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Abstract

In this work, we study a class of hybrid models for the stock market to account for
the coexistence of continuous dynamics and discrete events. Different from the original
geometric Brownian motion models, both the rate of return and the volatility in the
hybrid model depend on a continuous-time Markov chain. This model can deal with
random volatility by incorporating market trend with other economic factors. To use
the models requires being able to estimate the values of elements of the generator of
the underlying Markov chain. We develop a stochastic approximation-based algorithm
for the estimation task. The asymptotic properties including convergence and rates of
convergence of the algorithm are proved. Using the estimated generator, one can then
proceed to make equity liquidation decisions.

1 Introduction

To reflect the coexistence of continuous dynamics and discrete events in a stock market, we

model it as a hybrid system. While the celebrated Black-Scholes model, based on geometric

Brownian motion (GBM), has been widely used in the analysis of options pricing and port-

folio management (see [5, 9]), it has been recognized that there are needs for suitable models

to better capture the price movements of the underlying securities. One of the limitations

of the GBM model is that the appreciation (or return) rate and the volatility in the model

are both deterministic. Therefore they are not responsive to the random environment and

are not suitable for a longer horizon. It is desirable to modify the model so as to capture

the random parameter changes such as random volatility. A host of researchers have made

effort in this direction, see [3, 4, 10] and the references therein.

Built upon the hybrid switching GBM model (HGBM) (a number of GBMs modulated

by a finite-state Markov chain) considered in [15] (see also related work [2]), we further our

understanding in this paper. In order to use the HGBM, a crucial issue is to be able to

estimate the generator of the underlying Markov chain. This brings us to the current work.

We propose and develop a class of optimization algorithms to carry out the estimation

task. The algorithm is of constrained stochastic approximation type. Some of the recent

development on stochastic approximation can be found in [7]; see also [1, 8, 11, 13] and the

references therein.

The rest of the paper is organized as follows. Section 2 is devoted to the hybrid model

description. Section 3 presents a stochastic optimization algorithm for the estimation task.
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Section 4 studies the convergence and rate of convergence of the algorithm. Finally, some

remarks are made in Section 5. Due to the page limitation, detailed proofs and numerical

results are referred to [14].

2 Formulation

For simplicity, consider a market model of a single stock. Let [0, T ] for some T > 0 be a

finite-time horizon, and S(t) be the price of the stock. Assume that the Markov chain is

time homogeneous, and has a finite state space M = {1, . . . ,m} and a generator Q = (qij),

where qij ≥ 0 for i 6= j and
∑m

j=1 qij = 0 for each i ∈ M. Let µ(·) and σ(·) : IR 7→ IR

be appropriate functions representing the appreciation rate and volatility, respectively. The

HGBM model is given by

dS(t) = µ(α(t))S(t)dt + σ(α(t))S(t)dw(t), (2.1)

where w(·) is a standard Brownian motion independent of the Markov chain α(·). Let

S(0) = S0 be the initial price.

Define

X(t) =
∫ t

0
r(α(s))ds +

∫ t

0
σ(α(s))dw(s), (2.2)

where

r(α(s)) = µ(α(s))− σ2(α(s))

2
. (2.3)

Or write it in a differential form

dX(t) = r(α(t))dt + σ(α(t))dw(t), X(0) = 0. (2.4)

Using X(t) defined in (2.2), the solution of the price S(t) can be rewritten as

S(t) = S0 exp(X(t)), or equivalently, X(t) = log

(
S(t)

S0

)
. (2.5)

Note that the Markov chain is used to model the market trends as well as other economic

factors as was mentioned in the previous section.

3 Algorithms

Estimating Q, the generator of the Markov chain, is a parameter estimation problem. Using

the well-known vector operations and piling up the elements of the generator matrix into a

vector, we propose an algorithm to estimate the r-vector

q = (q11, . . . , qm1, q12, . . . , qm2, . . . , q1m, . . . , qmm)′ ∈ IRr,

with r = m2.
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The estimation that we propose is a constrained optimization procedure using stochastic

approximation methods. It can be formulated as:

minimize f(q) = Ef(q, ξ), where f(q, ξ) = [X̃(q, ξ)− X̃(q∗, ξ)]2

subject to qii ≥ 0,
m∑

j=1

qij = 0, for each i = 1, . . . ,m.
(3.1)

Using ei to denote the standard unit vector with the ith component being 1 and all other

components being 0, let δn > 0 be the finite difference intervals. We use the finite difference

approximation given by

Gn,i = −f(qn + δnei, ξ
+
n )− f(qn − δnei, ξ

−
n )

2δn

, i = 1, . . . , r, (3.2)

and write Gn = (Gn,1, . . . , Gn,r)
′, where {ξ±n } are two sequences of the observation noise.

As was pointed out in [7, p. 87], an important issue in application of stochastic approxi-

mation concerns if the iterates become too large. To make sure that the iterates remain in

a bounded region, we require that the iterates be confined to a bounded domain. To take

into consideration of both the constraints given in (3.1) and the requirement of the iterates

being in a bounded region, we propose a projection procedure

qn+1 = πH [qn + εnGn], (3.3)

where πH denotes the projection operator onto the constraint set H that includes the con-

straints in (3.1) as well as the boundedness of the iterates. The algorithm (3.3) can be

rewritten as

qn+1 = qn + εnGn + εnZn, (3.4)

where Zn is the vector having the shortest Euclidean length necessary to bring qn + εnGn

back to H if it escapes from H. Note that {εn} is the step size sequence satisfying εn → 0,

εn/δn → 0,
∑

n εn = ∞. For example, one may use εn = K/nγ and δn = K0/n
γ/6, for some

K > 0, K0 > 0, and 0 < γ < 1 are some positive constants.

4 Asymptotic Properties

To proceed, we state the conditions needed in the convergence of the algorithm.

(A1) The observed or simulated solution X̃(q, ξ) is twice continuously differentiable with

respect to the parameter q.

(A2) f(q, ξ̃) = f0(q, ξ) + ξ̂ such that {ξ±n } are sequences of bounded and stationary φ-

mixing processes with mixing measure φ(k) satisfying Ef0(q, ξ
±
n ) = f(q) for each q

and
∑

k φ1/2(k) < ∞; {ξ̂±n } are stationary martingale difference sequences satisfying

E|ξ̂±n |2 < ∞.
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Define

t0 = 0, and tn =
n−1∑
i=0

εi.

For t ≥ 0, let m(t) be the unique value of n such that tn ≤ t < tn+1; for t < 0, let m(t) = 0.

Define the continuous-time interpolation q0(·) of the iterates as

q0(t) = qn, tn ≤ t < tn+1, qn(t) = q0(tn + t), t ∈ (−∞,∞). (4.1)

Let Zn = 0 for n < 0 and define

Z0(t) =
m(t)−1∑

k=0

εkZk, t ≥ 0,

Zn(t) = Z0(tn + t)− Z0(tn), t ≥ 0,

Zn(t) =
n−1∑

k=m(tn+t)

εkZk, t < 0.

It then follows that

qn(t) = qn +
m(tn+t)−1∑

k=n

εk [Gk + Zk]

= qn + Gn(t) + Zn(t), t ≥ 0,

qn(t) = qn −
n−1∑

k=m(tn+t)

εk [Gk + Zk]

= qn + Gn(t) + Zn(t), t < 0.

Theorem 4.1 Assume (A1) and (A2) are satisfied. Then there is a null set N such that for

all ω 6∈ N , the {qn(·), Zn(·)} is equicontinuous in the extended sense. Let (q(·), Z(·)) denote

the limit of a convergent subsequence. Then it satisfies the projected ordinary differential

equation

q̇ = f q(q) + z, z ∈ C(q), (4.2)

where z(·) is the projection or the constraint term that is the minimum force needed to keep

q(·) in H. If q∗ is an asymptotically stable point of (4.2) and qn is in some compact set in

the domain of attraction of q∗ w.p.1, then qn → q∗ w.p.1.

To study the rate of convergence, take εn = O(1/nγ), δn = δ/nγ1 with 0 < γ1 < γ ≤ 1.

Define un = nγ2(qn− q∗) for γ2 > 0. The rate of convergence of the stochastic approximation

algorithm is concerned with the choice of γ2 that leads to a nontrivial limit in the sense of

distribution of un. The scaling factor together with the limit covariance gives the desired

rate of convergence. Following the approach in KW type of algorithm, choose γ2 = 2γ1 and

γ2 + γ1 − γ/2 = 0. This yields that γ1 = γ/6. In fact, other choices of (γ1, γ) lead to slower

rate of convergence. Let un(·) be the right continuous piecewise constant interpolation of

{uk : k ≥ n} (more detail to follow). We shall derive the limit of un(·). We need another

condition for the rate of convergence study.
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(A3) qn → q∗ ∈ H0, interior of H such that q∗ is a globally asymptotically stable point of

the ODE (4.2) w.p.1. The set {nγ/3(qn − q∗)} is tight.

Theorem 4.2. Consider un = nγ/3(qn − q∗) and un(·) is the continuous-time interpolation

of qn for some 0 < γ ≤ 1. Suppose that (A1)–(A3) are satisfied and un(0) → u0.

(i) If γ = 1 and all eigenvalues of (I/3) − fqq(q
∗) have negative real parts, then un(·)

converges weakly to u(·), which is a solution of the stochastic differential equation

du(t) =
[(

I

3
− fqq(q

∗)
)

u(t)− δ2B(q∗)
]
dt +

1

2δ
dw, u(0) = u0, (4.3)

where w(·) is the Brownian motion obtained from the weak limit of the rescaled noise

process, and B(q∗) is the bias term.

(ii) If 0 < γ < 1 and all eigenvalues of −fqq(q
∗) have negative real parts, then un(·)

converges weakly to u(·) with (4.3) replaced by

du(t) =
[
(−fqq(q

∗)) u(t)− δ2B(q∗)
]
dt +

1

2δ
dw, u(0) = u0. (4.4)

Remark 4.3. Loosely, Theorem 4.2 tells us that (qn − q∗) is asymptotically normal with

mean n−1/3((I/3)− fqq(q
∗))−1δ2B(q∗) and covariance n−2/3Σ̃, where

Σ̃ =
∫ t

0
e{(I/3)−fqq(q∗)}tΣe{(I/3)−f ′

qq(q∗)}tdt.

Since we are considering random processes, the rate of convergence will consist of not only

the scaling factor, but also the variation of the iterates. Since a normal random variable

is completed specified by its mean and covariance, the asymptotic normality enables us to

completely characterize the movements of the iterates. The scaling factor n1/3 indicates how

the iterates vary with respect to the iteration number n, and the covariance Σ̃ provides us

with the information of the amount of variation.

5 Further Remarks

This paper concerns estimation problems associated with a class of hybrid geometric Brow-

nian motion models for the stock market. Note that in lieu of (3.4), one viable alternative

is

qε
n+1 = qε

n + εGδ
n + εZn, (5.5)

where

Gδ
n,i = −f(qn + δei, ξ

+
n )− f(qn − δei, ξ

−
n )

2δ
, i = 1, . . . , r, (5.6)

where both the step size of the iteration and the finite difference step size are taken to be

constant. This is particularly suitable for taking account of slight parameter variations. The
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asymptotic properties of such an algorithm can be studied, in which we will need ε → 0 and

δ = δε → 0 and ε/δε → 0.

Once the estimate of the generator of the Markov is obtained, one can proceed to the

liquidation decision of an equity [15]. In a related work, another approach using stochastic

approximation for stock liquidation is presented [13]. It is conceivable that the approach

using stochastic optimization algorithms will play a more important role in financial engi-

neering.
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