Stability Property of Solutions of Large-Scale Discrete-Time Systems

T.A. Lukyanova and A.A. Martynyuk Stability of Processes Department Institute of Mechanics National Academy of Sciences of Ukraine Nesterov str. 3, 03057, Kyiv Ukraine

Abstract

The aim of this paper is to present one approach to solution of stability problem for discrete-time system based on hierarchical Lyapunov function. The example showing the proposed approach efficiency are given.

1 Hierarchical decomposition of discrete-time system and stability conditions.

We consider a discrete-time system

$$S: \quad x(\tau + 1) = f(\tau, x(\tau)), \tag{1.1}$$

where $\tau \in \mathcal{T}_{\tau} = \{t_0 + k, k = 0, 1, 2, ...\}, t_0 \in \mathbb{R}, x \in \mathbb{R}^n, f : \mathcal{T}_{\tau} \times \mathbb{R}^n \to \mathbb{R}^n$, the function fis a continuous function on x such that the solution $x(\tau; \tau_0, x_0)$ of system (1.1) exists and is unique for all $\tau \in \mathcal{T}_{\tau}$ when any $(\tau_0, x_0) \in \mathcal{T}_{\tau} \times \mathbb{R}^n$. Furthermore, assume that $f(\tau, x) = 0$ for all $\tau \in \mathcal{T}_{\tau}$ if and only if x = 0 and the state x = 0 is a unique state of equilibrium of system (1.1).

System (1.1) is decomposed into s interconnected subsystems [1]

$$\widetilde{S}_i: \quad x_i(\tau+1) = g_i(\tau, x_i(\tau)) + h_i(\tau, x(\tau)), \quad i = 1, 2, \dots, s,$$
(1.2)

where $x_i \in R^{n_i}$, $x = (x_1^{\mathrm{T}}, x_2^{\mathrm{T}}, \dots, x_s^{\mathrm{T}})^{\mathrm{T}}$, $R^n = R^{n_1} \times R^{n_2} \times \dots \times R^{n_s}$, $g_i : \mathcal{T}_{\tau} \times R^{n_i} \to R^{n_i}$, $h_i : \mathcal{T}_{\tau} \times R^n \to R^{n_i}$.

The equations

$$S_i: \quad x_i(\tau+1) = g_i(\tau, x_i(\tau)), \quad i = 1, 2, \dots, s,$$
(1.3)

describe the dynamics of independent subsystems of system (1.2), the functions h_i represent the interactions of S_i with the rest of the systems (1.1). Equations (1.3) are derived from the equations (1.2) when the connections h_i are equal to zero. Assume that $g_i(\tau, 0) = 0$ for all $\tau \in \mathcal{T}_{\tau}$ and the states $x_i = 0$ are the unique equilibrium states of subsystems (1.3).

Further each of subsystem (1.3) is decomposed into m_i interconnected components

$$\widetilde{C}_{ij}: \quad x_{ij}(\tau+1) = p_{ij}(\tau, x_{ij}(\tau)) + q_{ij}(\tau, x_i(\tau)), \quad i = 1, 2, \dots, s, \quad j = 1, 2, \dots, m_i, \quad (1.4)$$

where $x_{ij} \in R^{n_{ij}}, x_i = (x_{i1}^{\mathrm{T}}, x_{i_2}^{\mathrm{T}}, \dots, x_{im_i}^{\mathrm{T}})^{\mathrm{T}}, R^{n_i} = R^{n_{i1}} \times R^{n_{i2}} \times \dots \times R^{n_{im_i}}, p_{ij} : \mathcal{T}_{\tau} \times R^{n_{ij}} \to R^{n_{ij}}, q_{ij} : \mathcal{T}_{\tau} \times R^{n_i} \to R^{n_{ij}}.$

The equations

$$C_{ij}: \quad x_{ij}(\tau+1) = p_{ij}(\tau, x_{ij}(\tau))$$
(1.5)

describe the dynamics of independent components of subsystems (1.3). Equations (1.5) are derived from the equations (1.4) when the connections q_{ij} are equal to zero. Assume that $p_{ij}(\tau, 0) = 0$ for all $\tau \in \mathcal{T}_{\tau}$ and the states $x_{ij} = 0$ are the unique equilibrium states of the components (1.5).

To study stability of system (1.1) we use two-level construction of the Lyapunov functions [2]. Assume that for components (1.5) there exist the Lyapunov functions $v_{ij}(\tau, x_{ij})$ which establish the asymptotic stability of the equilibrium states $x_{ij} = 0$ of the components (1.5). For subsystems (1.3) we construct auxiliary functions

$$v_i(\tau, x_i) = \sum_{j=1}^{m_i} d_{ij} v_{ij}(\tau, x_{ij}), \qquad (1.6)$$

where d_{ij} are positive constants. Similarly for the whole system (1.1) the function

$$V(\tau, x) = \sum_{i=1}^{s} d_i v_i(\tau, x_i)$$
(1.7)

is constructed, where d_i are positive constants. Under certain assumptions the function $V(\tau, x)$ constructed by formulas (1.6) – (1.7) is the vector hierarchical Lyapunov function for the system (1.1).

The first difference $\Delta V(\tau, x(\tau))|_S$ of the function $V(\tau, x)$ along solutions $x(\tau; \tau_0, x_0)$ of system (1.1) is defined by formula

$$\Delta V(\tau, x(\tau))\big|_{S} = V(\tau + 1, f(\tau, x(\tau))) - V(\tau, x(\tau)).$$

Below we will need such definitions.

Definition 1.1. [1] An $n \times n$ matrix $W = (w_{ij})$ is said to be M-matrix, if it has nonpositive off-diagonal elements and all leading principal minors of W are positive, that is,

$$\begin{vmatrix} w_{11} & w_{12} & \dots & w_{1k} \\ w_{21} & w_{22} & \dots & w_{2k} \\ \dots & \dots & \dots & \dots \\ w_{k1} & w_{k2} & \dots & w_{kk} \end{vmatrix} > 0, \qquad k = 1, 2, \dots, n.$$

Definition 1.2. [3] A function ψ , ψ : $R_+ \to R_+$, belongs to

- (i) the class K, if and only if it is continuous and strictly increasing and $\psi(0) = 0$;
- (ii) the class KR, if and only if $\psi \in K$ and $\lim_{r\to\infty} \psi(r) = +\infty$.

To formulate sufficient stability conditions we require some assumptions.

Assumption 1.1. There exist:

- (1) open connected neighborhoods $\mathcal{N}_{ij} \subset \mathbb{R}^{n_{ij}}$ of the states $x_{ij} = 0$ of components C_{ij} , $i = 1, 2, \ldots, s, \ j = 1, 2, \ldots, m_i;$
- (2) functions $\varphi_{ij}, \phi_{ij}, \psi_{ij} \in K, \ i = 1, 2, \dots, s, \ j = 1, 2, \dots, m_i;$
- (3) the functions $v_{ij}: T \times R^{n_{ij}} \to R_+$ which are continuous functions on x_{ij} and satisfy the inequalities:

(a)
$$\alpha_{ij}\varphi_{ij}(\|x_{ij}\|) \leq v_{ij}(\tau, x_{ij}) \leq \beta_{ij}\phi_{ij}(\|x_{ij}\|), \quad \forall (\tau, x_{ij}) \in \mathcal{T}_{\tau} \times \mathcal{N}_{ij},$$

(b) $\Delta v_{ij}(\tau, x_{ij}) \Big|_{C_{ij}} \leq -\pi_{ij}\psi_{ij}(\|x_{ij}\|), \quad \forall (\tau, x_{ij}) \in \mathcal{T}_{\tau} \times \mathcal{N}_{ij},$
(c) $\Delta v_{ij}(\tau, x_{ij}(\tau)) \Big|_{\widetilde{C}_{ij}} - \Delta v_{ij}(\tau, x_{ij}(\tau)) \Big|_{C_{ij}} \leq \sum_{k=1}^{m_i} \xi_{jk}^i \psi_{ik}(\|x_{ik}\|), \quad \forall (\tau, x_{ij}) \in \mathcal{T}_{\tau} \times \mathcal{N}_{ij},$

where $\alpha_{ij} > 0$, $\beta_{ij} > 0$, $\pi_{ij} > 0$, $\xi_{ij}^i \ge 0$ are real constants, ||x|| is the norm of vector $x, i = 1, 2, \ldots, s, j = 1, 2, \ldots, m_i$.

Assumption 1.2. Assume that:

- (1) there exist open connected neighborhoods $\mathcal{N}_i \subset \mathbb{R}^{n_i}$ of the equilibrium states $x_i = 0$ of subsystems (1.3), $i = 1, 2, \ldots, s$;
- (2) there exist the functions $\psi_i \in K$, i = 1, 2, ..., s;
- (3) the functions $v_i: \mathcal{T}_{\tau} \times \mathbb{R}^{n_{ij}} \to \mathbb{R}_+$, constructed by formula (1.6) satisfy the inequalities:

(a)
$$\Delta v_i(\tau, x_i) \Big|_{S_i} \leqslant -\pi_i \psi_i(||x_i||), \quad \forall (\tau, x_i) \in \mathcal{T}_{\tau} \times \mathcal{N}_i,$$

(b) $\Delta v_i(\tau, x_i(\tau)) \Big|_{\tilde{S}_i} -\Delta v_i(\tau, x_i(\tau)) \Big|_{S_i} \leqslant \sum_{j=1}^s \xi_{ij} \psi_j(||x_j||), \quad \forall (\tau, x_i) \in \mathcal{T}_{\tau} \times \mathcal{N}_i,$

where $\pi_i > 0$, $\xi_{ij} \ge 0$ are real constants, $i = 1, 2, \ldots, s$.

We define the matrices $W_i = (w_{jk}^i)$ with the elements

$$w_{jk}^{i} = \begin{cases} \pi_{ij} - \xi_{jj}^{i}, & \text{if } j = k \\ -\xi_{jk}^{i}, & \text{if } j \neq k \end{cases}$$

and the matrix $W = (w_{jk})$ with elements

$$w_{jk} = \begin{cases} \pi_j - \xi_{jj}, & \text{if } j = k, \\ -\xi_{jk}, & \text{if } j \neq k. \end{cases}$$

Sufficient stability conditions for system (1.1) is founded in the following result.

Theorem 1.1. Assume that the perturbed motion equation (1.1) admit the decomposition (1.2) - (1.5) and conditions of Assumptions 1.1 and 1.2 are satisfied. Then, if the matrices W_1, W_2, \ldots, W_s and W are M-matrices, the equilibrium state x = 0 of system (1.1) is asymptotically stable.

If all conditions of Assumptions 1.1 and 1.2 are satisfied for $\mathcal{N}_{ij} = R^{n_{ij}}$, $\mathcal{N}_i = R^{n_i}$ and the functions $\varphi_{ij} \in KR$, then asymptotic stability in the whole takes place.

2 Hierarchical connective stability of a large-scale discrete-time system.

Assume that for system (1.1) the decomposition (1.2) - (1.5) takes place. It is known [1] that the interconnection functions $h_i(\tau, x)$ can be represented

$$h_i(\tau, x) = h_i(\tau, \bar{e}_{i1}x_1, \bar{e}_{i2}x_2, \dots, \bar{e}_{is}x_s), \quad i = 1, 2, \dots, s,$$

where the matrix $\overline{E} = (\overline{e}_{ij})$ is the fundamental matrix of connections of system (1.2) with the elements

$$\bar{e}_{ij} = \begin{cases} 1, & \text{if } x_j \text{ is contained in } h_i(\tau, x), \\ 0, & \text{if } x_j \text{ is not contained in } h_i(\tau, x). \end{cases}$$

Let the functions of the discrete argument $e_{ij} : \mathcal{T}_{\tau} \to [0,1]$ for all $\tau \in \mathcal{T}_{\tau}$ satisfy the inequalities

$$e_{ij}(\tau) \leqslant \bar{e}_{ij}$$

The constant \bar{e}_{ij} determine the degree of connection between the independent subsystems (1.3). The matrix $E(\tau) = (e_{ij}(\tau))$ describes the structural perturbations of system (1.1).

If $E(\tau) \equiv 0$, then the system (1.1) is decomposed into s independent subsystems (1.3), each of which is a composition of the interconnected components (1.4). The connection functions between the independent components (1.5) can be written as

$$q_{ij}(\tau, x_i) = q_{ij}(\tau, \bar{\ell}^i_{j1} x_{i1}, \bar{\ell}^i_{j2} x_{i2}, \dots, \bar{\ell}^i_{jm_i} x_{im_i}),$$

$$i = 1, 2, \dots, s, \quad j = 1, 2, \dots, m_i,$$

where

$$\bar{\ell}^i_{jk} = \begin{cases} 1, & x_{ik} \text{ is contained in } q_{ij}(\tau, x_i), \\ 0, & x_{ik} \text{ is not contained in } q_{ij}(\tau, x_i). \end{cases}$$

Let $\ell_{ik}^i: \mathcal{T}_{\tau} \to [0,1]$ and for all $\tau \in \mathcal{T}_{\tau}$

$$e_{jk}^i(\tau) \leqslant \overline{\ell}_{jk}^i, \quad i = 1, 2, \dots, s, \quad j, k = 1, 2, \dots, m_i$$

The matrices $\overline{L}_i = (\overline{\ell}_{jk}^i)$ are the fundamental matrices of the connections for the subsystems (1.3) and describe the initial connections between the independent components (1.5). The matrices $L_i(\tau) = (\ell_{jk}^i(\tau))$ describe structural perturbations of subsystems (1.3). The notion of hierarchical connective stability of the discrete-time system (1.1) is defined similarly to the continuous case [2].

Definition 2.1. Discrete-time system (1.1) is called hierarchically connective stable, if:

- (i) for $E(\tau) \equiv 0$ the equilibrium states $x_i = 0$ of subsystems (1.3) are asymptotically stable in the whole for any structural matrices $L_i(\tau)$, i = 1, 2, ..., s;
- (ii) for $L_i(\tau) \equiv \overline{L}_i$ the equilibrium states x = 0 of system (1.1) is asymptotically stable in the whole for any structural matrix $E(\tau)$.

In order that to formulate sufficient conditions for the hierarchical connective stability of the system (1.1) we introduce some assumptions.

Assumption 2.1. Assume that:

- (1) conditions (1) (3)(b) of Assumption 1.1 are satisfied for $\mathcal{N}_{ij} = \mathbb{R}^{n_{ij}}$ and functions φ_{ij} are of class KR, $i = 1, 2, ..., s, j = 1, 2, ..., m_i$;
- (2) the first differences of functions v_{ij} satisfy the inequalities

$$\Delta v_{ij}(\tau, x_{ij}(\tau)) \big|_{\widetilde{C}_{ij}} - \Delta v_{ij}(\tau, x_{ij}(\tau)) \big|_{C_{ij}} \leqslant \sum_{k=1}^{m_i} \ell^i_{jk}(\tau) \xi^i_{jk} \psi_{ik}(\|x_{ik}\|)$$

for all $(\tau, x_{ij}) \in \mathcal{T}_{\tau} \times \mathbb{R}^{n_{ij}}$, where $\xi_{jk}^i \ge 0$ are real constants, $i = 1, 2, \ldots, s$, $j = 1, 2, \ldots, m_i$.

Assumption 2.2. Assume that:

- (1) conditions (1) (3)(a) of Assumption 1.2 are satisfied for $\mathcal{N}_i = \mathbb{R}^{n_i}$, $i = 1, 2, \ldots, s$;
- (2) the first differences of functions v_i satisfy the inequalities

$$\Delta v_i(\tau, x_i(\tau)) \Big|_{\widetilde{S}_{ij}} - \Delta v_i(\tau, x_i(\tau)) \Big|_{S_i} \leqslant \sum_{j=1}^s e_{ij}(\tau) \xi_{ij} \psi_j(||x_j||)$$

for all $(\tau, x_i) \in \mathcal{T}_{\tau} \times \mathbb{R}^{n_i}$, where $\xi_{ij} \ge 0$ are real constants, $i = 1, 2, \ldots, s$;

In this case the elements of matrices $W_i(\tau) = (w_{jk}^i(\tau))$ and $W(\tau) = (w_{ij}(\tau))$ depend on discrete time,

$$w_{jk}^{i}(\tau) = \begin{cases} \pi_{ij} - \ell_{jj}^{i}(\tau) \,\xi_{jj}^{i}, & \text{if } j = k, \\ -\ell_{jk}^{i}(\tau) \,\xi_{jk}^{i}, & \text{if } j \neq k, \end{cases}$$
$$w_{jk}(\tau) = \begin{cases} \pi_{j} - e_{jj}(\tau) \,\xi_{jj}, & \text{if } j = k, \\ -e_{ij}(\tau) \,\xi_{jk}, & \text{if } j \neq k. \end{cases}$$

Now we designate by $\overline{W}_1, \overline{W}_2, \ldots, \overline{W}_s$ and \overline{W} the matrices corresponding to the fundamental matrices of connections $\overline{L}_1, \overline{L}_2, \ldots, \overline{L}$ and \overline{E} . We formulate the following test for connective stability of system (1.1).

Theorem 2.1. Assume that the perturbed motion equation (1.1) admit decomposition (1.2) – (1.5) and all conditions of Assumptions 2.1 and 2.2 are satisfied. Then, if the matrices $\overline{W}_1, \overline{W}_2, \ldots, \overline{W}_s$ and \overline{W} are M-matrices, then the equilibrium state x = 0 of system (1.1) is hierarchically connective stable.

3 Example

Consider the system

$$S: \quad x(\tau+1) = \begin{pmatrix} 0.99 & 0.001 & 0\\ 0.002 & 0.5 & 1\\ 0.2 & 0.2 & 0.56 \end{pmatrix} x(\tau), \tag{3.1}$$

where $\tau \in \mathcal{T}_{\tau}$, $x \in \mathbb{R}^3$. Decompose system (3.1) and arrive at two independent subsystems

$$S_1: \quad x_1(\tau+1) = \begin{pmatrix} 0.99 & 0.001\\ 0.002 & 0.5 \end{pmatrix} x_1(\tau),$$

$$S_2: \qquad x_2(\tau+1) = 0.56 x_2(\tau),$$

where $x_1 \in \mathbb{R}^2$, $x_2 \in \mathbb{R}$. We decompose the subsystem S_1 and distinguish two independent components

$$C_{11}: \quad x_{11}(\tau+1) = 0.99 \, x_{11}(\tau),$$

$$C_{12}: \quad x_{12}(\tau+1) = 0.5 \, x_{12}(\tau),$$

where $x_{11}, x_{12} \in R$. Choosing functions $v_{11} = |x_{11}|, v_{12} = |x_{12}|, \psi_{11} = |x_{11}|, \psi_{12} = |x_{12}|,$ we compute the constants $\pi_{11} = 0.01, \pi_{12} = 0.5, \xi_{11}^1 = 0, \xi_{12}^1 = 0.001, \xi_{21}^1 = 0.002, \xi_{22}^1 = 0$ and the matrix

$$W_1 = \begin{pmatrix} 0.01 & -0.001 \\ -0.002 & 0.5 \end{pmatrix},$$

which is the *M*-matrix, because $\Delta_1 = 0.01 > 0$ and $\Delta_2 = 0.004998 > 0$. We take $d_{11} = 45$ and $d_{12} = 1$. Then

$$v_1(x_1) = 45 |x_{11}| + |x_{12}|.$$

Choosing functions $v_2(x_2) = |x_2|$, $\psi_1 = |x_{11}| + |x_{12}|$, $\psi_2 = |x_2|$, we calculate the constants $\pi_1 = 0.455$, $\pi_2 = 0.44$, $\xi_{11} = 0$, $\xi_{12} = 1$, $\xi_{21} = 0.2$, $\xi_{22} = 0$. The matrix

$$W = \begin{pmatrix} 0.455 & -1 \\ -0.2 & 0.44 \end{pmatrix}$$

is the *M*-matrix, because $\Delta_1 = 0.455 > 0$ and $\Delta_2 = 0.0002 > 0$. We take $d_1 = 128$ and $d_2 = 291$. The function

$$V(x) = 128(45|x_{11}| + |x_{12}|) + 291|x_2|)$$

is the hierarchical Lyapunov function establishing asymptotic stability of system (3.1).

Now we investigate system (3.1) by means of one-level construction of function V(x) [4]. Decompose system (3.1) and distinguish three independent subsystems

$$S_1: \quad x_1(\tau+1) = 0.99 \, x_1(\tau),$$

$$S_2: \quad x_2(\tau+1) = 0.5 \, x_2(\tau),$$

$$S_3: \quad x_3(\tau+1) = 0.56 \, x_3(\tau).$$

We choose the functions $v_i = |x_i|, \psi_i = |x_i|, i = 1, 2, 3$, and obtain the matrix

$$\widetilde{W} = \begin{pmatrix} 0.01 & -0.001 & 0\\ -0.002 & 0.5 & -1\\ -0.2 & -0.2 & 0.44 \end{pmatrix},$$

Which is not the M-matrix, because $\Delta_1 = 0.01 > 0$, $\Delta_2 = 0.04998 > 0$, $\Delta_3 = -0.00000088 < 0$.

Using matrix \widetilde{W} we cannot reach a conclusion on stability of system (3.1); however matrices W_1 and W allow the conclusion that system (3.1) is asymptotically stable.

References

- Šiljak, D. D. Decentralized Control of Complex Systems. Boston etc.: Academic Press, Inc., 1991.
- [2] Ikeda, M. and Šiljak, D. D. Hierarchical Liapunov functions. J. Math. Anal. Appl. 112 No.1 (1985) 110–128.
- [3] Hahn, W. Theory stability of motion. Berlin etc. : Springer, 1967.
- [4] Sezer, M.E., Šiljak, D.D. Robust stability of discrete systems. Int. J. Control 48 No 5 (1988) 2055–2063.