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Abstract

Despite the large number of controllers presented in the literature for the stabi-

lization of the ball and beam system, only a few results are available on the transient

performance problem. The aim of this paper is to propose an asymptotically stabi-

lizing controller that ensures that, for a well–defined set of initial conditions, the ball

remains on the bar during the transient. Tuning the controller, the set can be extended

to include any initial position with zero velocity. The controller is a nonlinear static

state feedback that is derived using the interconnection and damping assigment energy–

shaping controller design methodology. As an extension of the regulation problem we

also propose in this paper a controller that forces the ball and beam to oscillate. This

is achieved, within the framework of energy–shaping, by assigning an energy function

that attains its mimimum along the desired periodic orbit. A key step in our design is

the immersion of the oscilator system into the fourth order system dynamics.

1 Introduction

In the past decade an important effort has been made to solve the well–known stabilization

problem of the ball and beam. Major results in this directions are those of Hauser through

approximate feedback linearization [4], the method of controlled lagrangians [5, 8] and the

interconnection and damping assignment passivity based control (IDA–PBC) of [6]. The

usual approach is to obtain a nonlinear control law that stabilizes the ball at its rest position

at the center of the beam, achieving in some cases global asymptotic stability and in some

cases asymptotic tracking [4]. However little effort has been made to analyze the transient

performance of the controlled systems. At most, raise time and overshoot have been design

parameters of linear controllers based on linear approximations of the models—which are

only locally valid. In this paper we propose an asymptotically stabilizing controller that

ensures that, for a well–defined set of initial conditions, the ball remains on the bar during

the transient. Tuning the controller, the set can be extended to include any initial position

with zero velocity. The controller is a nonlinear static state feedback that is derived using

the energy–shaping IDA–PBC design methodology of [6].
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As an extension of the regulation problem we continue with the research started in [3]

and propose a controller that forces the ball and beam to oscillate. This is achieved, within

the framework of energy–shaping, by assigning an energy function that attains its minimum

along the desired periodic orbit. A key step in our design is the immersion of the oscillator

system into the fourth order system dynamics.

This paper is organized as follows. First the system model is presented, and a brief

summary of the control calculations via the IDA–PBCmethod is given. Section 3 presents the

main results for transient performance analysis and estimation of the domain of attraction.

In Section 3.2 a simulation analysis is made to illustrate the theoretical results. Section 4

contains our results on control of oscillations.

2 System Model and Control Method

 

q2 

q1 

u 

Figure 1: Ball and Beam System.

2.1 Ball and Beam Model

Although there are slight variations in the physical setups and models of the ball and beam,

we will focus on the most widely used (see [4]), depicted in Fig. 1. This model is characterized

by the fact that the line parallel to the beam starting at the center of gravity of the ball

intersects the axis of rotation of the beam. For purposes that will be clear in Section 3, the

Euler–Lagrange equations of [4] are scaled in time and torque, in such a way that the length

of the bar L appears explicitly in the model. This is possible because L2 is a factor of the

moment of inertia of the bar.

q̈1 + g sin(q2)− q1q̇
2
2 = 0

(L2 + q2
1)q̈2 + 2q1q̇1q̇2 + gq1 cos(q2) = u (2.1)

For IDA–PBC it is convenient to provide a Hamiltonian model of the system for which we

define the generalized momenta p = [p1, p2]
> = [q̇1, (L

2 + q2
1)q̇2)]

> and rewrite (2.1) as

[
q̇

ṗ

]

=

[
02×2 I2
−I2 02×2

] [ ∂H
∂q
∂H
∂p

]

+

[
02×1

G

] [
0

u

]

(2.2)
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where I2 is the identity matrix of order two, and G = [0 1]>. The Hamiltonian function of

this model is defined as

H
4
=

1

2
p>M−1(q1)p
︸ ︷︷ ︸

T (q,p)

+ gq1 sin q2
︸ ︷︷ ︸

V (q)

(2.3)

where T (q, p) and V (q) are the kinetic and potential energy respectively, and M is the mass

matrix, namely

M(q1) =

[
1 0

0 L2 + q2
1

]

2.2 Passivity Based Control

What follows is a brief summary of the IDA–PBC presented in [6]. The design procedure in

the IDA–PBC method involves two main steps, kinetic energy shaping, for which a system of

PDEs must be solved, and potential energy shaping which normally involves the solution of

one PDE and the assignment of the desired equilibrium point. Finally a damping term must

be added to obtain asymptotic stability. In [6] we also make use of the method proposed in

[10] to reduce the PDE’s to ODE’s.

We propose the following form for the desired (closed loop) energy function

Hd(q, p) =
1

2
p>M−1

d (q)p+ Vd(q) (2.4)

where Md = M>
d > 0 and Vd represent the (to be defined) closed–loop inertia matrix and

potential energy function, respectively. We will require that Vd have an isolated minimum

at q∗.

In PBC the control input is naturally decomposed into two terms

u = ues(q, p) + udi(q, p) (2.5)

where the first term is designed to achieve the energy shaping and the second one injects the

damping. The desired closed–loop port–controlled Hamiltonian dynamics are taken of the

form
[
q̇

ṗ

]

= [Jd(q, p)−Rd(q, p)]

[
∇qHd

∇pHd

]

(2.6)

where the terms

Jd = −J>
d =

[
0 M−1Md

−MdM
−1 J2(q, p)

]

; Rd = R>
d =

[
0 0

0 GKvG
>

]

≥ 0

represent the desired interconnection and damping structures.

For the ball and beam problem we will propose the elements of the closed loop inertia

matrix as functions of q1

Md =

[
a1(q1) a2(q1)

a2(q1) a3(q1)

]
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These elements are obtained as solutions of the underdetermined system of ODEs [10]

d

dq1
a1(q1) =

2q1
(L2 + q2

1)
2

a2
2

a1

d

dq1
a2(q1) =

2q1
(L2 + q2

1)
2

a2a3

a1

from which we obtain the globally defined solution

Md = (L2 + q2
1)

[ √
2(L2 + q2

1)
−1/2 1

1
√

2(L2 + q2
1)

]

(2.7)

This matrix is globally positive definite, as desired. The kinetic energy shaping is completed

evaluating the matrix J2 which is straightforward as can be read in [6]. For potential energy

shaping the following equation must be solved

√

2(L2 + q2
1)
∂Vd
∂q1

+
∂Vd
∂q2

= g sin(q2)

Again, after some calculations and with appropriate choice of the degrees of freedom, gives

the solution

Vd = g[1− cos(q2)] +
kp
2

[

q2 −
1√
2
arcsinh

(q1
L

)]2

(2.8)

where we have added a constant to shift the minimum to zero. This function has a local

minimum at the control objective. The potential energy function obtained is depicted in the

contour plot of Fig. 2.

Figure 2: Level curves of Vd(q) around the origin for kp = 0.05 (left) and kp = 0.01 (right).

To compute the final control law we first determine the energy–shaping term ues which in

this case takes the form

ues = ∇q2H − (MdM
−1)(2,1)∇q1Hd − (MdM

−1)(2,2)∇q2Hd + (J2M
−1
d )(2,1)p1 + (J2M

−1
d )(2,2)p2
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Replacing the functions derived above for Md and j, and after some straightforward calcu-

lations, we obtain the expression

ues =
q1√

2(L2 + q2
1)

[

−
√

L2 + q2
1p

2
1 +

√
2p1p2 +

1
√

L2 + q2
1

p2
2

]

+ ξ(q) (2.9)

where

ξ(q)
4
= gq1 cos q2 − g

√

2(L2 + q2
1) sin q2 − kp

√

L2 + q2
1

2

(

q2 −
1√
2
arcsinh

(q1
L

))

The controller design is completed with the damping injection term, which yields

udi =
kv

L2 + q2
1

(

p1 −
√

2

L2 + q2
1

p2

)

(2.10)

This is an explicit control law with clear physical interpretation, namely: kp is a bona fide

proportional gain in position, as it multiplies terms that grow linearly in q, and kv injects

damping along a specified direction of velocities. Commissioning of the controller is simplified

by this feature. Asymptotic stability is demonstrated based in Matrosov’s Theorem, and it

should be read in [6].

3 Transient Performance

In Subsection 2.2 we have designed a controller that makes the origin asymptotically stable

with Lyapunov function the desired total energy. This analysis can be refined studying the

effect of the tuning parameter kp on the size of the domain of attraction, and explicitly

quantifying a set of initial conditions such that the ball remains all the time in the bar, that

is, |q1(t)| ≤ L for all t ≥ 0.

3.1 Keeping the ball on the bar

First, we note that as Hd decreases and the kinetic energy is non–negative, we have that

Vd(q(t)) ≤ Hd(q(0), p(0)), hence the sub–level sets of Vd are invariant sets for q(t). Further, if

we can show that the kinetic energy is bounded, then the bounded sets provide an estimate of

the domain of attraction. To study these sets we find convenient to work in the coordinates

(q̃1, q2, p1, p2), where q̃1 is defined as1

q̃1
4
= q2 −

1√
2
arcsinh

(q1
L

)

1Note that the coordinate mapping (q1, q2) 7→ (q̃1, q2) defines a global diffeomorphism, and recall that

boundedness of sub–level sets is invariant under the action of diffeomorphisms.
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In these coordinates the potential energy function becomes

Ṽd(q̃1, q2)
4
= g(1− cos q2) +

kp
2
q̃2
1

which has the same analytical expression as the total energy of the simple pendulum, and

the associated sub–level sets, i.e., {(q̃1, q2) | Ṽd(q̃1, q2) ≤ c}, are of the form shown in Fig 3.

We are interested here in the bounded connected components that contain the origin, that

we will denote Ξc.

The following basic lemma, whose proof may be found in [6], will be instrumental in the

sequel.

Lemma 3.1. The set Ξc is bounded if and only if c < 2g.

Figure 3: Level curves of Ṽ (q̃1, q2).

We are in position to present the main result of this section. To simplify the notation we

will use (·)o to denote the value of the functions at t = 0.

Proposition 3.1. Consider the ball and beam model (2.1) in closed-loop with the static state

feedback IDA–PBC u = ues + udi, with (2.9)–(2.10), and kv > 0.

(i) We can compute a constant kMp > 0, function of the initial conditions (qo, po), such

that for all kp ≤ kMp , the set

{(q, p) | 1
2
p>M−1

d (q)p+ g(1− cos q2) < 2g} (3.11)

is an estimate of the domain of attraction of the zero equilibrium. In particular, all

trajectories starting with zero velocity, and qo2 ∈ (−π, π) will asymptotically converge

to the origin.

(ii) Fix kp ≤ kMp and assume |qo1| < L. Then,

{(q, p) | 1
2
p>M−1

d (q)p+g(1−cos q2)+
kp
2

(

q2 −
1√
2
arcsinh

(q1
L

))

<
1

8

kpg

2kp + g
} (3.12)
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is a domain of attraction of the zero equilibrium, such that all trajectories starting in

this set satisfy |q1(t)| < L for all t ≥ 0.

Proof. We have shown above that the sub–level sets of Vd(q) are invariant sets for q(t).

Further, Lemma 3.1 establishes that the connected component of the sub–level sets of Vd(q)

containing the origin is bounded if and only if c < 2g. Hence, setting c = H o
d in Lemma 3.1

it follows that this set is bounded if and only if

Ho
d =

1

2
(po)>M−1

d (qo)po + g(1− cos(qo2)) +
kp
2
q̃2
1 < 2g

It is clear that, if the first two terms are strictly smaller than g, we can always find and

upperbound on kp such that the inequality holds. To complete the proof of point (i) of the

proposition we remark that, for all trajectories starting in the set (3.11), q(t) is bounded.

Hence, from (2.2), we conclude that M−1
d (q(t)) > εI from some constant ε > 0. This,

together with the fact that 1
2
p>(t)M−1

d (q(t))p(t) < Ho
d , establishes that the corresponding

p(t) is also bounded and the set (3.11) is an estimate of the domain of attraction.

The proof of (ii) proceeds as follows. From (3.1) we have that

|q1| ≤ L⇔ |q2 − q̃1| ≤
1√
2
arcsinh(1) (3.13)

where we have used the fact that arcsinh(·) is odd and monotonic. The region defined by

(3.13) is depicted in Fig. 4 together with two sets Ξc. Our problem is then to compute the

largest c such that the set Ξc does not intersect the lines q̃1 = q2± 1√
2
arcsinh(1). To simplify

the expressions we note that 1√
2
arcsinh(1) > 1

2
, and check the intersection with the “closer”

lines q̃1 = q2 ± 1
2
in the band q2 ∈ [−1

2
, 1

2
]. For completeness, we substitute q̃1 = q2 + 1

2

in the boundary equation of Ξc, and use the bound cos q2 < 1 − q22
4
, which is valid in the

aforementioned band, to get the first inequality below

g(1− cos q2) +
kp
2

(

q2 +
1

2

)

> g
q2
2

4
+
kp
2

(

q2 +
1

2

)

> c

The second inequality holds for all c < 1
8

kpg

2kp+g
and all q2 in the band. This proves that the

boundary of Ξc does not intersect the limit lines within the band. They cannot intersect

outside the interval either because c > g(1 − cos( 1
2
)) implies that, in Ξc, |q2| < 1

2
, and this

bound on c is less strict than c < 1
8

kpg

2kp+g
. This completes the proof.

3.2 Simulations

A set of simulations of the ball and beam system with g = 9.8, kp = 1 has been made. The

results are shown in Fig. 5. The graphs on the upper row depict the ball position q1 and the

beam angle q2 for zero initial velocity, and varying initial positions and parameters. Under
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q1

q2

m

m

q1=q2+m

q1=q2-m
V< c1 ⇒ | q1 |<L

V< c2 ⇒ | q1 |<L

q2

~

~

~

Figure 4: Graphical interpretation of |q1| < L, with m
4
= 1√

2
arcsinh(1).

each of these, the corresponding graphs with the desired hamiltonianHd and potential energy

Vd are shown. Each column in the graph array belongs to a single simulation. From the first

two simulations we see the effect of increasing the damping constant kv starting with the bar

in vertical position. Note that the convergence is not always accelerated with higher values

of kv, as new oscillations come into play. The third simulation starts at rest with the bar

in horizontal position and the ball on the edge of the bar. Apparently, the controller works

best starting from q2(0) = 0. To ensure that the initial condition is within the domain of

attraction, kp has been chosen smaller than kMp according to Proposition 3.1. Figure 5 also

illustrates the monotonic nature of Hd together with the fact that Vd(t) < Hd(t) < Hd(0)

for all t.

The effect of the limited bar length and the use of the last part of Proposition 3.1 is

illustrated by simulation in Fig. 6. The parameters are g = 9.8, kp = 1, kv = 50, and L = 10.

Hence the condition for keeping the ball within the limits of the bar is Hd(0) < 0.1038. The

first simulation starts at (q0, p0) = (8, 0, 1, 1) with Hd(0) = 0.1837. Due to the initial velocity

the controller is unable to catch the ball before it trespasses the limit of the bar (L = 10).

In the second simulation we have (q0, p0) = (6, 0, 0.5, 1) and Hd(0) = 0.0928, thus the bound

|q1| < L is guaranteed and the ball remains within the limits of the bar.

4 Stabilization of oscillations

In this section a different problem is addressed: the objective is to stabilize an oscillatory

movement in the ball and beam. Usually the control objective is either to stabilize an oper-

ating point or to track a reference. Nevertheless, in some systems—including AC converters

and walking robots—the objective is to obtain stable and robust oscillations. The problem

can, of course, be posed as a tracking problem but this leads to non–robust solution with

high dependence on initial conditions and noise. In [3] the problem of obtaining oscillations

with a constant energy is addressed. Here, we use a different approach: we define a two-
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Figure 5: Simulations of the ball and beam starting from rest.
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Figure 6: Ball and beam starting with initial velocity. Effect of the finite bar length.

dimensional system that exhibits stable and robust oscillations and immerse it in the whole

system using the technique of Immersion and Invariance of [1]. For, we recall the main result

of this technique as applied to stabilization of equilibria—with slight modifications the result

applies as well to stabilization of periodic orbits of interest here.

Proposition 4.1. Consider the system

ẋ = f(x) + g(x)u, (4.14)

with state x ∈ IRn and control u ∈ IRm, with an equilibrium point x∗ ∈ IRn to be stabilized.

Let p < n and assume we can find mappings α(·) : IRp → IRp,π(·) : IRp → IRn,c(·) : IRp →
IRm, φ(·) : IRn → IRn−p, ψ(·, ·) : IRn×(n−p) → IRm such that:
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(H1) (Target system) The system

ξ̇ = α(ξ), (4.15)

with ξ ∈ IRp, has a globally asymptotically stable equilibrium at ξ∗ ∈ IRp and x∗ = π(ξ∗).

(H2) (Immersion condition) For all ξ ∈ IRp

f(π(ξ)) + g(π(ξ))c(ξ) =
∂π

∂ξ
α(ξ) (4.16)

(H3) (Implicit manifold) The following set identity holds

{x ∈ IRn | φ(x) = 0} = {x ∈ IRn | x = π(ξ), ξ ∈ IRp} (4.17)

(H4) (Manifold attractivity and trajectory boundedness) The system

ż =
∂φ

∂x
(f(x) + g(x)ψ(x, z)) (4.18)

with state z, has a globally asymptotically stable equilibrium at zero uniformly in x.

Further, the trajectories of the system

ẋ = f(x) + g(x)ψ(x, z) (4.19)

are bounded for all t ∈ [0,∞).

Then, x∗ is a globally asymptotically stable equilibrium of the closed loop system ẋ = f(x) +

g(x)ψ(x, φ(x)).

4.1 Target system

We now define a two-dimensional target system ξ̇ = f(ξ), ξ = (ξ1, ξ2) ∈ IR2, that presents

a limit cycle and, in order to underscore the role of the damping injection, express it in

port–controlled Hamiltonian form [2]. To this end, consider the function Ha =
1
4
P 2(ξ) with

P (ξ)
4
= ω2

cξ
2
1 + ξ2

2 − µ. Depending on the values of the parameter µ, the function Ha has

two different shapes. For µ < 0 it has a single minimum at the origin of the space (ξ1, ξ2),

as shown in Fig. 7-a; but for µ > 0 the minima of Ha are reached in the closed curve

ω2
cξ

2
1 + ξ2

2 = µ (Fig. 7-b).

Define the generalized hamiltonian system with damping [9]

[
ξ̇1
ξ̇2

]

=

[

0 1
ω2

c
ξ21+ξ22−µ

− 1
ω2

c
ξ21+ξ22−µ

−ka

][
∂Ha

∂ξ1
∂Ha

∂ξ2

]

. (4.20)

being ka > 0 a damping coefficient. Clearly, this system can be written as

ξ̇1 = ξ2 (4.21)

ξ̇2 = −ω2
cξ1 − kaPξ2. (4.22)
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Figure 7: Function Ha for a) µ < 0 and b) µ > 0.

Proposition 4.2. Consider system (4.21)-(4.22). If µ < 0 the origin is globally asymptoti-

cally stable. If µ > 0, for any initial condition, except the origin, the trajectories tend to the

limit cycle P = 0 with period 2π/ωc.

Proof. It is easy to see that the radially unbounded function Ha fulfills Ḣa = −kaP 2ξ2
2 ≤ 0.

Let us compute the invariant sets for which Ḣa = 0.

• A first possibility is that ξ2(t) ≡ 0 with ξ̇2 = 0. Using (4.22) this means that ωcξ
2
1 = 0⇒

ξ1 = 0. Therefore, this case corresponds to the point (ξ1, ξ2) = (0, 0). By linearization

it can be seen that this point is locally stable for µ < 0 and locally unstable for µ > 0.

• The second possibility is that P = 0. This set does not exist for µ < 0.

Thus, applying LaSalle’s theorem the first part of the proposition is proven. For the second

one, we have still to prove that the curve P = 0 is a true limit cycle, that is, that there are

no equilibrium points in P = 0. We proceed by contradiction: assume that an equilibrium

exists for P = 0. From (4.21), ξ2 = 0 and from (4.22) with P = 0 results ξ1 = 0. But

ξ1 = ξ2 = P = 0 is only possible if µ = 0.

Finally, for P = 0, it is easy to see that system (4.21)–(4.22) is reduced to an harmonic

oscillator with a oscillation period equal to 2π/ωc.

4.2 Immersion and invariance

We will now apply Proposition 4.1 of the Immersion and Invariance method of [1] to a

simplified model of the ball and beam system (2.1) with the target dynamics described above.

First, we introduce the partial-linearization control law u = (−2q1q̇1q̇2 − gq1 cos(q2))/(L
2 +

q2
1) + v and denoting the state vector as [x1, x2, x3, x4] = [q1, q̇1, q2, q̇2] the system can be
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written as:

ẋ1 = x2 (4.23)

ẋ2 = x1x
2
4 − sin x3 (4.24)

ẋ3 = x4 (4.25)

ẋ4 = v (4.26)

Second, an approximated model—which is suggested in [4]—is obtained neglecting the

centrifugal acceleration term x1x
2
4, assuming a small angular velocity of the bar yielding








ẋ1

ẋ2

ẋ3

ẋ4







=








x2

− sinx3

x4

0







+








0

0

0

1







v. (4.27)

Let us determine the map π(ξ). To enforce the oscillations we choose π1 = ξ1 and π2 = ξ2.

π3 and π4 can be determined imposing the invariance condition, that yields

π3(ξ) = sin−1(ξ1 + kaξ2P (ξ)) (4.28)

π4(ξ) =
∂π3

∂ξ1
ξ2 +

∂π3

∂ξ2
(−ξ1 − kaξ2P (ξ)) (4.29)

We choose as the first element of the implicit manifold, φ1, the obvious choice φ1(x) =

x3 − sin−1(x1 + kax2P (x1, x2)). Let φ2 be

φ2(x) = x4 −
∂π3|x
∂x1

x2 −
∂π3|x
∂x2

(− sin x3)

Notice that the implicit manifold identity holds since

{φ1 = 0, φ2 = 0} ⇒ x4 =
∂π3

∂ξ1
ξ2 +

∂π3

∂ξ2
(−ξ1 − kaξ2P (ξ))

With this choice, it is obvious that φ̇1 = φ2. Then, defining S(x1, x2, x3)
4
= −∂π3|x

∂x1
x2 +

∂π3|x
∂x2

sinx3, we obtain the off–the–manifold system (4.18) like

ż1 = z2 (4.30)

ż2 = v +
∂S

∂x1

x2 −
∂S

∂x2

sinx3 +
∂S

∂x3

x4 (4.31)

Then, a possible stabilizing control law is

v = − ∂S

∂x1

x2 +
∂S

∂x2

sin x3 −
∂S

∂x3

x4 − k1φ1(x)− k2φ2(x)

with k1, k2 > 0.
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4.3 Simulation results

In order to show the behaviour of the obtained control law a simulation is presented for

µ = 0.1, ka = 1, k1 = 1 and k2 = 1. The initial conditions are x(0) = [0.9, 0.1, 0, 0]. Figure

8 shows the evolution of the off–the–manifold coordinates z1 and z2 tending to zero, while

Fig. 9 shows that, after a transient period, the variables x1 and x2 indeed exhibit sinusoidal

oscillations of the desired amplitude
√
µ. Finally, Fig. 10 shows the phase portrait projection

on (x1 − x2).
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Figure 8: Evolution of z1 and z2
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Figure 9: Evolution of x1 and x2
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Figure 10: Phase portrait projection on (x1 − x2)
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