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Abstract 

This research effort applies nonlinear filters to model generated muscle and nerve signals and 

compares the results to determine correlation.  A class of nonlinear filters, Rank Order filters (ROF), has 

been used to examine a variety of biological signals, and has shown to be faster and more accurate than 

traditional muscle signal processing techniques.  Using accepted parameters, the authors use a signal 

representing the nerve signal to generate the muscle signal.  Then, using these nonlinear filters on the 

generated signal, the authors attempt to recover the original (nerve) signal.  Three test sets of data are 

generated that range from simple (no noise) to fairly complex (noisy and varied amplitude).  A ROF 

family, window size 25, was applied to the rectified generated electromyographic signals.  The filters 

tested were the upper half of the window, that is, 13 to 24, for each of the signals.  Comparisons of these 

results, normalized, with the normalized values utilized to generate the electromyographic signals are 

presented.  

 

Introduction 

Electromyographic (EMG) signals are the detectable result of the central nervous system (CNS) 

controlling muscle activation.  In normal muscle function, the CNS controls contraction by 

asynchronously contracting small numbers of cells in the muscle.  The EMG, as an electrical signal, can 

be detected using both surface and needle or finewire electrodes.  No method exists that accurately 

determines the number of neurons based on EMG processing. 

The implication that the EMG is related to the electroneurogram (ENG) (the electrical signal 

measured at the nerve) is intuitive, but values (either theoretical or experimental) correlating them were 

not found in an extensive literature search.  Once established, this relationship would vary based on the 

muscle involved as each muscle has a range of neurons controlling it.  However, it could provide a 

reference value if it is assumed that the ENG, as measured, is proportional to the “intent” of the CNS.  



 

This relationship, if known, would provide a solid argument for the decomposition of the EMG as a valid 

indicator of the desired intent of the CNS.  The focus of this research is the validation of a positive 

relationship between the ENG, as represented by the firing curve, and the EMG.  The technique used in 

this effort is Rank Order filters, which have been previously applied by these authors to the EMG, but not 

the ENG, and hence, not correlated. 

 

The Motor Unit Action Potential and the EMG 

The signal measured at the surface of the skin is a composite of all of the signals from all active 

motor units filtered through skin, muscle and other body fluids.  The motor unit action potential can have 

many shapes as a result of the geometry of the data collection, recruitment of a variety of motor units, and 

the volume conduction within each individual person.   

The EMG is the detectable electrical signal that results from muscle recruitment being passed 

through a low pass filter (skin and connective tissue) [1].  Hence, the EMG is the detection of the ion flow 

from many muscle fibers contracting.  The chemical process, which is recorded as the EMG, originates at 

the cellular level and is the summation of many cells firing as the muscle contracts.  The shape of the 

EMG is affected by the dispersion of the muscle cells of each motor unit throughout the muscle.  Each 

motor unit, composed of many muscle cells, generates its own signal, called the motor unit (MU) action 

potential (MUAP), which is influenced by the dispersion of the individual muscle cells in the muscle, the 

amount of contraction by other motor units, and the amount of fat, skin and bone in the vicinity.  The 

EMG is the summation of all the motor units firing at any one time. 

As there may be thousands of muscle cells firing at any one time, the surface EMG may be 

considered as a zero-mean Gaussian process ),0()( sNts σ∈ , modulated by muscle activity, plus 

independent zero-mean Gaussian additive noise ),0()( nNtn σ∈ .  The important factors in these 

assumptions are zero-mean (since electrically neutral) and Gaussian (due to asynchronous firing), plus the 

Gaussian noise.   

 

Rank Order Filters  

Rank Order (RO) filters are a subclass of Order Statistic (OS) filters, which have been shown to be 

useful for robust signal smoothing.  In addition, the RO filters do a better job of simultaneously 

preserving edges (they shift an edge) and smoothing noise than linear filters.  The OS filters can be 

optimized for i.i.d noise peculiar to the chosen signal.  The median filter, a RO filter, sequences the data 

values low to high, and outputs the N+1 data value for a window size of n=2N+1 and preserves edges 

exactly.  The median is an OS filter which has optimal breakpoint of 50% (resistance to impulsive noise – 



 

random neuronal firings) and ignores large baseline shifts (muscle artifacts).  The RO filter shown in the 

images of this study is a 20th of 25, that is r=20.  The 20th value of the window size 25 is chosen for the 

output of the filter.  Rank Order filters eliminate rising impulses of width less than 2N+2–r or falling 

impulses less than r points [2].  All RO filters with r greater than 13 were evaluated, and r=20 produced 

the best results.  Rank Order filters have no effect on areas having constant value within a half window 

length at the end of the signal.  Additionally, they will move edges forward or backwards determined by 

the r selected.  If 1+> Nr , the edge will advance (move left).  This same property will affect the length 

of the constant regions, by either shrinking or expanding them.  The movement of the edges can be 

rectified after filtering, as the movement is small and of known value.   

 

Generation of Artificial EMG 

In order to provide unbiased data to test this filtering technique, “simulated test sets” of EMG data 

were generated using MATLAB to replicate what should be collected with cup electrodes on the skin 

surface of an experimental subject.  These test sets are designed to be the equivalent of sending a known 

signal through an unknown filter to validate the filter.  Generation of these test sets utilized a variety of 

MUAP shapes along with a range of speeds to simulate the nerve conduction velocity that changes with 

neuron diameter and the variety of amplitudes possible with a unique MUAP.  

The Hodgkin-Huxley equation, knowledge about that number of neurons in a particular nerve, and 

the desired geometry of the data collection electrodes were all utilized in the design of the test set with 

some assumptions made about motor unit recruitment.  Seven different MUAP waveforms were utilized, 

as well as a Gaussian range of nerve velocities.  One hundred motor units were modeled, with a “firing 

curve” as the basis for when each MU fired.  This firing curve is the number of MUs firing at any one 

time, and hence is the basis to which our results are compared against.  In this firing curve, along with 

individual MU firings, four contractions are generated, utilizing all MUs and using known natural 

recruitment methodologies. The firing curve is divided into different contractions, and different types of 

contractions.  The first 1000 points are individual MUAPs firing.  The first contraction (1000-4500) and 

second contraction (5000-10000) utilize a natural recruitment scheme, increasing the number of MUAPs 

firing and increasing the number of neurons firing, with a fast increase.  The third (11000-23000) and 

fourth (25000-40000) use the same schema, but with a slow increase.  Three test data sets are generated – 

the first had constant amplitude MUAPs, no noise, and is termed the Constant Amplitude EMG (CEMG).  

The second test data set varies the MUAP amplitude, has no noise, and is termed the Amplitude varied 

EMG (AEMG).  The most difficult data set varies the MUAP amplitude, has 10% Gaussian white noise, 

and is termed the Noise EMG (NEMG).  All use the same firing curve to generate the EMG signal. The 

outputs are shown in Figure 1. 
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                                  Figure 1.  Generated EMGs and Firing Curve 

 

Signal Processing 

Using MATLAB, a variety of RO filters were applied to all three generated signals.  A window size 

of 25 was determined based on the design parameters of the EMG signal generation, primarily sampling 

rate (of less importance is the morphology of the MUAP waveforms).  For a larger (faster) sampling rate, 

with the parameters designed here, a larger window size would be appropriate.  The lower r-values in a 

RO filter will tend to be more sensitive to the noise in a signal, whereas the larger r-values will ignore any 

signals of size r–1 or less.  A larger window size will, obviously, provide a larger selection of r.   

The upper half of the window size was applied to these signals in order to compare the results.  Rank 

Order filters tend to shift edges based on the r-value, and this was verified in this research effort.  The 

median filter does not shift the edges, but r-values above the median (> 13 in this case), will move the 

edge earlier in time by r–13.  The RO filters were applied to the rectified values of the generated EMGs. 

 

Results 

In addition to the phase shift from the filter, the morphology of the motor unit action potential causes 

some time lag between the firing curve and the generated signal.  This phase lag is small, and the two tend 

to cancel each other out.  The firing curve is divided into different contractions, each a different type of 



 

contraction for a total of five different regions.  All RO filters with r < 20 lost the individual MUAP firing 

as can be seen in Figure 2.  The filters were not sensitive enough until r ≥ 20 as shown in Figure 3.  The 

remaining regions faired better.  The tracking in the first contraction, as seen in Figures 2 and 3, was 

much closer.  The large single spikes were lost, but the envelope was well tracked.  As can be seen in 

Figures 4 and 5, (fast contraction) the ideal situation with constant amplitude EMG and no noise produced 

the closest tracking.  In Figures 6-9, there is not much significant difference between the clean and the 

other EMG signals except during the quiet time between contractions.  Even in the most challenging case 

(NEMG), the recovered firing curve is more accurate than one using current techniques [3].  
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Figure 2.  First 5000 points using a median ROF. 
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Figure 3.  First 5000 points using a 20 of 25 ROF. 
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Figure 4. Second contraction using a median ROF. 
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Figure 5.  Second contraction using a 20 of 25 ROF. 
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Figure 6.  Third contraction using a median ROF. 
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Figure 7.  Third contraction using a 20 of 25 ROF. 
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Figure 8. Fourth contraction using a median ROF. 
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Figure 9. Fourth contraction using a 20 of 25 ROF. 
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