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Abstract

Stochastic games under partial information are typically computationally intractable
even in the discrete-time/discrete-state case considered here. We consider a problem
where one player has perfect information. A chief problem is that the information
state for the player with imperfect information is a function over the space of proba-
bility distributions (a function over a simplex), and so infinite-dimensional. However,
in the problem form here, the payoff is only a function of the terminal state of the
system, and the initial information state is either linear or a sum of max-plus delta
functions. In this case, the information state and state-feedback value functions belong
to finite-dimensional sets. Thus computational tractability is greatly enhanced.

1 Introduction

For a discrete deterministic game, one can apply dynamic programming techniques to ob-

tain a solution (and “optimal” moves) by computing the appropriate value function. This

function is defined over the space of possible system states – possibly annexed by the time

variable depending on the game definition. For very simple games this is tractable, but for

reasonably complex games such as chess, one must typically apply heuristic techniques and

receding horizon approximations in order to reduce the computational complexity. For dis-

crete stochastic games, the value function is defined over the space of all possible probability

distributions over the state space. Consequently, the problem is much more computationally

intensive. Alternatively, for partially observed discrete deterministic H∞–type games, the

value is defined over the information state space which is again a space of functions over the

original state space, and so again tremendously more difficult (cf. [1] and [10]). Further,

one needs to propagate this information state forward in real-time based on the observations

obtained. (Note that we are being vague here about the particular value function being

used; we will be using the Elliott–Kalton definition [4], or more exactly, its extension to

stochastic games (cf. [5], [6]). More specific definitions will follow of course.) Finally, for

discrete stochastic games with partial observations, the problem is much more complex, and

even simple games and their information state formats become quite difficult to analyze.
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We will be concerned here with a specific class of discrete stochastic games under partial

observations. The choice of this class will be affected by both application considerations and

computational feasibility considerations. We will describe a reasonable class of problems

whose solutions are much more tractable than one would expect. Since this is a first paper

on the subject, we will concentrate on a simple (sub)class where one player has perfect infor-

mation; however, the extension to the case where both players have only partial information

will be relatively clear. We consider only zero-sum games.

The motivational application here is the military command and control (C2 ) problem for

air operations (most likely with uninhabited combat air vehicles (UCAV’s) ). For related

information, see [2], [3], [7], [8], [9], [11]. This application has specific characteristics such

that we will be able to construct a reasonable problem formulation which is particularly nice

from the point of view of analysis and computation. In particular, the controls which affect

the dynamics at each step will be the same controls which affect the observation process

(cf. [11]), although this last point is not essential to the analysis. For instance, an air

vehicle may obtain information on enemy air defenses by flying to a given waypoint. If

the air defense radars turn on, both players may obtain information on the overall system

state, but this my also lead to potential loss of the air vehicle and/or air defenses through

an engagement. More importantly, we will not include running costs in the model, but

only have a terminal cost; one could interpret this terminal cost in the application as the

outcome of the battle (e.g. weighted cost of vehicles, air defenses, etc... lost to each side).

Although the motivational application is specific to military C2 , one could easily imagine

other applications which one would hope to formulate similarly, given the relatively high

level of computational tractability.

2 Problem Formulation

Potential states of the system will be represented by x ∈ X where X is some finite set. Time

will be discrete, and the state of the system at time t will be denoted by Xt. Each state x

will be associated with a unit basis vector in R(#X ). The control for player 1, the minimizing

player, will take values u ∈ U where U is finite. The corresponding controls for player 2

(maximizing) will be w ∈ W which is also a finite set. Controls for each player at time t will

be denoted as ut and wt.

Although one could also consider an exit time formulation, we will consider a finite time

problem with time taking values in {0, 1, 2, . . . , T}. We will denote the terminal cost as

E : X → R; the cost of terminal state XT is E(XT ). There is no running cost.

We suppose that the state evolves as a controlled Markov chain (where the dynamics are

time independent for simplicity of exposition). Let the probability that Xt+1 = j given

Xt = i with controls ut = u ∈ U and wt = w ∈ W be

pij(ut, wt) = Pr(Xt+1 = j|Xt = i, ut = u, wt = w),

and let the n× n matrix of the elements pij be denoted as P (u, w) where n
.
= #X . We will
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assume that there is an observation process for player 1 (recall that here player 2 will know

the state perfectly) which can be controlled by both players. Let the observation process

be y· with yt ∈ Y where the probability that observation yt = y given Xt = i and controls

ut = u, wt = w is denoted as

Ri
.
= Pr(yt = y|Xt = i, ut = u, wt = w).

In a deterministic game under partial observations, the information state for player 1 is a

function of the state, and it represents the minimal cost to the opposing player (maximal

cost from the point of view of player 1) for the state to be x at current time t given the

observations up to the current time. Alternatively, in a stochastic control problem under

partial observations, the information state is simply the probability that Xt = x conditioned

on the observations up to the current time t. Here however, player 2 can affect the observation

process, so one must consider the cost to player 2 to produce a possibly misleading conditional

probability distribution. Thus, it is natural to define an information state for player 1 as

It : Q(X ) → R where Q(X ) is the space of probability distributions over state space X ;

Q(X ) is the simplex in the first octant of Rn defined by the unit basis vectors. We let the

initial information state be I0(·) = φ(·). Here, φ represents the initial cost to obtain and/or

obfuscate initial state information. The case where this information cannot be affected by

the players may be represented by a max–plus delta function. That is, φ takes the form

φ(q) = δqc(q) =

{
0 if q = qc

−∞ otherwise.

3 Information State Propagation and Value Function

We work first with the information state which is propagated up to the current time. Let

the current time be t0 ∈ {0, 1, 2, . . . , T}. Let the conditional probability of the state at time

t be denoted by qt ∈ Q(X ). In the absence of observations, and for given controls ut, wt, this

propagates according to

qt+1 = P T (ut, wt)qt.

Note that for t ≤ t0, ut is known by player 1 while wt is unknown. If there was only one

possibility for wt, say w, then the information state for player 1 would propagate by

It+1(q) = It(P
−T (ut, w)q)

for all q ∈ Qt+1 where P−T is the inverse of P T and Qt+1 is the set of feasible q at time

t + 1. (Note that Qt+1 = P T (ut, w)Qt.) Further, for example in the case where wr = w for

all r ≤ t, one sees that

Qt+1 = P T (ut, w)P T (ut−1, w) · · ·P T (u0, w)Q(X ),

3



and we note again that Q(X ) is the space of probability distributions over X . In the more

general case, given Qt,

Qt+1 = {P̃ T (ut, ~w)q : q ∈ Qt, ~w ∈ W n}
where

P̃ij(ut, ~w)
.
= Pij(ut, ~wi)

for all i, j, and where ~w is a vector of length n with elements in W (i.e. ~w ∈ W n). Note

that this definition allows player 2 to have a control which depends on the true current state

of the system – desired since this player has full state knowledge. The information state for

player 1 is propagated by

It+1(q) = max
{
It

[
P̃−T (ut, ~w)q

]
: ~w ∈ W n such that P̃−T (ut, ~w)q ∈ Qt

}
I0(q) = φ(q) ∀ q ∈ Q0 = Q(X ).

Note that It(·) is a piecewise linear, concave function over a subset of the simplex Q(X )

which has a piecewise linear boundary. One might also note that the maximum here used to

compute the player 1 information state allows ~w to be chosen depending on ut (upper value).

For each possible distribution, q, this represents the maximal cost (minimal from player 2’s

perspective) for the computed conditional probability to be q given the original cost. Again,

in the case that φ has the max–plus delta function form φ(q) = δq0(q) for some q0 ∈ Q(cX)

and W = {w}, It(·) is also a max–plus delta function at qt = P T (ut−1, w) · · ·P T (u0, w)q0

(i.e. It(q) = δqt
(q)).

So far we have ignored the possibility of an observation process. Let us now include this in

the propagation. We will assume that the observations may occur at each time step, t. We

will now need to distinguish between a priori conditional distributions, denoted as qt, and a

posteriori distributions, denoted as q̂t. That is, q̂t incorporates the possible new information

in an observation at time t. Recalling the observation discussion of Section 2, and the fact

that we are allowing the player 2 control to depend on the true state, we let the vector R̃

have components

R̃i
.
= Pr(yt = y|Xt = i, u, ~wi)

for each i ≤ n where again ~w indicates the possibly state-dependent choice of player 2

control. Let D(R̃) be the matrix whose ith diagonal element is R̃i for each i, and whose

other elements are zero. Then, given any control u and ~w and any observation y, the a

posteriori distribution would be given by

q̂t =
(

1

R̃T (y,ut, ~w)qt

)
D(R̃(y, ut, ~w))qt =

(
1∑

i[q̂t]i

)
D(R̃(y, ut, ~w))qt. (3.1)

The possible set of posteriori distributions, Q̂t is the set of all q̂t given by (3.1) for some
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qt ∈ Qt. Thus the a posteriori information state would be

Ît(q̂) = max

{
It

[
1

R̂T (y,ut,w)q̂t
D−1(R̃(y, ut, w))q̂t

]
: ~w ∈ W n such that

1

R̂T (y,ut, ~w)q̂t
D−1(R̃(y, ut, ~w))q̂t ∈ Qt

}
where R̂ is the vector of components R̃−1

i .

A problem is that the normalization in (3.1) induces nonlinearities in the propagation.

Consequently, we will work with the unnormalized distribution. The a priori and a posteriori

unnormalized distributions at time t will be denoted as q̃t and ̂̃qt, respectively. At any time

t, one can renormalize by dividing by
∑

i[q̃t]i for the a priori distribution, and similarly for

the a posteriori. The feasible sets of a priori and a posteriori unnormalized distributions will

be denoted by Q̃t and
̂̃Qt, where the propagation formulae are obvious.

Let us suppose that observations occur at each time step. If the control processes, u· and

~w·, and the observation process, y·, are given, then the unnormalized distribution would

propagate as

q̃t+1 = P̃ T (ut, ~wt)̂̃qt,
̂̃qt = D(R̃(yt, ut, ~wt))q̃t (3.2)

for given initial q̃0 = q0. The information state as a function of the unnormalized distribution,

denoted by Ĩt, propagates by

Ĩt+1(q̃) = max
{
Ĩt[D

−1(R̃(yt, ut, ~w))P̃−T (ut, ~w)q̃] : ~w ∈ W n such that (3.3)

D−1(R̃(yt, ut, ~w))P̃−T (ut, ~w)q̃ ∈ Q̃t

}
where

Q̃t+1 =
{

q ∈ Q(X ) : ∃ qt ∈ Q̃t, ~w ∈ W n such that q = P̃ T (ut, ~w)D(R̃(yt, ut, ~w))qt

}
(3.4)

with initial conditions Ĩ0(q) = φ(q) and Q̃0 = Q(X ). Assume that the initial cost, φ is linear.

We see that, even when including the observation process, the unnormalized information

state remains a piecewise linear, concave function on a convex subset of the simplex Q(X )

with piecewise linear boundary. Although we will not consider the actual computational

algorithm here, the propagation of this information state is clearly tractable in real-time for

reasonably small problems.

We now turn to the state feedback value function. When the Certainty Equivalence Princi-

ple holds, this can be combined with the information state to obtain the “optimal” controls.

The full state of the system is now described by the true state taking values x ∈ X and

the player 1 information state taking values q ∈ Q(X ). As before, we denote the terminal

payoff for the game as E : X → R (where of course this does not depend on the internal

information state of player 1). Thus the state feedback value function at the terminal time

is

VT (x, q) = E(x).
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The state feedback value can be propagated backward in time via dynamic programming.

One issue that arises is the information available to player 2. One option would be to assume

that it knows only the actual true state, x. However, one obtains nice robustness properties

if it is also assumed to depend on (i.e. know) the conditional distribution, q. This is the

form to be assumed here, however, one could certainly investigate the other option as well.

Thus the state feedback value propagates backward according to

Vt(x, q) =
∑
j∈X

P̃xj(u
0
t , ~w0

t )Vt+1(j, q
′(q, u0

t , ~w0
t )) (3.5)

where

q′(q, u0
t , ~w0

t ) = P̃ T (u0
t , ~w0

t )q (3.6)

~w0
t = argmax

~w∈W n

{∑
j∈X

P̃xj(u
0
t , ~w)Vt+1(j, q

′(q, u0
t , ~w))

}
(3.7)

u0
t = u0

t (q) = argmin
u∈U

Eq

{
max
~w∈W n

[∑
j∈X

P̃xj(u, ~w)Vt+1(j, q
′(q, u, ~w))

]}
. (3.8)

where Eq indicates expectation (over x) with respect to distribution q. Consequently, Vt(x, ·)
is a piecewise constant function over simplex Q(X ).

Due to this piecewise constant nature, propagation is relatively straight-forward (in par-

ticular, it is finite-dimensional in contradistinction to the general case). However, this is

slightly less critical than the propagation issue for the information state of the unnormalized

distribution, Ĩt, since the state feedback value may be pre-computed, while the information

state must be propagated in real-time.

The last step in the computation of the control at each time instant is now discussed. Due

to the page limit, and the necessarily long description of the information state, not all the

details will be given here. The control computation for such games is typically performed via

the use of the Certainty Equivalence Principle (cf. [1], [10]). As with the Separation Principle

in stochastic control, the Certainty Equivalence Principle is only proven for a limited class

of problems. Using the Certainty Equivalence Principle, the control to be applied by player

1 at time t in the partially observed case is obtained by computing

q0
t

.
= argmax

q∈Q(X )

{It(q) + EqVt(x, q)}. (3.9)

Note here that this uses It not Ĩ (the function of unnormalized distribution), and one

transforms via the transformation from unnormalized q̃ to normalized q. Alternatively, it may

sometimes be computationally more efficient to do the maximization in the unnormalized

space since Ṽt(x, q̃)
.
= Vt(x, q(q̃)) remains piecewise constant; in that case, one would compute

q̃0
t

.
= argmaxq̃{Ĩt(q̃) + EqṼt(x, q̃)}, and then transform to obtain q0

t , The optimal control for

player 1 is then the value of u0
t obtained from (3.8) as

um
t = u0

t (q
0
t ).

Under sufficently strong certainty equivalence–type conditions, one then has standard robust

game inequalities. For instance, the following result which is quite easily proved.
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Theorem 3.1. Suppose um
t is a strict minimizer. Then, given any ũt 6= um

t , there exist

q1, ~w1 and ε > 0 such that{
It(q

1) + Eq1

[∑
j∈X

P̃xj(ũt, ~w1)Vt+1(j, q
′(q1, ũt, ~w1))

]}
> max

q∈Q(X )

{
It(q) + Eq max

~w∈W n

[∑
j∈X

P̃xj(u
m
t , ~w)Vt+1(j, q

′(q, um
t , ~w))

]}
+ ε.

4 Computational Tractability

Although one can obtain results such as Theorem 3.1, a main motivation for consideration

of games of this form is the claim that they can represent useful applications and, at the

same time, lead to reasonably tractable algorithms. The largest problem with tractability for

partially observed problems is the propagation of the information state forward in real-time.

A secondary problem is of course the computation of the argmax in (3.9). We briefly discuss

computational tractability for two cases: linear φ and max–plus delta function φ. A key to

the tractability is that the costs are only initial and final, and in particular, the cost to the

players to affect the observation process is only indirectly felt through the effects those same

controls may have on the state process. (For example, in the military application referred

to above, this effect might be the loss of aircraft whose controlled trajectories not only lead

to observations but also to potential loss of the aircraft.)

Consider the case of linear Ĩ0 = I0 = φ. The propagation of Ĩ· is given by (3.3) (with

domain propagation (3.4)). In the case where there is only one choice of control for the

player 2, this would simply be a linear mapping of the underlying distribution, and so Ĩt(·)
would remain a linear function. Note that the domain remains a simplex subset of an affine

hyperplane, but this may not be the initial simplex Q(X ). In the more realistic situation

where W is not a single point (but recall that it is still assumed finite), this leads to a

piecewise linear Ĩt over a simplex subset of an affine hyperplane. Thus, propagation of the

information state forward in time is a finite-dimensional process, and consequently reasonably

tractable. As noted above, the transformed version of Vt(x, q), Ṽt(x, q̃)
.
= Vt(x, q(q̃)), remains

piecewise constant. Thus Ĩt(q̃) + Ṽt(x, q̃) is a discontinuous piecewise linear function. (That

is, it consists of a union of linear pieces, and may be discontinuous along the boundaries of

the pieces.) Consequently the argmax computation reduces to a comparison among a finite

set of maxima of each of the linear pieces.

The case where φ is a max–plus delta function, i.e. φ(q) = δqc(q) for some qc ∈ Q(X ), leads

to a particularly tractable problem. Recall that this case corresponds to a model where the

initial distribution for player 1 state information is not subject to disruption by some initial

control of player 2. (More specifically, such a control is not considered within the game.) In

this case, Ĩt is 0 only at a finite number of points, and is −∞ elsewhere. Thus, It retains

this property. The propagation of these points proceeds by (3.2) for each possible player 2

control. Thus, the information state is easily propagated. Further, since It is not −∞ at
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only a finite number of points, the argmax computation of (3.9) involves only comparison of

a finite number of values of maxx Vt(x, q) for these select values of q.
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