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Abstract

The application of novel adaptive predictive optimal controllers of low order, that

involve a multi-step cost index and future set-point knowledge, is considered. The

usual predictive controller is of high order and the aim is to utilise simpler structures,

for applications where PID controllers might be employed for example. A non-linear

system is assumed to be represented by multiple linear discrete-time state-space mod-

els, where n of these models are linearisations of the underlying non-linear system at

an operating point, determined off-line. One extra model is identified on-line. The

optimisation is then performed across this range of Nf + 1 models to produce a single

low order control law. One advantage of this approach is that it is very straightforward

to generate a much lower order predictive controller and thereby simplify implementa-

tion. Also, with respect to the adaptive nature of the algorithm, the solution is rather

cautious. Each new update of the controller involves averaging the cost function across

both fixed and currently identified models, providing robust adaptive control action.

The method is applied to a piecewise non-linear system, implemented by switching

between several linear systems, and results are given.

1 Introduction

Predictive optimal control is used extensively in industry for applications such as large-scale

supervisory systems [1]. Predictive control depends upon the assumption that future refer-

ence or setpoint information is available, which may then be incorporated into the optimal

control law to provide improved tracking characteristics and smaller actuator changes.

The best known predictive control approach is probably Dynamic Matrix Control (DMC),

which was introduced for complex multivariable plants with strong interactions and compet-

ing constraints [2]. DMC has been applied in more than 1000 plants worldwide and aims to

drive a plant to the lowest operating cost. The algorithm includes a steady state optimiser

based on the economics of the process so that set points can be manipulated to optimise the

total system. The focus of this type of commercial algorithm is at the supervisory levels of

the control hierarchy where the order of the controller is not such a problem. If predictive
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control is to become widely adopted at the regulating level there is a need for low-order

simple controller structures, and this is the problem addressed.

The predictive control algorithms based upon multi-step cost-functions and the receding

horizon control law, were generalized by Clarke and coworkers in the Generalized Predictive

Control (GPC) algorithm [3]. Future set-point information has been used in a number of

Linear Quadratic (LQ) optimal control problems and summarized in the seminal work of

Bitmead et al [4]. The use of state-space models for Generalized Predictive Control (GPC)

was proposed in [5] and extended in [6].

Multi-step cost-functions may also be used in LQ cost-minimization problems. The so-

lution of the multi-step Linear Quadratic Gaussian Predictive Control (LQGPC) problem,

when future set point information is available, has been considered in [7], when the plant

is represented in polynomial matrix form. The solution of the LQGPC cost minimization

problem for systems represented in state equation form was given in [8] and [9]. There are a

number of model predictive control philosophies which employ state equation models which

are related to these results, such as in [10]. The solution strategy followed is to minimise an

H2 or LQG criterion in such a way that the predictive controller is of the desired form and

is causal. A simple analytic solution cannot be obtained, as in the case where the controller

structure is unconstrained [11]. However, a relatively straightforward direct optimization

problem can be established which provides the desired solution.

The aim of this paper is to present a new method of generating adaptive low-order predic-

tive optimal controllers that could be used in non-linear control applications. This simplifi-

cation is to be achieved without losing the benefits of either the multi-step criterion or the

future set-point knowledge.

2 System Model

The system shown in Fig.1 is represented by the linear, time-invariant, discrete-time state-

space system representation given below, where the state vector X(t) =
[

x0(t) x1(t)
]T

is

a combination of the states for both reference generator and plant:

X(t + 1) =

[

A0 0

0 A1

]

X(t) +

[

0

B1

]

u(t) +

[

D0 0

0 D1

] [

ξ0(t)

ξ1(t)

]

(2.1)

X(t + 1) = AX(t) + Bu(t) + Dξ(t) (2.2)

z1(t) =

[

0 0

0 C1

]

X(t) +

[

0

v1(t)

]

(2.3)
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z1(t) = CX(t) + v1(t), yh(t) = H1x1(t), rh(t + p) = Hrxr0(t) (2.4)

The states x1(t) ∈ R
n, x0(t) ∈ R

p, control input u(t) ∈ R, white noise disturbance

ξ1(t) ∈ R, observation z1(t) ∈ R, white output noise v1(t) ∈ R, inferred output yh ∈ R,

driving white noise input ξ0(t) ∈ R, and inferred reference rh(t) ∈ R.

x0(t)

+
z

-1

Ar

Dr

H

u(t)

+
z

-1

A1

B1

x1(t)
D1

C1

+

-K

+

x (t+1)r0 x (t)r0

x (t+1)1 x (t)1

r (t)h

y (t)h

v (t)1

z (t)1

Figure 1: Plant Model and Reference Generator

To produce the reference signals at {t+1,t+2,. . . ,t+p-1}, the x0(t) state is created by

delaying xr0(t). Hence:

x0(t) =















xr0(t)

xr1(t)

xr2(t)
...

xr(p−1)(t)















, A0 =

















Ar 0 · · · 0

Hr 0 · · ·
...

0 1
...

. . .
...

0 0 · · · 1 0

















, D0 =















Dr

0

0
...

0















(2.5)

To produce the vector of future reference values from the state vector, the following matrix-

vector product is formed:















rh(t + 1)

rh(t + 2)
...

rh(t + p − 1)

rh(t + p)















=















0 0 · · · 0 1

0 0 · · · 1 0
...

...
...

0 1 · · · 0 0

Hr 0 · · · 0 0





























xr0(t)

xr1(t)
...

xr(p−2)(t)

xr(p−1)(t)















(2.6)
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Rt+1,N = H0x0(t) (2.7)

with an obvious definition of terms in (2.7).

Also, the matrices C and D are partitioned to give C11 =
[

0 0
]

, C21 =
[

0 C1

]

,

D11 =

[

D0

0

]

, and D12 =

[

0

D1

]

. These partitions are used later, in the definition of the

system transfer function matrices.

Having established the plant equations, an estimator is required to predict the inferred

output for j steps ahead. The estimator is stated below:

Y h
t+1,N = HNx1(t) + GNUt,N + NNWt,N (2.8)

Y h
t+1,N =











yh(t + 1)

yh(t + 2)
...

yh(t + N)











, HN =











H1A1

H1A
2
1

...

H1A
N
1











GN =













H1B1 0 · · · 0

H1A1B1 H1B1
. . .

...
...

...
. . . 0

H1A
N−1
1 B1 H1A

N−2
1 B1 · · · H1B1













, Ut,N =











u(t)

u(t + 1)
...

u(t + N − 1)











NN =













H1D1 0 · · · 0

H1A1D1 H1D1
. . .

...
...

...
. . . 0

H1A
N−1
1 D1 H1A

N−2
1 D1 · · · H1D1













, Wt,N =











ξ1(t)

ξ1(t + 1)
...

ξ1(t + N − 1)











3 Predictive control problem formulation

For a scalar system with white noise input signals, the predictive control performance index

to be minimised can be defined in the time domain as in [12]:

J = E

{

lim
T→∞

1

2T

T
∑

t=−T

Jt

}

Jt =

N
∑

j=1

Qj(rh(t + j) − yh(t + j))2 +

N−1
∑

j=0

Rju(t + j)2 (3.1)
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where E{.} is the unconditional expectation operator and yh and rh are the inferred output

and reference signals respectively. The error and control weightings, Qj and Rj, need not

remain fixed over the sequence of j’s.

By expressing the system description in the state-space form of Section 2 it is possible,

with suitable manipulation, to restate the cost function in frequency domain form [13]:

Jp = E

{

lim
T→∞

1

2T

T
∑

t=−T

XT (t)Q̄cX(t) + uT (t)R̄cu(t) + 2XT (t)Ḡcu(t)

}

=
1

2πj

∮

|z|=1

trace{Q̄cΦXX(z−1) + 2ḠcΦuX(z−1) + R̄cΦuu(z
−1)}

dz

z
(3.2)

where ΦXX , Φuu, and ΦuX are the power spectrums of the state, control input and the cross-

spectrum of state and control input respectively. To obtain the Q̄c, R̄c, and Ḡc matrices it is

necessary to first partition G̃ = −GN , and R̃ = diag{R0, . . . RN−1} to match the partitioning

of Ut,N into current and future controls:

G̃ =
[

GN1 GN2

]

, R̃ =

[

R0 0

0 R̃22

]

where R̃22 = diag{R1, . . . , RN−1}. Noting that Q̃ = diag{Q1, . . . QN}, H̃ =
[

H0 −HN

]

,

Qc = H̃T Q̃H̃, Rc = G̃T Q̃G̃ + R̃, and Gc = H̃T Q̃G̃, the definitions of Rc and Gc can now be

expressed in terms of these partititions:

Rc =

[

Rc1 Rc3

RT
c3 Rc2

]

=

[

GT
N1Q̃GN1 + R0 GT

N1Q̃GN2

GT
N2Q̃GN1 GT

N2Q̃GN2 + R̃22

]

(3.3)

Gc =
[

Gc1 Gc2

]

=
[

−H̃T Q̃GN1 −H̃T Q̃GN2

]

(3.4)

The desired matrices are then defined as: Q̄c = Qc − Gc2Rc2G
T
c2, R̄c = Rc1 − Rc3R

−1
c2 RT

c3

and Ḡc = Gc1 − Gc2R
−1
c2 RT

c3.

3.1 Polynomial H2 problem solution

In order to produce the optimal control law for the given system, the spectral factors and

Diophantine equations below must first be solved:

Spectral Factors

D∗
cpDcp = B̄∗

1pQ̄cB̄1p + Ā∗
1pR̄cĀ1p + B̄∗

1pḠcĀ1p + Ā∗
1pḠ

∗
cB̄1p (3.5)

DdpD
∗
dp = CdpC

∗
dp + AdpRf1A

∗
dp (3.6)
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Diophantine Equations

z−g1D∗
cpG

c∗
1p + F c

1pĀp = (B̄∗
1pQ̄c + Ā∗

1pḠ
∗
c)z

−g1 (3.7)

z−g1D∗
cpH

c∗
1p − F c

1pB̄p = (Ā∗
1pR̄c + B̄∗

1pḠc)z
−g1 (3.8)

z−g2Gf
1pD

∗
dp + ĀpF

f
1p = D12C

∗
dpz

−g2 (3.9)

z−g2Hf
1pD

∗
dp − C21z

−1F f
1p = Rf1A

∗
pz
−g2 (3.10)

The various polynomial matrices are obtained from the system transfer functions defined

below:

Resolvent Matrix: Φ(z−1) = (zI − A)−1

Plant models: W̄ (z−1) = Φ(z−1)B, W (z−1) = C21Φ(z−1)B

Disturbance Models: W̄d(z
−1) = Φ(z−1)D12, Wd(z

−1) = C21Φ(z−1)D12

Reference Models: W̄r(z
−1) = Φ(z−1)D11, Wd(z

−1) = C11Φ(z−1)D11

Letting Āp = (I − z−1A), the right coprime form of W̄ may be written as:

W̄ = Ā−1
p B̄p = B̄1pĀ

−1
1p (3.11)

where B̄p = z−1B. Also, the left-coprime forms for W and Wd may be written as:

W = A−1
p Bp, Wd = A−1

dp Cdp (3.12)

Ultimately, the optimal control problem reduces to minimising

J+
d =

1

2πj

∮

|z|=1

(T+
d T+∗

d )
dz

z
(3.13)

where

T+
d = Hc

1p([1 + Hc−1
1p Gc

1pĀ
−1
p (I + Gf

1pH
f−1
1p A−1

p C̄2p)
−1B̄p]K − Hc−1

1p Gc
1pĀ

−1
p z−1

(I + Gf
1pH

f−1
1p A−1

p C̄2p)
−1Gf

1pH
f−1
1p )(Ap + BpK)−1Ddp (3.14)

This is achieved when T +
d = 0. The optimal feedback control law, K, is therefore:

K = Kc[zĀp + Kf1C21 + BKc]
−1Kf1 (3.15)

where Kc = Hc−1
1p Gc

1p and Kf1 = Gf
1pH

f−1
1p .
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4 Restricted Structure and Adaptive Control

4.1 Restricted Structure solution

The optimal solution to the predictive optimal control problem simply requires T +
d to be

set to zero. In the case of a restricted structure control law, it is necessary that (3.13) be

minimised with respect to the parameters of the given controller structure. In the following

analysis, it will be assumed that K is a modified-PD controller:

KmodPD = Kp + Kd
(1 − z−1)

1 − τz−1
(4.1)

Therefore, the controller parameters of interest in this case are Kp and Kd.

Making the appropriate substitutions in (3.14), as in (3.15), obtain:

T+
d = Hc

1p([1 + KcSfB]KmodPD − KcSfKf1)(Ap + BpKmodPD)−1Ddp (4.2)

where Sf = (zĀp + Kf1C21)
−1.

Rewriting KmodPD as a rational function,

K =
Kn

Kd
=

Kp(1 − τz−1) + Kd(1 − z−1)

(1− τz−1)

=
Kpα0 + Kdα1

α0
(4.3)

where α0 and α1 have the obvious definitions, T +
d becomes:

T+
d = KnLn1 − KdLn2 (4.4)

where

Ln1 = L1/(KnL3 + KdL4) and Ln2 = L2/(KnL3 + KdL4) (4.5)

L1 = Hc
1p[1 + KcSfB]Ddp , L2 = Hc

1pKcSfKf1Ddp , L3 = Bp , L4 = Ap (4.6)

T+
d is obviously non-linear in Kp and Kd, rendering (3.13) particularly difficult to min-

imise directly. However, an iterative solution is possible if the values of Kp and Kd in the

denominator of T +
d are assumed known.

Defining L1 = Hc
1p[1 + KcSfB]Ddp, L2 = Hc

1pKcSfKf1Ddp, L3 = Bp, and L3 = Ap

T+
d =

L1Kn − L2Kd

L3Kn + L4Kd
(4.7)
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Defining Ln1 = L1/(L3Kn + L4Kd), Ln2 = L2Kd/(L3Kn + L4Kd), T+
d becomes linear in

Kn:

T+
d = Ln1Kn − Ln2 (4.8)

As T+
d is a complex function and the complex conjugate is required in (3.13), the next

step is evidently to split the elements of T +
d into real and imaginary parts, denoted by the

superscripts r and i:

T+
d = (Lr

n1 + jLi
n1)(K

r
n + jKi

n) − (Lr
n2 + jLi

n2)

= Lr
n1K

r
n − Li

n1K
i
n − Lr

n2 + j(Li
n1K

r
n + Lr

n1K
i
n − Li

n2) (4.9)

Splitting Kn

Kr
n = Kpα

r
0 + Kdα

r
1, K

i
n = Kpα

i
0 + Kdα

i
1 (4.10)

and substituting:

T+
d = Kp((L

r
n1α

r
0 − Li

n1α
i
0) + j(Li

n1α
r
0 + Lr

n1α
i
0))

+ Kd((L
r
n1α

r
1 − Li

n1α
i
1) + j(Li

n1α
r
1 + Lr

n1α
i
1)) − (Lr

n2 + jLi
n2) (4.11)

Noting that T +
d T+∗

d = |T+
d |2 = (T+r

d )2 + (T+i
d )2, it is obvious that the integrand of (3.13)

can be represented by a matrix-vector product:

T+
d T+∗

d =
[

T+r
d T+i

d

]

[

T+r
d

T+i
d

]

= (Fx − L)T (Fx − L) (4.12)

where

F =

[

(Lr
n1α

r
0 − Li

n1α
i
0) (Lr

n1α
r
1 − Li

n1α
i
1)

(Li
n1α

r
0 + Lr

n1α
i
0) (Li

n1α
r
1 + Lr

n1α
i
1)

]

(4.13)

and

L =

[

Lr
n2

Li
n2

]

, x =

[

Kp

Kd

]

(4.14)

The complex integral cost is evaluated for |z| = 1. Hence, the matrices can be expressed

as a function of the real frequency variable, ω:

J+
d =

1

2πj

∮

|z|=1

(T+
d (z−1)T+∗

d (z−1))
dz

z

=
T

2π

2π/T
∫

0

(F (e−jωT )x − L(e−jωT ))T (F (e−jωT )x − L(e−jωT ))dω (4.15)
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The cost function can be optimised directly, but a simple algorithm is obtained if the

integral is approximated by a summation with a sufficient number of frequency points,

{ω1, . . . , ωk, . . . , ωN}. That is:

J+
d ≈

N
∑

k=1

(F (e−jωkT )x − L(e−jωkT ))T (F (e−jωkT )x − L(e−jωkT ))

= (b − Ax)T (b − Ax) (4.16)

where

A =







F (e−jω1T )
...

F (e−jωNT )






, b =







L(e−jω1T )
...

L(e−jωN T )






, x =

[

Kp

Kd

]

(4.17)

Assuming that the matrix AT A is non-singular, the least squares optimal solution is:

x = (AT A)−1AT b (4.18)

Of course, as the assumption was made that the solution x was already known in the

denominator of T +
d , this is a case where the method of successive approximation, as in [14],

can be used. This involves a transformation T such that xn+1 = T (xn). Under appropriate

conditions, the sequence {xn} converges to a solution of the original equation. Since this

optimisation problem is non-linear there may be not be a unique minimum. However, the

algorithm presented in the next subsection does always appear to converge to an optimal

solution in many industrial examples.

4.2 Adaptive control

The adaptive controller to be described is based on the multiple-model version of a restricted-

structure optimal controller. This version is so called due to the use of a set of mathematical

models to represent a single non-linear or time-varying system at different operating points.

The aim is to produce a single controller which will stabilise the entire set of models. The

cost function employed is a weighted sum of costs for individual system representations.

Let J+
dj denote the value of (4.16) for the jth system model, and let the probability of this

model being the true representation be denoted by pj. Also, let the b and A matrices in

(4.16) for the jth system model be bj and Aj respectively. Then the multiple-model cost

criterion can be written as:
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J̄+
d =

n+1
∑

j=1

pjJ
+
dj

=

n+1
∑

j=1

pj(bj − Ajx)T (bj − Ajx)

= (b − Ax)T P (b − Ax) (4.19)

where

A =







A1

...

An+1






, b =







b1

...

bn+1






, P = diag{p1, . . . , pn+1} (4.20)

The solution to this problem is obviously similar to the single-model case. Assuming that

AT PA is non-singular, the least squares optimal solution is:

x = (AT A)−1AT b (4.21)

A controller for a non-linear system can then be produced by defining the first Nf linear

models to represent the non-linear system at different operating points. The adaptation

is introduced by continually updating model Nf + 1 with recursively identified parameters

and recalculating the values for x online. The following successive approximation algorithm

as in Luenberger [14], with a system identification algorithm incorporated, can be used to

compute the restricted structure LQG adaptive controller.

Algorithm 4.1 (Adaptive restricted-structure control algorithm). .

1. Define N (number of frequency points), ω1, . . . , ωN , τ and Nf (number of fixed models)

2. Initialise Kp = Kd = 1 (arbitrary choice)

3. Define α0(z
−1), α1(z

−1) (using (4.3))

4. Compute C0n(z−1) = Kpα0(z
−1) + Kdα1(z

−1)

5. Compute C0d(z
−1) = α0(z

−1)

6. For j = 1 to Nf

(a) Solve for the spectral factors Dcpj and Ddpj, and the Diophantine equations for

Gc
1pj, Hc

1pj, F c
1pj and Gf

1pj, Hf
1pj, F f

1pj.

(b) Create L1j, L2j, L3j, L4j, Ln1j, and Ln2j.
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(c) For all chosen frequencies, calculate Fj(e
−jωT )), Lj(e

−jωT )).

(d) Assemble Aj =







Fj(e
−jω1T ))
...

Fj(e
−jωNT ))






and bj =







Lj(e
−jω1T ))
...

Lj(e
−jωNT ))







7. Estimate current Ap, Bp, and Cdp polynomials using a recursive least squares algorithm.

8. Repeat steps 6(a) to (d) for the identified polynomials.

9. Stack the Nf + 1 A and b matrices to form A and b

10. Calculate the restricted-structure controller gains, x = (AT PA)−1AT Pb

11. If the cost is lower than the previous cost, repeat steps 8 to 10 using the new C0n.

Otherwise, use previous controller gains to compute the feedback controller C0n(z−1) =

Kpα0(z
−1) + Kdα1(z

−1) and C0(z
−1) = C0n(z−1)/C0d(z

−1).

12. Implement controller in feedback loop and go back to step 7.

5 Adaptive Control of Switched Linear Models

A ship roll control problem will now be considered. Ship roll control systems are often used

on passenger ferries in order to maintain a comfortable ride for passengers. The ship can be

modelled by a second order transfer function, where the input is fin angle and the output is

ship roll angle [15]. The natural frequency of the transfer function changes over time, depen-

dent upon the sea state. In this case, the Nf = 4 fixed models that we have for the ship are

for damping ratio, ζ = 0.5 and natural frequency, ωn of 0.1, 0.125, 0.15, and 0.175 rad/s. De-

tails are given in the Appendix. The disturbance is white noise passed through an integrator.

The results presented in this section, in Figures 2 to 4, are for a 200 second simulation

where the ship is represented by a second order transfer function with damping ratio of 0.5

which increases in natural frequency. ωn begins at 0.1rad/s and increases by 0.025rad/s every

forty seconds until reaching 0.2rad/s. In this way, each of the fixed model representations

is covered plus an extra unknown model at 0.2rad/s. Probability of 0.2 is given to each of

the fixed models plus the model identified by recursive least squares. The error prediction

horizon in (3.1) is 2 steps and the control horizon is 1 step. The weights are Q1 = 100,

Q2 = 10, R0 = 10−2 and R1 = 10−3. The adaptive control scheme is expected to identify

the model parameters and tune a PD controller to give an optimal solution across the set.

Figure 2 depicts the step-reference following capability of the system. This is somewhat

unrealistic, as in practice the desired ship roll angle is zero degrees. However, a square wave

input shows the closed-loop response more clearly. The overshoot and settling time of the

11
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Figure 2: Reference and Ship Roll Angle

system varies every 40 seconds as would be expected from the varying natural frequency.

Clearly, the ship remains stable with overshoot of no more than 40%. Figure 3 shows the

6 identified parameters, two from the plant and disturbance model denominator, a1 and a2,

two from the plant numerator, b1 and b2, and two from the disturbance numerator, c1 and

c2. It is clear that the a1 and a2 values are decreasing in magnitude over time and the b1

and b2 parameters are increasing, due to the increase in natural frequency. The outcome

of these parameter variations is given in Figure 4, which shows that both proportional and

derivative gains are decreasing over time. Evidently, as the natural frequency and therefore

the bandwidth of the plant rises, it is necessary to decrease controller gain to avoid instability.

The system parameter estimates are held constant at guessed values for the first 6 seconds

of the simulation until the recursive least squares data vector is full. The adaptive predictive

control algorithm updates the PD gains every 4 seconds, as it is unnecessary to update more

often for a slowly varying plant. For these reasons, control gains are held constant for the

first 8 seconds, at which time the algorithm uses the latest identified system parameters

in the optimisation. Clearly, the identified system parameters do not approach the correct

values until after around 25 seconds. This is an indication that the algorithm is more robust

than a standard self-tuning algorithm that depends upon identified parameters only. The

weight of the 4 fixed models in the adaptive predictive optimisation keeps the control gains

at sensible values, although there is a marked fall immediately after the algorithm ’turns on’.
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6 Conclusions

In this paper, a novel predictive adaptive control technique has been presented. The ad-

vantage of this method is the combination of the benefits of self-tuning and multiple-model

restricted-structure optimal controller designs into one scheme, as well as the incorporation

of future set-point knowledge and a multi-step cost index. A self-tuner is able to adapt to

changing system parameters at the expense of possible instability. A multiple-model optimal

controller gives greater assurance of stability over a wide range of operating points with the

expense of conservative performance. A multiple-model adaptive controller is intermediate

to these two schemes. It provides a certain amount of confidence in stability, due to the

weighted effect of fixed known models in the optimisation, plus a performance enhancement

due to the incorporation of system identification knowledge from one sample point to the

next. The restricted structure of the control law provides simplicity of implementation, and

transparency of the solution to those acquainted with much-used classical control laws. The

predictive aspect of the controller improves setpoint tracking ability and can produce more

efficient use of actuators. To further extend and bring rigour to this work, an investigation

of the convergence of the restricted structure algorithm would be desirable. Also, a criterion

for the robustness of a given multiple-model problem would be beneficial.
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A Appendix

A.1 Four fixed ship roll models

Gship(s) =
θ(s)

δ(s)
=

ω2
n

s2 + 2ζωns + w2
n

(A.1)

θ(s) - Ship Roll Angle , δ(s) - Fin Angle

ωn1 = 0.1, ωn2 = 0.125, ωn3 = 0.15, ωn4 = 0.175

ζ1 = 0.1, ζ2 = 0.1, ζ3 = 0.1, ζ4 = 0.1
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