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Abstract

In this work we describe a procedure to construct finite signal constellations from
lattices associated to rings of algebraic integers and their ideals. The procedure provides
a natural way to label the constellation points by elements of a finite field. The labeling
is proven to be linear which allows, at the receiver, a fast way to map a constellation
point into a field element. The performance of four and six-dimensional constellations
are determined in terms of minimum squared Euclidean distance and average energy,
for rates from 1 up to 3.

1 Introduction

A lattice constellation S of dimension n consists of a set of M points, also called signals,

in n-dimensional Euclidean space from a lattice of rank n. A given point (x1, . . . , xn) ∈ S
is associated to the signal

∑n
i=1 xiφi(x), where {φ1(x), . . . , φn(x)} is the signal orthonormal

basis for the usual scalar product of functions over an interval [0, T ]. Such constellations

have proven to be an efficient means to transmit information over a Gaussian channel, see

for example, [1], [3], [4], and [8].

A basic parameter guiding the design of such constellations is the normalized minimum

square distance, given by κ =
d2
min

Eav
log2 M , where Eav is the average squared norm of the

points of the constellation, and d2
min is the minimum squared distance between points of the

constellation [11]. For a given rate R = log2 M/n bits per dimension, the best constellation

is the one possessing the highest value of κ.

Another important aspect in the design of such constellations concerns the labeling of the

constellation points. This is crucial at the receiver, when converting a constellation point
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into a field element. One of the first works in that direction was [17], where Ungerboeck

introduced the notion of mapping by set partitioning.

Our aim in this paper is to revisit a well-known method for constructing and labeling

lattice constellations, and to apply it with a particular class of lattices, namely, the algebraic

lattices. The result will be a systematic construction/labeling procedure. The basic idea

of the old method is to select a sublattice Λ′ ⊂ Λ, and to take the quotient Λ/Λ′ of finite

cardinality. The constellation then consists of the representatives of the cosets of Λ in Λ′.

This general approach can be found in [4], [8], and [17].

The novelty introduced in the present paper is that the lattices being considered are

algebraic lattices, that is, they are images in Rn of rings of algebraic integers or ideals

in those rings. The lattice partitioning is then realized via Kummer’s lemma, which is a

constructive procedure to factor prime numbers in rings of algebraic integers. Moreover,

Kummer’s lemma provides us with a natural way to label the cosets of a sublattice by

elements of a finite field GF (q) to which Λ/Λ′ is isomorphic. Finally, the linearity of the

labeling speeds up decoding processes.

The procedure we derive from Kummer’s lemma is systematic, in the sense that lattice

constellations can be efficiently constructed and labeled in any dimension, in principle. Good

constellations for the parameter κ can be obtained from good algebraic lattices, that is,

lattices possessing a high center density. Two-dimensional constellations labeled by elements

of a finite field were presented in [9], [10], and [13]. However, the techniques presented there

do not allow an obvious generalization to higher dimensions.

This paper is organized as follows: in Section 2, a brief review of algebraic lattices and

decomposition of primes in number fields is presented; in Section 3, the linear labeling of

lattices is introduced along with a technique to effectively build signal constellations; in

Section 4, the linear labeling technique is extended to sublattices of a lattice that is the

image of a ring of integers; in Section 5, a concrete example of construction and labeling of a

four dimensional constellation is worked out; in Section 6, a table of optimal constellations

is presented; in Section 7, the conclusions are presented.

2 Algebraic Lattices and Ideal Decomposition in Num-

ber Fields

In this section we will present the essential concepts and results from algebraic number theory

which lead to lattice construction and labeling of lattice points. For mathematical rigor and

computational issues, the interested reader may consult [2], [12], and [14].

We say that F = Q(ρ) is an algebraic number field of degree n if F is a finite extension field

of Q. Such extension field is obtained by adjoining to Q a root ρ ∈ C of p(x), a polynomial

in Z[x] of degree n. F can be seen as vector space over Q of dimension n, and one of its

bases is {1, ρ, . . . , ρn−1}.
There are exactly n embeddings of F into C. These are homomorphisms φ : F → C such
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that φ(r) = r, ∀r ∈ Q. We will denote the n embeddings by σ1, . . . , σn. In fact, σi is

completely defined by putting σi(ρ) = ρi, for i = 1, . . . , n, where ρ1 = ρ, ρ2, . . . , ρn are the

distinct roots of p(x).

The set of all elements in F that are roots of monic polynomials in Z[x] forms a ring, called

the ring of integers of F, and denoted by OF. This ring is actually a Z-module of rank n, so

it admits a Z-basis which we denote by {ω1, . . . , ωn}.
Let us now order the σj such that σj(x) ∈ R for for j = 1, . . . , r1, and σj+r2(x) is the

complex conjugate of σj(x) for j = r1 + 1, . . . , r1 + r2. Note that n = r1 + 2r2. Then the

canonical embedding σ : F → Rn, defined by

σ(x) = (σ1(x), . . . , σr1(x),<σr1+1(x),=σr1+1(x), . . . ,<σr1+r2(x),=σr1+r2(x)).

is a Q-algebra monomorphism, where <(z) and =(z) are, respectivelly, the real and imaginary

parts of the complex number z.

Finally, the set {v1, . . . , vn}, where

vi = (σ1(ωi), . . . , σr1(ωi),<σr1+1(ωi),=σr1+1(ωi), . . . ,<σr1+r2(ωi),=σr1+r2(ωi)),

forms a basis of a full-rank lattice Λ in Rn. Given any nonzero ideal I of OF, σ(I) ⊂ Rn is

a sublattice of Λ, also of full-rank.

For the labeling of lattice points by elements of a finite field, we will need the following

theorem, which is a special case of Theorem (2.27) [14, p. 390].

Theorem 2.1. Let F be an algebraic number field with ring of integers OF. Let F = Q(ρ), ρ ∈
OF, and m(x) ∈ Z[x] be the minimal polynomial of ρ. Suppose p is a rational prime not

dividing the index f = [OF : Z[ρ]] of ρ. The prime ideal pOF decomposes into prime ideals

of OF in the following way: let m(x) = m1(x)e1 . . . mr(x)er be the factorization of m(x) into

distinct monic irreducible polynomials of degree fi (1 ≤ i ≤ r) over Zp[x], where ¯ denotes

the residue class mapping Z[x] → Zp[x]. Then pOF has a unique presentation

pOF = pe1
1 . . . per

r ,

as a power product of prime ideals in OF, where pi = 〈p, mi(ρ)〉 and OF/pi
∼= GF (pfi), for

1 ≤ i ≤ r.

3 Linear Labeling of Lattice Constellations

Definition 3.1. Let F = Q(ρ) be a number field of degree n, where ρ ∈ OF, a Z-module

with basis {ω1, . . . , ωn}. Let Λ be the lattice obtained from OF via the canonical embedding

σ. Given a rational prime p and a positive integer t, the mapping ` : Λ → GF (pt) is called

a GF (pt)-linear labeling if

`(σ(x1ω1 + . . . + xnωn)) = x1`(σ(ω1)) + . . . + xn`(σ(ωn)), (3.1)

∀xi ∈ Z, and 1 ≤ i ≤ n.
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Let p be a rational prime. Then, by Theorem 2.1, pOF =
∏r

j=1 p
ej

j , where pj are distinct

prime ideals in OF given by pj = 〈p, mj(ρ)〉, and OF/pj
∼= GF (qj), with qj = pfj . From this,

and noting Definition 3.1, we have the following

Proposition 3.1. Let ϕ be an isomorphism from OF/pj onto GF (qj), and let pr be the

natural mapping from OF onto OF/pj. Then ` = ϕ ◦ pr ◦ σ−1 is a linear GF (qj)-labeling of

Λ by GF (qj).

Proof: Applying the basic properties of the mappings ϕ, pr, and σ, we obtain:

`(σ(x1ω1 + . . . + xnωn)) = ϕ(pr(σ−1(σ(x1ω1 + . . . + xnωn)))) = ϕ(pr(x1ω1 + . . . + xnωn)) =

ϕ(pr(x1ω1) + . . . + pr(xnωn)) = ϕ(pr(x1ω1)) + . . . + ϕ(pr(xnωn)) =

x1ϕ(pr(ω1)) + . . . + xnϕ(pr(ωn)) = `(σ(x1ω1)) + . . . + `(σ(xnωn)).

�

Remark 3.1. Note that ` can be completely specified by setting `(σ(ρ)) = r0, where r0 is a

root of the polynomial mj(x) over GF (p).

An immediate consequence of Proposition 1 is

Corollary 3.1. `(σ(x)) = `(σ(y)) if and only if x and y are elements of the same coset of

pj in OF.

Algorithm for Constructing and Labeling

a qj-Point Constellation from Lattice σ(OF)

Step 1) Choose one of the roots r0 of the equation mj(x) = 0 over GF (pfj);

Step 2) Set `(σ(ρ)) = r0;

Step 3) Set `(σ(ωi)) =
∑t

s=0 ci,sr
s
0, where ωi =

∑t
s=0 ci,sρ

s, for 1 ≤ i ≤ n;

Step 4) For each one of pfj cosets of pj in OF, choose the respective coset leader as the element

x∗ such that σ(x∗) is the closest to the origin. Finish.

In Step 4, the obtained set of coset leaders is the signal constellation we were seeking. At

this point, it is worth mentioning the advantages of having a linear type of labeling:

1) The search for finite point constellations with pf points is a systematic procedure

consisting of partitioning a lattice Λ = σ(OF) into pf cosets via an ideal p of OF. The

coset leaders having minimum energy are retained. Their labels are determined via

the isomorphism between OF/p and GF (pf );
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2) At the receiver side, the decoder usually employs a two step procedure. First, given a

received point r ∈ Rn, the nearest point r∗ in the constellation is singled out. Secondly,

the label of r∗ can be quickly computed via Equation 3.1.

Next, we give an example to illustrate the labeling technique.

Example 3.1. Consider F = Q(ζ8), where ζ8 is a primitive eighth root of unity. Its minimal

polynomial is m(x) = x4 + 1. The ring of integers is OF = Z[ζ8], a principal ideal domain.

One can verify that m(x) = (x− 10)(x + 10)(x− 22)(x + 22) (mod 73). Thus,

73OF = p1p2p3p4,

where p1 = 〈73, ζ8 − 10〉, p2 = 〈73, ζ8 + 10〉, p3 = 〈73, ζ8 − 22〉, and p4 = 〈73, ζ8 + 22〉.
We have Z[ζ8]/p1

∼= GF (73), and therefore ζ8 ≡ 10 (mod p1). From this, the following

labeling results:

`(σ(x0 + x1ζ8 + x2ζ
2
8 + x3ζ

3
8 )) = x0 + 10x1 + 27x2 + 51x3 (mod 73),

∀xi ∈ Z, and 0 ≤ i ≤ 3.

4 Linear Labeling of Sublattices

Given a number field F and its ring of integers OF, let q be a nonzero OF-ideal. If lattice

σ(q) is denser than lattice σ(OF), then a signal constellation is generally built from q instead

of OF. If p is also a nonzero OF-ideal, then OF/p ∼= q/pq. In this direction, it would be

convenient if we could label the cosets of pq in q utilizing the labeling adopted in OF/p, i.e.,

the elements of q would receive the same label as they would receive in OF. At this point,

however, some difficulties may arise. For example, consider the case where p = q. From the

previous section, we know that `(σ(x)) = 0,∀x ∈ p. Therefore, all the representatives of

the cosets of p · p in p will be labeled by 0, a property that is not desirable. To avoid this

situation, we can resort to the following result [12, Corollary 3.28, p. 136].

Proposition 4.1. Let p, q be nonzero OF-ideals. Then:

i) There is an isomorphism φ from the additive group of OF/p onto the additive group of

q/pq;

ii) There is always an OF-ideal a, relatively prime to q, such that aq is principal. If γ is

a generator of aq, then φ is specified by the mapping: r + p 7→ rγ + pq.

Proposition 2 motivates the following

Definition 4.1. Let OF be the ring of integers of a number field F, and let p and q be nonzero

OF-ideals. Suppose ` is a linear labeling of Λ = σ(OF) by GF (q), and r is any element of

OF. Then we define the label of σ(x), for any x belonging to the coset rγ of pq in q, as

λ(σ(x)) := `(σ(r)).
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Proposition 4.2. The mapping λ is a linear labeling.

Proof: Let r, s be any elements of OF, and define x = rγ, and y = sγ, where γ is as in

Proposition 2. Then

λ(σ(x + y)) = `(σ(r + s)) = `(σ(r)) + `(σ(s)) = λ(σ(x)) + λ(σ(y)).

�

The next two examples illustrate this situation.

Example 4.1. Let F = Q(ζ8). Consider the ideal q = 〈1− ζ8〉 of OF. It is easy to see that

N(q) = 2 and σ(q) is the lattice denoted by D4 in [4]. Let p = 〈4 − ζ8〉 be an ideal of OF.

We have N(p) = 257; so Z[ζ8]/p ∼= Z257. On the other hand, Z[ζ8]/p ∼= q/pq. Therefore,

〈1− ζ8〉/〈4− 5ζ8 + ζ2
8 〉 ∼= Z257.

We have ζ8 ≡ 4 (mod p). From this, the following labeling results:

λ(σ(x0 + x1ζ8 + x2ζ
2
8 + x3ζ

3
8 )) = x0 + 4x1 + 16x2 + 64x3 (mod 257),

∀ x0 + x1ζ8 + x2ζ
2
8 + x3ζ

3
8 ∈ 〈1− ζ8〉.

Example 4.2. As in the previous example, consider the ideal q = 〈2 − ζ8〉 of OF. Here,

however, let p = q. Therefore,

〈2− ζ8〉/〈4− 4ζ8 + ζ2
8 〉 ∼= Z17.

Since ζ8 ≡ 2 (mod p), then every x0 + x1ζ8 + x2ζ
2
8 + x3ζ

3
8 ∈ 〈2− ζ8〉 receives the label 0, for:

`(x0 + x1ζ8 + x2ζ
2
8 + x3ζ

3
8 ) = x0 + 2x1 + 4x2 + 8x3 = 0 (mod 17).

Now, resorting to Proposition 2, and from (y0 + y1ζ8 + y2ζ
2
8 + y3ζ

3
8 ) · (2− ζ8) = (x0 + x1ζ8 +

x2ζ
2
8 + x3ζ

3
8 ), the following labeling results:

λ(σ(x0 + x1ζ8 + x2ζ
2
8 + x3ζ

3
8 )) = `(y0 + y1ζ8 + y2ζ

2
8 + y3ζ

3
8 ) = y0 + 2y1 + 4y2 + 8y3 (mod 17),

where: x0 = 2y0 + y3; x1 = −y0 + 2y1; x2 = −y1 + 2y2; and x3 = −y2 + 2y3, which implies

λ(σ(x0 + x1ζ8 + x2ζ
2
8 + x3ζ

3
8 )) = 15x0 + 13x1 + 9x2 + x3 (mod 17).

5 A Four Dimensional Lattice Constellation

Using the techniques of the previous sections, here we will present a four dimensional lattice

constellation S with 73 points linearly labeled by GF (73). Its rate is R = log2 73/4 = 1.5474,
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and its performance will be measured by the parameter κ =
d2
min

Eav
log2 M . For the same rate,

the presented constellation compares favorably with spherical constellations [7].

The four dimensional lattice Λ associated to Z[ζ8] has a center density of 0.0625, whereas

the sublattice Λ′ associated to the ideal (1− ζ8)Z[ζ8] has a center density of 0.125. We will

construct and label a 73-point constellation from Λ′.

The rational prime 73 splits in Z[ζ8] in prime ideals as 73Z[ζ8] = p1p2p3p4, where p1 =

〈10− ζ8〉, p2 = 〈63− ζ8〉, p3 = 〈22− ζ8〉, and p4 = 〈51− ζ8〉. Hence,

Z73
∼=

Z[ζ8]

p1

∼=
〈1− ζ8〉
〈1− ζ8〉p1

.

Therefore,
〈1− ζ8〉

〈10− 11ζ8 + ζ2
8 〉
∼= Z73.

We have ζ8 ≡ 10 (mod p1). From this, the following linear labeling results:

λ(σ(x0 + x1ζ8 + x2ζ
2
8 + x3ζ

3
8 )) = x0 + 10x1 + 27x2 + 51x3 (mod 73),

∀ x0 + x1ζ8 + x2ζ
2
8 + x3ζ

3
8 ∈ 〈1− ζ8〉.

Constellation S is identified in Table 1. The image via σ of an integer with coordinates

(x0, x1, x2, x3) in the basis {1− ζ8, ζ8 − ζ2
8 , ζ

2
8 − ζ3

8 , 1 + ζ3
8} (of the ideal 〈1− ζ8〉) receives the

label ` = x0 + 10x1 + 27x2 + 51x3 mod 73. For S, we have κ = 3.1378.

6 Some Optimal Constellations

In Table 2 we list some optimal constellations in dimensions from two through six. The

constellations are described by their rate, minimum distance, and the parameter κ. We note

that as the number of points grow, lattice constellations have a better performance in terms

of κ, when compared to spherical constellations.

7 Conclusion

With q a power of a rational prime, finite lattice constellations of q points were constructed

and labeled. The main idea was to choose a prime ideal p of norm q in an algebraic number

field F, and then to consider the quotient OF/p to realize the lattice partition. Proposition

3.1 and Definition 4.1 explain the labeling of the points in Λ, the lattice associated to OF

(or one of its ideals) by elements of GF (q).

This method is a highly systematic procedure that allows the design of large constellations

from complicated lattices in any dimension. Besides that, at the decoder, the generation

of the decoded finite field symbol is very fast due to the linear labeling of the signal set.

Nevertheless, once the constellation is generated and linearly labeled by elements of GF (q),
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` x1 x2 x3 x4 ` x1 x2 x3 x4 ` x1 x2 x3 x4

0 0 0 0 0 1 1 0 0 0 2 -2 -2 -1 1

3 -2 0 1 1 4 -1 0 1 1 5 0 0 1 1

6 1 1 -1 -1 7 0 -1 -1 -2 8 -1 -1 -2 0

9 -1 0 2 2 10 0 1 0 0 11 1 1 0 0

12 0 -1 0 -1 13 -1 -1 -1 1 14 -1 1 1 1

15 0 1 1 1 16 1 1 1 1 17 -2 -1 0 2

18 1 0 -1 -2 19 -1 1 2 2 20 -1 -2 -2 -1

21 -1 0 0 -1 22 0 0 0 -1 23 1 0 0 -1

24 -2 -2 -1 0 25 -1 -2 -1 0 26 -1 0 1 0

27 0 0 1 0 28 1 0 1 0 29 -2 -2 0 1

30 -1 -2 0 1 31 0 -1 -2 -1 32 0 1 0 -1

33 1 1 0 -1 34 2 1 0 -1 35 -1 -1 -1 0

36 0 -1 -1 0 37 0 1 1 0 38 1 1 1 0

39 -2 -1 0 1 40 -1 -1 0 1 41 0 -1 0 1

42 0 1 2 1 43 1 1 2 1 44 -2 -1 1 2

45 -1 0 -1 0 46 0 0 -1 0 47 1 0 -1 0

48 1 2 1 0 49 -2 0 0 1 50 -1 0 0 1

51 0 0 0 1 52 -1 -2 0 0 53 0 -1 -2 -2

54 -2 0 1 2 55 -1 0 1 2 56 0 0 1 2

57 -1 -1 -1 -1 58 0 -1 -1 -1 59 1 -1 -1 -1

60 1 1 1 -1 61 0 1 0 1 62 -1 -1 0 0

63 0 -1 0 0 64 0 1 2 0 65 -1 1 1 2

66 -2 -1 1 1 67 -1 -1 1 1 68 0 0 -1 -1

69 1 0 -1 -1 70 1 2 1 -1 71 -1 -2 -2 0

72 -1 0 0 0

Table 1: 73-point constellation from Z[ζ8] labeled by GF (73).
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Code [M, n] Description R = log2 M
n

d2
min Kira

s [6, 5] Simplex [5] 0.50 2.4 6.204

[5, 3] multilevel [16] 0.77 2.143 4.975

s [8, 4] 16-cell [5] 0.75 2.0 6.0

s [4, 2] Square 1.00 2.0 4.0

s [16, 4] Cyclic Polytope [6] 1.00 1.172 4.686

[25, 4] 〈21− 55ζ12〉/(p5〈21− 55ζ12〉) 1.16 1.040 4.837

s [72, 6] Ericson-Zinoviev [7] 1.03 1.0 6.170

s [32, 4] Ericson-Zinoviev [7] 1.25 0.667 3.330

[37, 4] 〈21− 55ζ12〉/(p37〈21− 55ζ12〉) 1.30 0.771 4.015

[181, 6] 〈(1− ζ9)
2〉/(p181〈(1− ζ9)

2〉) 1.25 0.628 4.710

s [243, 6] [7] 1.32 0.6 4.750

[343, 6] 〈(1− ζ9)
2〉/(p7〈(1− ζ9)

2〉) 1.40 0.560 4.720

s [8, 2] 8-gon 1.50 0.586 1.760

[73, 4] 〈1− ζ8〉/(p73〈1− ζ8〉) 1.55 0.507 3.138

[613, 6] 〈(1− ζ9)
2〉/(p613〈(1− ζ9)

2〉) 1.54 0.431 3.990

s [120, 4] Schäfli {3, 3, 5} [5] 1.73 0.309 2.130

[157, 4] 〈21− 55ζ12〉/(p157〈21− 55ζ12〉) 1.82 0.363 2.650

[1459, 6] 〈(1− ζ9)
2〉/(p1459〈(1− ζ9)

2〉) 1.75 0.312 3.280

s [16, 2] 16-gon 2.00 0.152 0.610

[16, 2] 16-QAM 2.00 0.4 1.600

[241, 4] 〈21− 55ζ12〉/(p241〈21− 55ζ12〉) 1.98 0.287 2.269

[4051, 6] 〈(1− ζ9)
2〉/(p4051〈(1− ζ9)

2〉) 1.99 0.232 2.780

[64, 2] 64-QAM 3.00 0.095 0.571

[4073, 4] 〈1− ζ8〉/(p4073〈1− ζ8〉) 2.99 0.069 0.830

Table 2: Comparison between spherical group codes and lattice codes.
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a general and fast way for picking out a constellation point, given a field element, is still

missing. This operation is critical for transmission when large constellations are used.

Finally, although outside of the objectives of the present paper, another challenge in de-

signing constellations having high rate, high minimum Euclidean distance, and low average

signal power simultaneously, is to find rings of integers and ideals contained in them associ-

ated to very dense lattices [4].
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