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Abstract

The aim of this paper is to present one approach to solution of stability problem for
discrete-time system based on hierarchical Lyapunov function. The example showing
the proposed approach efficiency are given.

1 Hierarchical decomposition of discrete-time system

and stability conditions.

We consider a discrete-time system

S : x(τ + 1) = f(τ, x(τ)), (1.1)

where τ ∈ Tτ = {t0 + k, k = 0, 1, 2, . . . }, t0 ∈ R, x ∈ Rn, f : Tτ × Rn → Rn, the function f

is a continuous function on x such that the solution x(τ ; τ0, x0) of system (1.1) exists and is

unique for all τ ∈ Tτ when any (τ0, x0) ∈ Tτ × Rn. Furthermore, assume that f(τ, x) = 0

for all τ ∈ Tτ if and only if x = 0 and the state x = 0 is a unique state of equilibrium of

system (1.1).

System (1.1) is decomposed into s interconnected subsystems [1]

S̃i : xi(τ + 1) = gi(τ, xi(τ)) + hi(τ, x(τ)), i = 1, 2, . . . , s, (1.2)

where xi ∈ Rni , x = (xT
1, x

T
2, . . . , x

T
s)

T, Rn = Rn1 × Rn2 × · · · × Rns , gi : Tτ × Rni → Rni ,

hi : Tτ ×Rn → Rni .

The equations

Si : xi(τ + 1) = gi(τ, xi(τ)), i = 1, 2, . . . , s, (1.3)

describe the dynamics of independent subsystems of system (1.2), the functions hi represent

the interactions of Si with the rest of the systems (1.1). Equations (1.3) are derived from

the equations (1.2) when the connections hi are equal to zero. Assume that gi(τ, 0) = 0 for

all τ ∈ Tτ and the states xi = 0 are the unique equilibrium states of subsystems (1.3).

Further each of subsystem (1.3) is decomposed into mi interconnected components

C̃ij : xij(τ + 1) = pij(τ, xij(τ)) + qij(τ, xi(τ)), i = 1, 2, . . . , s, j = 1, 2, . . . ,mi, (1.4)
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where xij ∈ Rnij , xi = (xT
i1, x

T
i2
, . . . , xT

imi
)T, Rni = Rni1×Rni2×· · ·×Rnimi , pij : Tτ ×Rnij →

Rnij , qij : Tτ ×Rni → Rnij .

The equations

Cij : xij(τ + 1) = pij(τ, xij(τ)) (1.5)

describe the dynamics of independent components of subsystems (1.3). Equations (1.5) are

derived from the equations (1.4) when the connections qij are equal to zero. Assume that

pij(τ, 0) = 0 for all τ ∈ Tτ and the states xij = 0 are the unique equilibrium states of the

components (1.5).

To study stability of system (1.1) we use two-level construction of the Lyapunov functions

[2]. Assume that for components (1.5) there exist the Lyapunov functions vij(τ, xij) which

establish the asymptotic stability of the equilibrium states xij = 0 of the components (1.5).

For subsystems (1.3) we construct auxiliary functions

vi(τ, xi) =

mi∑
j=1

dijvij(τ, xij), (1.6)

where dij are positive constants. Similarly for the whole system (1.1) the function

V (τ, x) =
s∑

i=1

divi(τ, xi) (1.7)

is constructed, where di are positive constants. Under certain assumptions the function

V (τ, x) constructed by formulas (1.6) – (1.7) is the vector hierarchical Lyapunov function for

the system (1.1).

The first difference ∆V (τ, x(τ))
∣∣
S

of the function V (τ, x) along solutions x(τ ; τ0, x0) of

system (1.1) is defined by formula

∆V (τ, x(τ))
∣∣
S

= V (τ + 1, f(τ, x(τ)))− V (τ, x(τ)).

Below we will need such definitions.

Definition 1.1. [1] An n×n matrix W = (wij) is said to be M-matrix, if it has nonpositive

off-diagonal elements and all leading principal minors of W are positive, that is,∣∣∣∣∣∣∣∣∣
w11 w12 . . . w1k

w21 w22 . . . w2k

. . . . . . . . . . . . . . . . . . .

wk1 wk2 . . . wkk

∣∣∣∣∣∣∣∣∣ > 0, k = 1, 2, . . . , n.

Definition 1.2. [3] A function ψ, ψ : R+ → R+, belongs to

(i) the class K, if and only if it is continuous and strictly increasing and ψ(0) = 0;

(ii) the class KR, if and only if ψ ∈ K and limr→∞ ψ(r) = +∞.
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To formulate sufficient stability conditions we require some assumptions.

Assumption 1.1. There exist:

(1) open connected neighborhoods Nij ⊂ Rnij of the states xij = 0 of components Cij,

i = 1, 2, . . . , s, j = 1, 2, . . .mi;

(2) functions ϕij, φij, ψij ∈ K, i = 1, 2, . . . , s, j = 1, 2, . . . ,mi;

(3) the functions vij : T × Rnij → R+ which are continuous functions on xij and satisfy

the inequalities:

(a) αijϕij(‖xij‖) 6 vij(τ, xij) 6 βijφij(‖xij‖), ∀ (τ, xij) ∈ Tτ ×Nij,

(b) ∆vij(τ, xij)
∣∣
Cij

6 −πijψij(‖xij‖), ∀(τ, xij) ∈ Tτ ×Nij,

(c) ∆vij(τ, xij(τ))
∣∣
C̃ij
−∆vij(τ, xij(τ))

∣∣
Cij

6
∑mi

k=1 ξi
jkψik(‖xik‖), ∀ (τ, xij) ∈ Tτ ×Nij,

where αij > 0, βij > 0, πij > 0, ξi
ij > 0 are real constants, ‖x‖ is the norm of vector

x, i = 1, 2, . . . , s, j = 1, 2, . . . ,mi.

Assumption 1.2. Assume that:

(1) there exist open connected neighborhoods Ni ⊂ Rni of the equilibrium states xi = 0 of

subsystems (1.3), i = 1, 2, . . . , s;

(2) there exist the functions ψi ∈ K, i = 1, 2, . . . , s;

(3) the functions vi : Tτ ×Rnij → R+, constructed by formula (1.6) satisfy the inequalities:

(a) ∆vi(τ, xi)
∣∣
Si

6 −πiψi(‖xi‖), ∀(τ, xi) ∈ Tτ ×Ni,

(b) ∆vi(τ, xi(τ))
∣∣
S̃i
−∆vi(τ, xi(τ))

∣∣
Si

6
∑s

j=1 ξijψj(‖xj‖), ∀ (τ, xi) ∈ Tτ ×Ni,

where πi > 0, ξij > 0 are real constants, i = 1, 2, . . . , s.

We define the matrices Wi = (wi
jk) with the elements

wi
jk =

{
πij − ξi

jj, if j = k,

−ξi
jk, if j 6= k

and the matrix W = (wjk) with elements

wjk =

{
πj − ξjj, if j = k,

−ξjk, if j 6= k.

Sufficient stability conditions for system (1.1) is founded in the following result.
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Theorem 1.1. Assume that the perturbed motion equation (1.1) admit the decomposition

(1.2) – (1.5) and conditions of Assumptions 1.1 and 1.2 are satisfied. Then, if the matrices

W1, W2, . . . ,Ws and W are M-matrices, the equilibrium state x = 0 of system (1.1) is

asymptotically stable.

If all conditions of Assumptions 1.1 and 1.2 are satisfied for Nij = Rnij , Ni = Rni and

the functions ϕij ∈ KR, then asymptotic stability in the whole takes place.

2 Hierarchical connective stability of a large-scale

discrete-time system.

Assume that for system (1.1) the decomposition (1.2) – (1.5) takes place. It is known [1] that

the interconnection functions hi(τ, x) can be represented

hi(τ, x) = hi(τ, ēi1x1, ēi2x2, . . . , ēisxs), i = 1, 2, . . . , s,

where the matrix E = (ēij) is the fundamental matrix of connections of system (1.2) with

the elements

ēij =

{
1, if xj is contained in hi(τ, x),

0, if xj is not contained in hi(τ, x).

Let the functions of the discrete argument eij : Tτ → [0, 1] for all τ ∈ Tτ satisfy the

inequalities

eij(τ) 6 ēij.

The constant ēij determine the degree of connection between the independent subsystems

(1.3). The matrix E(τ) = (eij(τ)) describes the structural perturbations of system (1.1).

If E(τ) ≡ 0, then the system (1.1) is decomposed into s independent subsystems (1.3),

each of which is a composition of the interconnected components (1.4). The connection

functions between the independent components (1.5) can be written as

qij(τ, xi) = qij(τ, ¯̀
i
j1xi1, ¯̀

i
j2xi2, . . . , ¯̀

i
jmi
ximi

),

i = 1, 2, . . . , s, j = 1, 2, . . . ,mi,

where

¯̀i
jk =

{
1, xik is contained in qij(τ, xi),

0, xik is not contained in qij(τ, xi).

Let `ijk : Tτ → [0, 1] and for all τ ∈ Tτ

ei
jk(τ) 6 ¯̀i

jk, i = 1, 2, . . . , s, j, k = 1, 2, . . . ,mi.

The matrices Li = (¯̀ijk) are the fundamental matrices of the connections for the subsys-

tems (1.3) and describe the initial connections between the independent components (1.5).

The matrices Li(τ) = (`ijk(τ)) describe structural perturbations of subsystems (1.3).
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The notion of hierarchical connective stability of the discrete-time system (1.1) is defined

similarly to the continuous case [2].

Definition 2.1. Discrete-time system (1.1) is called hierarchically connective stable, if:

(i) for E(τ) ≡ 0 the equilibrium states xi = 0 of subsystems (1.3) are asymptotically

stable in the whole for any structural matrices Li(τ), i = 1, 2, . . . , s;

(ii) for Li(τ) ≡ Li the equilibrium states x = 0 of system (1.1) is asymptotically stable in

the whole for any structural matrix E(τ).

In order that to formulate sufficient conditions for the hierarchical connective stability of

the system (1.1) we introduce some assumptions.

Assumption 2.1. Assume that:

(1) conditions (1) – (3)(b) of Assumption 1.1 are satisfied for Nij = Rnij and functions

ϕij are of class KR, i = 1, 2, . . . , s, j = 1, 2, . . . ,mi ;

(2) the first differences of functions vij satisfy the inequalities

∆vij(τ, xij(τ))
∣∣
C̃ij
−∆vij(τ, xij(τ))

∣∣
Cij

6
mi∑
k=1

`ijk(τ)ξ
i
jkψik(‖xik‖)

for all (τ, xij) ∈ Tτ ×Rnij , where ξi
jk > 0 are real constants, i = 1, 2, . . . , s,

j = 1, 2, . . . ,mi .

Assumption 2.2. Assume that:

(1) conditions (1) – (3)(a) of Assumption 1.2 are satisfied for Ni = Rni, i = 1, 2, . . . , s;

(2) the first differences of functions vi satisfy the inequalities

∆vi(τ, xi(τ))
∣∣
S̃ij
−∆vi(τ, xi(τ))

∣∣
Si

6
s∑

j=1

eij(τ)ξijψj(‖xj‖)

for all (τ, xi) ∈ Tτ ×Rni, where ξij > 0 are real constants, i = 1, 2, . . . , s;

In this case the elements of matrices Wi(τ) = (wi
jk(τ)) and W (τ) = (wij(τ)) depend on

discrete time,

wi
jk(τ) =

{
πij − `ijj(τ) ξ

i
jj, if j = k,

−`ijk(τ) ξi
jk, if j 6= k,

wjk(τ) =

{
πj − ejj(τ) ξjj, if j = k,

−eij(τ) ξjk, if j 6= k.

Now we designate by W 1, W 2, . . . , W s andW the matrices corresponding to the fundamental

matrices of connections L1, L2, . . . , L and E. We formulate the following test for connective

stability of system (1.1).
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Theorem 2.1. Assume that the perturbed motion equation (1.1) admit decomposition (1.2) –

(1.5) and all conditions of Assumptions 2.1 and 2.2 are satisfied. Then, if the matrices

W 1,W 2, . . . , W s and W are M-matrices, then the equilibrium state x = 0 of system (1.1)

is hierarchically connective stable.

3 Example

Consider the system

S : x(τ + 1) =

 0.99 0.001 0

0.002 0.5 1

0.2 0.2 0.56

x(τ), (3.1)

where τ ∈ Tτ , x ∈ R3. Decompose system (3.1) and arrive at two independent subsystems

S1 : x1(τ + 1) =

(
0.99 0.001

0.002 0.5

)
x1(τ),

S2 : x2(τ + 1) = 0.56x2(τ),

where x1 ∈ R2, x2 ∈ R. We decompose the subsystem S1 and distinguish two independent

components

C11 : x11(τ + 1) = 0.99x11(τ),

C12 : x12(τ + 1) = 0.5x12(τ),

where x11, x12 ∈ R. Choosing functions v11 = |x11|, v12 = |x12|, ψ11 = |x11|, ψ12 = |x12|,
we compute the constants π11 = 0.01, π12 = 0.5, ξ1

11 = 0, ξ1
12 = 0.001, ξ1

21 = 0.002, ξ1
22 = 0

and the matrix

W1 =

(
0.01 −0.001

−0.002 0.5

)
,

which is the M -matrix, because ∆1 = 0.01 > 0 and ∆2 = 0.004998 > 0. We take d11 = 45

and d12 = 1. Then

v1(x1) = 45 |x11|+ |x12|.

Choosing functions v2(x2) = |x2|, ψ1 = |x11| + |x12|, ψ2 = |x2|, we calculate the constants

π1 = 0.455, π2 = 0.44, ξ11 = 0, ξ12 = 1, ξ21 = 0.2, ξ22 = 0. The matrix

W =

(
0.455 −1

−0.2 0.44

)
is the M -matrix, because ∆1 = 0.455 > 0 and ∆2 = 0.0002 > 0. We take d1 = 128 and

d2 = 291. The function

V (x) = 128(45|x11|+ |x12|) + 291|x2|)
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is the hierarchical Lyapunov function establishing asymptotic stability of system (3.1).

Now we investigate system (3.1) by means of one-level construction of function V (x) [4].

Decompose system (3.1) and distinguish three independent subsystems

S1 : x1(τ + 1) = 0.99x1(τ),

S2 : x2(τ + 1) = 0.5x2(τ),

S3 : x3(τ + 1) = 0.56x3(τ).

We choose the functions vi = |xi|, ψi = |xi|, i = 1, 2, 3, and obtain the matrix

W̃ =

 0.01 −0.001 0

−0.002 0.5 −1

−0.2 −0.2 0.44

 ,

Which is not the M-matrix, because ∆1 = 0.01 > 0, ∆2 = 0.04998 > 0, ∆3 = −0.00000088 <

0.

Using matrix W̃ we cannot reach a conclusion on stability of system (3.1); however matrices

W1 and W allow the conclusion that system (3.1) is asymptotically stable.
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