, . . . , x
d
n].

Here d = dtdeg(p(x)−αq(x))/2e, tdeg(p(x)−αq(x)) is the total degree of p(x)−αq(x) in the

variables x (α being considered a parameter), and z contains all monomials of degree less than

or equal to d. Note that such a matrix N can always be constructed. Moreover it is symmetric
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and, in general, not uniquely determined. It is easy to show that the set of all such N forms

an affine space, i.e. N = N0 +
∑k

l=1 λlNl + αNk+1 where Nl, l = 0, . . . , k + 1 are constant

matrices (see [5]). Also, if N is positive semi-definite for some value of λ = (λ1, . . . , λk), then

p(x)− αq(x) ≥ 0, ∀x ∈ Rn.

Let us denote the generic matrix constructed above by N(λ, α), with λ ∈ Rk, α ∈ R.

Consider the LMI problem:

sup α

s.t. N(α, λ) � 0.
(2.3)

Indeed, since N(α, λ) is symmetric, the matrices Nl, l = 0, . . . , k + 1 will be symmetric.

Moreover, N(α, λ) is affine in (α, λ), hence the problem is a standard LMI problem. The

relation between the problems (2.3) and (2.2) is studied in the following.

Theorem 2.2. Let us denote by αRAT the solution of the problem (2.2), and consequently

of the rational optimization problem (2.1), and by αLMI the solution of (2.3). Then we have

αRAT ≥ αLMI .

If p(x)− αRAT q(x) can be written as a sum of squares, then

αRAT = αLMI .

There are particular cases in which a positive polynomial can always be written as a sum

of squares of polynomials. (see [1], Propositions 6.4.3, 6.4.4). Hence, if the polynomial

F (x) = p(x) − αq(x) is in one of these cases, the solution of (2.3) will coincide with the

solution of (2.1), according to Theorem 2.2. If not, then there is always a polynomial G(x)

such that F (x)G2(x) can be written as a sum of squares of polynomials (see [1], Theorem

6.1.1). It is not clear however how to chose the polynomial G(x). From the practical point

of view we are more interested in deciding whether for a particular rational function the

infimum was found or just a lower bound of it. A checking procedure is described in [6]

which decides whether the LMI relaxation was exact. The same procedure can be applied

to our problem.

For the example presented in this paper however, an alternative procedure was used. We

compared the lower bound αLMI with different upper bounds (actually local minima of the

rational function), obtained by running a steepest descent algorithm.

3 Optimal H2 model reduction

Let us denote by Σ = (A, B, C,D) a linear, continuous or discrete time-invariant, stable

system of order n. By stable, we mean that all eigenvalues of A are in the open left-half plane

in the continuous-time case, respectively in the open unit circle in the discrete-time case. The

H2 model reduction problem is finding the closest (in H2 distance) system Σ̂ = (Â, B̂, Ĉ, D̂)
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linear, continuous respectively discrete time-invariant, stable, of given order n̂. Formulated

differently, we want to solve:

min
Σ̂−stable

‖Σ− Σ̂‖2
2.

That is, for

• continuous-time systems: ‖Σ − Σ̂‖2
2 = trace((D − D̂)T (D − D̂)) + trace(BT M1B +

2BT M2B̂ + B̂T M3B̂),

with AT M1 + M1A = −CT C, AT M2 + M2Â = CT Ĉ, ÂT M3 + M3Â = −ĈT Ĉ.

• discrete-time systems: ‖Σ−Σ̂‖2
2 = trace((D−D̂)T (D−D̂))+trace(BT L1B+2BT L2B̂+

B̂T L3B̂),

with L1 − AT L1A
T = CT C, L2 − AT L2Â = −CT Ĉ, L3 − ÂT L3Â = ĈT Ĉ.

Obviously, in both cases the criterion is minimized for D = D̂ and trace((D−D̂)T (D−D̂))

becomes 0.

Note that one needs to solve the Lyapunov/Sylvester equations in M1, M2, M3 (respectively

L1, L2, L3). Actually some canonical forms of (A, B, C) are more advantageous for this

problem, as we will see later. It should be remarked however that M1, M2, M3 (respectively

L1, L2, L3) will be multivariate rational functions, therefore the criterion to be minimized

will be a multivariate rational function as well.

We treat here a particular case of the H2 optimal model reduction, namely reduction of

SISO continuous-time systems. It should be stressed that the procedure is also applicable to

the MIMO continuous-time case, using for example canonical forms for stable linear systems

constructed in [4].

Let us consider the SISO case. As we have mentioned before, we still have at this point

the choice for a parametrization of (A, b, c). In the following we choose the parametrization

trying to satisfy two criteria. The first one is the stability requirement, therefore we use

canonical forms for stable systems. Secondly we want to simplify our calculations (i.e. solving

the Lyapunov/Sylvester equations) as much as possible. One way is to choose a so-called

output canonical form for (A, c) (respectively (Â, ĉ)), that is equivalent to saying that M1,

the solution of the Lyapunov equation associated to (A, c), satisfies M1 = In (respectively

M3 = In̂.)

It turns out that in both SISO and MIMO cases there exist parametrizations satisfying

both mentioned requirements (see [3], [4]).

In the SISO case, we follow [3]. Let (A, b, c), (Â, b̂, ĉ) have Schwarz-like canonical form for

stable systems:

Â =


−1

2
x2

1 −x2 0 . . . 0

x2 0 −x3 . . . 0
...

0 0 . . . . . . −xn̂

0 0 . . . xn̂ 0

 , ĉ =
(

x1 0 0 . . . 0
)
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with xi > 0, ∀i = 1, . . . , n̂, and b ∈ Rn̂×1 is a free vector, with the condition that (A, b)

is a reachable pair. It is easy to see that (A, c), (Â, ĉ) are output-normal, i.e. ÂT + Â =

−ĉT ĉ, AT + A = −cT c. That is equivalent with M1 = In, M3 = In̂.

Moreover, the criterion is quadratic in b̂. By optimizing first with respect to b̂ one obtains

b̂ = −MT
2 b and ‖Σ−Σ̂‖2

2 = bT b−bT M2M
T
2 b, where M2 is the solution of the above mentioned

Sylvester equation. The optimization problem becomes

min
xi>0,i=1...,n̂

bT b− bT M2M
T
2 b = bT b− min

xi>0,i=1...,n̂

p(x1, . . . , xn̂)

q(x1, . . . , xn̂)
.

However, the positivity constraints can be dropped due to the following argument. In

general, one can show that one property of the Schwarz-like canonical form is that the

criterion p(x)/q(x) contains only even powers of x1, . . . , xn̂. The proof is based on the

fact that the H2 distance between the two systems, and therefore our criterion p(x)/q(x) ,

does not depend on a particularly chosen (Â, b̂, ĉ) representation of the approximant system.

Moreover, if for a certain i = 2, . . . , n̂ one replaces xi by −xi in a given Schwarz-like canonical

representation (Â, b̂, ĉ), or if one replaces x1 by −x1 and simultaneously b̂ by −b̂, then one

obtains an equivalent Schwarz-like representation. That implies

p(x1, . . . , xi−1, xi, xi+1, . . . , xn̂)

q(x1, . . . , xi−1, xi, xi+1, . . . , xn̂)
=

p(x1, . . . , xi−1,−xi, xi+1, . . . , xn̂)

q(x1, . . . , xi−1,−xi, xi+1, . . . , xn̂)

and therefore the criterion p/q contains only even powers of xi, i = 1, . . . , n̂. Hence, one

only needs to solve an unconstrained rational optimization problem. In this case, when

minimizing over (x1, . . . , xn̂) ∈ Rn̂ we obtain symmetric solutions with respect to the origin

and the axis, i.e. for any solution (x1, . . . , xn̂), we know that (±|x1|, . . . , ±|xn̂)|) are solutions

as well.

We consider now a concrete example, namely the Oscillatory system of [3]. There an

optimal approximant was constructed using constructive algebra methods. In the end we

intend to compare the results.

Example 3.1. Find the best H2-approximant of second order (n̂ = 2), of the system

Tf(s) =
s2 − s + 2

s3 + 0.5s2 + 2s + 0.5
(n = 3).

T f corresponds to a Schwarz-like canonical form with parameters x1 = x2 = x3 = b1 = b2 =

b3 = 1, d = 0.

Let us consider a general second order, stable system in Schwarz-like canonical form

Â =

(
−1

2
x2

1 −x2

x2 0

)
, ĉ =

(
x1 0

)
, x1 > 0, x2 > 0

We want to find the values of the parameters x1, x2 for which the criterion bT b− bT M2M
T
2 b

is minimized. Since b is given, let us now compute the matrix M2 ∈ R3×2 (as function of

x1, x2) from the linear system of equations AT M2 + M2Â = cT ĉ.
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We obtain

M2 = 2
∆

 −4x1 − x5
1 + 8x1x

2
2 − 4x3

1x
2
2 − 4x1x

4
2 16x1x2 + 2x5

1x2 − 24x1x
3
2 + 8x1x

5
2

2x3
1 + 16x1x

2
2 − 8x1x

4
2 4x1x2 − 4x1x

3
2 − 4x3

1x
3
2

−4x1 + 4x1x
2
2 + 4x3

1x
2
2 16x1x2 + 2x3

1x2 + 2x5
1x2 − 8x1x

3
2


with ∆ = 4 + 8x2

1 + x4
1 + x6

1 + 56x2
2 − 4x2

1x
2
2 + 8x4

1x
2
2 − 60x4

2 + 4x2
1x

4
2 + 16x6

2.

The criterion will be

bT b + min−bT M2M
T
2 b = 3 + min−p(x1, x2)

q(x1, x2)

where

p(x1, x2) = 4x2
1(64− 32x2

1 + 20x4
1 − 4x6

1 + x8
1 + 848x2

2 + 256x2
1x

2
2+236x4

1x
2
2+16x6

1x
2
2+16x8

1x
2
2−

1616x4
2−480x2

1x
4
2−280x4

1x
4
2−32x6

1x
4
2 +1200x6

2 +320x2
1x

6
2 +80x4

1x
6
2−432x8

2−64x2
1x

8
2 +64x10

2 )

and

q(x1, x2) = (4 + 8x2
1 + x4

1 + x6
1 + 56x2

2 − 4x2
1x

2
2 + 8x4

1x
2
2 − 60x4

2 + 4x2
1x

4
2 + 16x6

2)
2
.

We apply now the procedure described in Section 2. Note that the denominator of the

rational function is the square of a polynomial, hence it is non-negative on R2. For solving

the problem (2.2), we construct the LMI relaxation (2.3), using the vector of monomials z.

In order to reduce the size of our problem, and since the polynomials p, q contain only even

powers of the variables, we consider only monomials of even power in the vector z as well. We

have tdeg(p(x)−αq(x)) = 12, therefore the vector z will contain monomials of degree less or

equal its half, that is m = 6 and zT =
(

1 x2
1 x4

1 x6
1 x2

2 x4
2 x6

2 x2
1x

2
2 x4

1x
2
2 x2

1x
4
2

)
. In

this case, considering this vector z turns out to be sufficient for finding the global minimum.

In general however, resticting the number of monomials in z may lead to a strict lower bound

of the global minimum.

Let us now construct an arbitrary, symmetric matrix N ∈ R[α, λ]10×10. Its dimension is

obviously determined by the length of z. We compute N(λ, α) by equalizing the coefficients

of the polynomials p(x)−αq(x) and zT Nz. It turns out from the computations that λ ∈ R28.

The only thing left now it to compute the solution for the LMI relaxation. We obtain, as

a lower bound on the infimum of the original problem 1.1117. At this point we still need

to decide whether this is a strict lower bound or not. In this case we have run a standard

steepest descent algorithm which finds a (local) minimum at (x1, x2) = (1.1916, 0.4183) for

which the value of the criterion equals our lower bound! This tells us two things, first that

the lower bound was exact, secondly that the point (1.1916, 0.4183) is actually a global

minimum. Hence, we have found a best approximant in H2 norm and this is given by

Â =

(
−0.7099 −0.4183

0.4183 0

)
, ĉ =

(
1.1916 0

)
, b̂ =

(
0.2080

−1.3118

)
Under certain conditions, other (more direct) methods than the one presented here can be

used to decide whether the obtained lower bound is exact or not. For more details see [6].
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For obtaining the lower bound 1.1117 we have run an algorithm which consists out of two

parts. The first one, for constructing the LMI relaxation was implemented in Mathematica

4.0 and takes 12 seconds and 16.7 Kb on a Sun Ultra 5 station. Then, for solving the LMI

problem we use SeDuMi1.03, a free software package (see [8]) running under Matlab. This

takes another 5 seconds (of which 2 are used to read the data obtained with Mathematica).

Unfortunately, SeDuMi runs sometimes into numerical problems.

4 Conclusions

In this paper we develop an algorithm for global optimization of rational functions. The

approach is based on rewriting a rational optimization problem in Rn as a constrained

polynomial optimization problem of a particular type.

Such equivalent formulation of the problem can in principle be solved using a different

algorithm than the one discussed here. We have chosen to apply the algorithm of [7], [6] for

its possible relevance in applications. The translation of our problem into this setting was

immediate.

We also show how the algorithm can be used for finding the best H2 approximant of a

system.
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