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Abstract

A Hilbert-valued stochastic integration is defined for an integrator that is a cylin-
drical fractional Brownian motion in a Hilbert space. Since the integrator is not a
semimartingale for the fractional Brownian motions considered, a different definition
of integration is required. Both deterministic and stochastic operator-valued integrands
are used. The approach to integration has an analogue with Skorokhod integrals for
Brownian motion by the basic use of a derivative of some functionals of Brownian mo-
tion. An Itô formula is given for some processes obtained by this stochastic integration.

1 Introduction

Fractional Brownian motion is a family of Gaussian processes that are indexed by the Hurst

parameter H ∈ (0, 1). In a finite dimensional Euclidean space these processes were intro-

duced by Kolmogorov [10] and some properties of these processes were given by Mandelbrot

and van Ness [13]. Hurst [8], [9] used this approach to describe the long term capacity of

reservoirs along the Nile River which was the initial indication that these processes could be

used as models of physical phenomena. Mandelbrot [12] used these processes to model some

economic data and, most recently, these processes have been noted for models of telecommu-

nication traffic (e.g., [11]). To enhance the analysis and the applicability of these processes,

a stochastic calculus has been developed in recent years for these processes in finite dimen-

sional spaces (e.g., [1], [3], [4]). The stochastic calculus given here uses a different approach

than the one used in [1], [3] or [4]. Since a fractional Brownian motion, for H �= 1/2, is

not a semimartingale, it is necessary to define a stochastic calculus. These processes have

a self-similarity in probability law and, for H ∈ (1/2, 1), a long range dependence property

described by the covariance function.

It seems that there is only a very limited amount of work on a stochastic integration for

fractional Brownian motion in an infinite dimensional space. In [6], a stochastic integration
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is defined for deterministic integrands and a (cylindrical) fractional Brownian motion in a

Hilbert space. This integration is used in [6] to define solutions of linear partial differential

equations with a fractional Brownian motion. The solution of a particular stochastic partial

differential equation is given in [7].

2 Main Results

Initially, a stochastic integration is defined where the integrator is a cylindrical fractional

Brownian motion in a Hilbert space with H ∈ (1/2, 1) and the integrand is a deterministic

operator-valued function.

Let U, V be separable Hilbert spaces, (Ω,F , P ) be a complete probability space, and Q

be a nonnegative, bounded self-adjoint operator on U . Let BH denote a U -valued fractional

Brownian motion with Hurst parameter H. The existence of BH (for H > 1/2) is proved in

[6]. In [6] a stochastic integral is also defined

∫ T

0

GdBH

for a deterministic function G : [0, T ] → L2(U, V ), where L2(U, V ) is the Hilbert space of

Hilbert-Schmidt linear operators with norm denoted by | · |L2 . Another definition is given

here under less restrictive assumptions than in [6].

Definition 2.1. Let U be a separable Hilbert space with inner product 〈 , 〉U , and Q a non-

negative, nuclear, self-adjoint operator on U . A continuous, zero mean, U-valued Gaussian

process, (BH(t), t ∈ R+), is said to be a fractional Brownian motion with Hurst parame-

ter H ∈ (0, 1) and associated with the covariance operator Q, if E[〈u,BH(t)〉U ] = 0 for all

t ∈ R+ and u ∈ U and

E
[
〈u1, B

H(s)〉U〈u2, B
H(t)〉U

]
= 〈Qu1, u2〉U

1

2

[
t2H + s2H − |t− s|2H

]
(2.1)

for all s, t ∈ R+ and u1, u2 ∈ U .

If Q is a nonnegative, self-adjoint bounded linear operator that is not nuclear, then a

cylindrical fractional Brownian motion is defined by the formal series,

BH(t) =
∞∑

n=1

enβ
H
n (t),

where (en, n ∈ N) is a complete orthonormal basis in the Hilbert space Q1/2(U) and (βH
n (t), t ∈

R+, n ∈ N) is a sequence of independent, real-valued standard fractional Brownian motions

with the Hurst parameter 1/2 < H < 1.

Remark 2.1. Proposition 2.2 [6] ensures the existence of a fractional Brownian motion

and the existence of a standard cylindrical (i.e., Q = Id) fractional Brownian motion for
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H > 1/2, but the arguments are valid for arbitrary Q. However BH takes values in U if and

only if Q is a nuclear operator. Otherwise, BH takes values in the larger Hilbert space U1,

where U ↪→ U1 and the embedding is a Hilbert-Schmidt operator. If Q is a nuclear operator,

then a cylindrical fractional Brownian motion is a fractional Brownian motion.

If H ∈ (1/2, 1) and BH is a standard cylindrical fractional Brownian motion, then

E
[
〈ϕ,BH(s)〉U〈ψ,BH(t)〉U

]
= 〈ϕ, ψ〉U

∫ t

0

∫ s

0

φH(u− v)dudv (2.2)

for all ϕ, ψ ∈ U where

φH(s) = H(2H − 1)|s|2H−2. (2.3)

A family of deterministic integrands for a fractional Brownian motion integrator is given

in the following definition.

Definition 2.2. Let H ∈ (1/2, 1) be fixed. Let ua(s) = sa for a ∈ R and I
H−1/2
0+ (f) be the

H − 1/2 fractional integral of f , that is,

(
I

H−1/2
0+ f

)
(s) =

1

Γ

(
H − 1

2

)
∫ s

0

f(t)

(s− t)3/2−H
dt.

The space L2
φH

([0, T ],L2(U, V )), often simply denoted L2
φH

, is the linear space of L2(U, V )-

valued distributions (or generalized functions) such that u1/2−HI
H−1/2
0+ (u1/2−Hf) is square

integrable, that is,

∫ T

0

(
u1/2−H(s)|IH−1/2

0+ (u1/2−Hf)(s)|L2

)2

ds < ∞. (2.4)

Remark 2.2. The Hilbert space L2
φH

is equivalent to the completion of the pre-Hilbert space

of L2(U, V )-valued bounded Borel measurable functions F : [0, T ] → L2(U, V ), with the norm

induced from the inner product

∫ T

0

∫ T

0

〈F (s), G(t)〉L2φH(s− t)dsdt, (2.5)

where φH is given by (2.3). This equivalence of these Hilbert spaces follows from the com-

pleteness of the Lebesgue spaces and a representation of (y − x)2H−2 as a hypergeometric

function.

It is allowed to let T = +∞ in Definition 2.2 so that [0, T ] becomes [0,+∞).

Fix (BH(t), t ∈ R+) a standard cylindrical fractional Brownian motion with Hurst param-

eter H ∈ (1/2, 1). For F ∈ L2
φH

, the stochastic integral
∫ T

0
FdBH can be defined and it is a

V -valued Gaussian random variable.
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Proposition 2.1. Let (BH(t), t ≥ 0) be a standard cylindrical fractional Brownian motion

with H ∈ (1/2, 1). If F ∈ L2
φH

([0, T ],L2(U, V )) then

∫ T

0

FdBH (2.6)

is a V -valued, zero mean Gaussian random variable.

Remark 2.3.

1. The stochastic integral (2.6) does not depend on the choice of U1, where the cylindrical

fractional Brownian motion BH takes its values and does not depend on the choice of the

basis for V .

2. The methods allow to define the integration for a more general Gaussian process with

the covariance given by (2.2) using the function f instead of φH , where f : [0, T ] → R+

provided L2
f from Definition 2.2 is a Hilbert space.

The definition of stochastic integration for deterministic integrands is extended to a natural

family of stochastic integrands. This extension uses the ideas of Malliavin calculus (e.g., [14])

as in [2] and [15]. For convenience some details in this framework are repeated.

Let U, V be separable Hilbert spaces and U ′, V ′ be the dual spaces (identify U and U ′ and V

and V ′). Therefore, if X : U → V , then X ′ : V → U . Let (Ω,F , P ) be a complete probability

space and BH be a standard cylindrical fractional Brownian motion with H ∈ (1/2, 1). Let

Ft = σ(BH
s : s ≤ t) and F = F1. Fix (Ω,F , P ) and BH . To define a stochastic integral with

respect to BH on a finite interval, let T = 1.

Initially a family of stochastic processes is introduced.

Definition 2.3. Let H ∈ (1/2, 1). The linear space L2
H([0, 1],L2(U, V )), often denoted L2

H ,

is the family of L2(U, V )-valued generalized processes on (Ω,F , P ) such that

i) for each L2(U, V )-valued process X, the map (s, ω) �→ 〈X ′(s, ω)ψ, ϕ〉U is B([0, 1])⊗F
measurable for all ϕ ∈ U , ψ ∈ V .

ii)

E

∫ 1

0

(
u1−2H(s)|IH−1/2

0+ (uH−1/2X)(s)|L2

)2

ds < ∞. (2.7)

Remark 2.4. The norm of L2
H can be expressed in terms of φH . Then L2

H is the linear

space of L2(U, V )-valued generalized processes such that

E

∫ 1

0

∫ 1

0

〈X(s), X(t)〉L2φH(s− t)dsdt < ∞, (2.8)

which is the completion of the family of uniformly bounded processes (X(t), t ∈ [0, 1]) with

the inner product (2.8).
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It is convenient to introduce a family of elementary random variables that are used in the

construction of a stochastic integral.

Definition 2.4. The linear space S is the family of smooth, cylindrical, V -valued random

variables on (Ω,F , P ) such that if F ∈ S, then it has the form

F =
n∑

j=1

fj

(∫ 1

0

γ1jdB
H , . . . ,

∫ 1

0

γnjjdB
H

)
ηj (2.9)

where ηj ∈ V , γkj ∈ L2
φH

([0, 1],L2(U,R)), fj ∈ C∞
p (Rnj) for j ∈ {1, . . . , n} and k ∈

{1, . . . , nj} and

C∞
p (Rn) = {f : R

n → R | f ∈ C∞ and f and all of its derivatives have

polynomial growth}.

A derivative along the paths of a fractional Brownian motion plays an important role in

the definition of the stochastic integral as it does for the Skorokhod integral of Brownian

motion via Malliavin calculus.

Definition 2.5. The derivative D : S → L2
H is a linear operator which is given for F ∈ S

in (2.9) by

DtF =
n∑

j=1

nj∑
i=1

∂fj

∂xi

(∫ 1

0

γ1jdB
H , . . . ,

∫ 1

0

γnjjdB
H

)
ηj ⊗ γij(t). (2.10)

The following result is called an integration by parts formula which plays a basic role in the

definition of the stochastic integral. The proof of this result and the proofs of the subsequent

results are given in [5].

Theorem 2.1. If F,G ∈ S and γ ∈ L2
φH

([0, 1],L2(U,R)), then

〈G⊗ γ,DF 〉L2
H

= E

[
〈F,G〉V

∫ 1

0

γdBH

]
− 〈F ⊗ γ,DG〉L2

H
(2.11)

where L2
H and D are given by Definition 2.3 and Definition 2.5, respectively.

Corollary 2.1. The derivative operator D : S → L2
H given by (2.10) can be extended in

L2(Ω) to a closed operator, also denoted D, such that D : D1,2
H → L2

H where D1,2
H = Dom(D).

The stochastic integral is defined as a dual to D.

Definition 2.6. Let X ∈ L2
H . The L2(U, V )-valued generalized process X is integrable with

respect to BH if F �→ 〈X,DF 〉L2
H

is continuous on S with the L2(Ω) norm topology. The

stochastic integral
∫ 1

0
XdBH is a zero mean, V -valued random variable such that

〈X,DF 〉L2
H

= E

〈∫
XdBH , F

〉
V

(2.12)

for each F ∈ S.
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An explicit class of examples of the stochastic integral (2.12) is given for a family of

elementary processes as integrands.

Proposition 2.2. If G ∈ D1,2
H and γ ∈ L2

φH
([0, 1],L2(U,R)), then the stochastic integral∫ 1

0
G⊗ γdBH is defined and the following equality is satisfied∫ 1

0

G⊗ γdBH = G

∫ 1

0

γdBH −
∫ 1

0

∫ 1

0

(DsG)(γ(t))φH(s− t)dsdt a.s. (2.13)

Corollary 2.2. If G ∈ S and γ ∈ L2
φH

([0, 1],L2(U,R)) then DG ∈ D1,2
H and

Ds

∫ 1

0

G⊗ γdBH =

∫ 1

0

DsG⊗ γdBH + G⊗ γ(s) (2.14)

for s ∈ [0, 1].

Now, a family of processes is defined which are integrable according to Definition 2.6 so

that the stochastic integral is defined.

Definition 2.7. Let H ∈ (1/2, 1). The space L1,2
H ([0, 1],L2(U,D

1,2
H )) or simply L1,2

H is the

family of L2(U,D
1,2
H )-valued generalized processes (X(t), t ∈ [0, 1]) on (Ω,F , P ) such that

i) X ∈ L2
H ,

ii) X : [0, 1] × Ω → L2(U,D
1,2
H ) is B([0, 1]) ⊗F measurable,

iii) There is a measurable version of (DsX(t), s, t ∈ [0, 1]), that is, the map (s, t, ω) �→
〈(DsX(t))ϕ, ψ〉 is B([0, 1]2) ⊗ F measurable for each L2(U,D

1,2
H )-valued process X

and all ϕ ∈ U and ψ ∈ V , and

iv)

|X|2
L1,2

H

= 〈X,X〉L2
H

+ E

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

〈DpX(q), DrX(s)〉L2

× φH(p− s)φH(r − q)

× dpdqdrds < ∞. (2.15)

The space L1,2
H is a Hilbert space that is the completion of uniformly bounded L2(U,S)-

valued processes using the norm | · |L1,2
H

. It can be expressed in terms of fractional integrals

and a representation of φH to obtain a Lebesgue integral description in analogy with L2
H .

The following result verifies that the processes in L1,2
H are integrable and L1,2

H is a natural

family of integrands because the stochastic integral satisfies an isometry.

Theorem 2.2. If X ∈ L1,2
H ([0, 1],L2(U,D

1,2
H )), then X is integrable with respect to BH , so

the stochastic integral
∫ 1

0
XdBH is a well defined zero mean V -valued random variable in

L2(Ω). Furthermore, if X, Y ∈ L1,2
H , then

E

〈∫ 1

0

XdBH ,

∫ 1

0

Y dBH

〉
V

= 〈X, Y 〉L1,2
H
. (2.16)
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In applications of stochastic integration, a change of variables or Itô formula is especially

useful. An Itô formula is given for the stochastic integration with a standard cylindrical

fractional Brownian motion in a Hilbert space.

Let t > 0 be fixed and let (X(s), 0 ≤ s ≤ t) be a V -valued process with continuous sample

paths that satisfies the stochastic equation

X(s) = X(0) +

∫ s

0

a(r)dr +

∫ s

0

b(r)dBH(r) a.s. (2.17)

for s ∈ [0, t] where X(0) ∈ V is deterministic, the stochastic integral is defined by (2.16) and

the V -valued process (a(s), 0 ≤ s ≤ t) and the L2(U, V )-valued process (b(s), 0 ≤ s ≤ t) are

σ(BH(u), 0 ≤ u ≤ t) measurable and satisfy

E
[
|a(r)|2V + |Dqa(r)|2L2

]
≤ M (2.18)

E
[
|b(r)|2L2

+ |Dqb(r)|2L2
+ |DpDqb(r)|2L2

]
≤ M (2.19)

where M is a constant that does not depend on p, q, r ∈ [0, t] and L2 denotes the appropriate

space of Hilbert-Schmidt operators.

Theorem 2.3. Let (X(s), 0 ≤ s ≤ t) be the process given in (2.17) with the assumptions

there. Let F : V → V be a twice continuously differentiable function such that F ′ : V →
L2(V, V ) and F ′′ : V (2) → L1(V, V ) where F ′ and F ′′ are the first and the second derivatives

respectively. Then the process (F (X(s)), 0 ≤ s ≤ t) satisfies the stochastic equation

F (X(s)) = F (X(0)) +

∫ s

0

F ′(X(r))a(r)dr +

∫ s

0

F ′(X(r))b(r)dBH(r)

+

∫ s

0

∫ t

0

F ′′(X(p))

∫ p

0

Dqa(r)drb(p)φH(p − q)dqdp

+

∫ s

0

∫ t

0

F ′′(X(p))

∫ p

0

(Dqb(r))dBH(r)b(p)φH(p − q)dqdp

+

∫ s

0

∫ p

0

F ′′(X(p))b(q)b(p)φH(p − q)dqdp a.s. (2.20)

Corollary 2.3. If the hypotheses of the theorem are satisfied and the pair of processes

(a(s), b(s), 0 ≤ s ≤ t) is adapted to (σ(BH(u), 0 ≤ u ≤ s), 0 ≤ s ≤ t), then the process

(F (X(s)), 0 ≤ s ≤ t) satisfies

F (X(s)) = F (X(0)) +

∫ s

0

F ′(X(r))a(r)dr +

∫ s

0

F ′(X(r))b(r)dBH(r)

+

∫ s

0

∫ s

0

F ′′(X(p))

∫ p

0

Dqa(r)drb(p)φH(p − q)dqdp

+

∫ s

0

∫ s

0

F ′′(X(p))

∫ p

0

(Dqb(r))dBH(r)b(p)φH(p − q)dqdp

+

∫ s

0

∫ p

0

F ′′(X(p))b(q)b(p)φH(p − q)dqdp a.s. (2.21)
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The integrability assumptions (2.18) and (2.19) can be relaxed.
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