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Abstract

We extend the theory of controlled Lagrangian systems to include systems with symmetry
and the Lagrangian reduction theory. This extension is crucial to study examples such as
spacecraft control, underwater vehicle control, etc.

1 Introduction

The method of controlled Lagrangian (CL) systems has been successful in designing feedback control
laws for mechanical systems;[1], [2], [4], and references therein. In this paper, we develop the
reduction theory of controlled Lagrangian systems with symmetry based on the work on Lagrangian
reduction in [3]. This will draw a clearer picture of the relation between CL systems with symmetry
and the reduced CL systems. This is crucial to study examples such as spacecraft control and
underwater vehicle control. We will also show that the Euler-Poincaré matching conditions in [2]
is a special case of the results of this paper. In a forthcoming publication, we will present the
reduction of controlled Hamiltonian systems with symmetry and its relationship with the reduction
of CL systems with symmetry.

Notation. We use fairly standard notation. The configuration manifold for the mechanical sys-
tems under consideration is denoted Q. We assume that the dimension of Q is n and use (q1, . . . , qn)
as coordinates on Q. The second-order tangent bundle is denoted T (2)Q and consists of second
derivatives of curves in Q. Let G be a Lie group which acts (on the left) on Q freely and properly
so that πG(Q) : Q → Q/G becomes a principal bundle. The tangent lift action of G on TQ is free
and proper and τ/G : TQ → TQ/G becomes a principal bundle. When M is a manifold on which G

acts, we let [m]G denote the equivalence class of m ∈ M in the quotient space M/G. Even though
we do not explicitly specify the manifold M in this notation, it will be clear in the context.

The Euler-Lagrange operator EL assigns to a Lagrangian L : TQ → R, a bundle map EL(L) :
T (2)Q → T ∗Q which may be written in local coordinates (employing the summation convention)
as

EL(L)i(q, q̇, q̈)dqi =
(

d

dt

∂L

∂q̇i
(q, q̇) − ∂L

∂qi
(q, q̇)

)
dqi

in which it is understood that one regards the first term on the right hand side as a function on
the second-order tangent bundle T (2)Q by formally applying the chain rule and then replacing
everywhere dq/dt by q̇ and dq̇/dt by q̈.
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2 Main Results

2.1 Review of Controlled Lagrangian Systems

We first review the controlled Lagrangian systems of [4].

Definition 2.1. A controlled Lagrangian (CL) system is a triple (L, F, W ) where the function
L : TQ → R is the Lagrangian, the fiber-preserving map F : TQ → T ∗Q is an external force and
W , called the control bundle, is a subbundle of T ∗Q, representing the actuation directions.

When we choose a specific feedback control map u : TQ → W , we call the triple (L, F, u) a
closed-loop Lagrangian system. The equation of motion of the closed-loop system (L, F, u) is
given by

EL(L)(q, q̇, q̈) = F (q, q̇) + u(q, q̇). (2.1)

A CL system (L, F, W ) is called simple if the Lagrangian L has the form of kinetic minus poten-
tial energy: L(q, q̇) = 1

2m(q)(q̇, q̇) − V (q). We will use the acronym SCL for “simple controlled
Lagrangian”.

We now introduce an equivalence relation by feedback transformations among the CL systems
(influenced by [5]).

Definition 2.2. Given the two simple CL systems (L1, F1, W1) and (L2, F2, W2), the Euler-La-

grange matching conditions are

ELM-1 : W1 = m1m
−1
2 (W2),

ELM-2 : Im
[
(EL(L1) − F1) − m1m

−1
2 (EL(L2) − F2)

]
⊂ W1,

where mi is the mass tensor of Li and Im means the pointwise image of the map in brackets.
We say that the two simple CL Lagrangian systems (L1, F1, W1) and (L2, F2, W2) are CL-

equivalent if ELM-1 and ELM-2 hold. We use the symbol L∼ for this equivalence relation.

The following theorem explains the main property of the CL-equivalence relation.

Theorem 2.1. Suppose two simple controlled Lagrangian systems (Li, Fi, Wi), i = 1, 2 are CL-
equivalent. Then, for an arbitrary control law given for one system, there exists a control law for
the other system such that the two closed-loop systems produce the same equations of motion. The
explicit relation between the two feedback control laws ui, i = 1, 2 is given by

u1 = (EL(L1) − F1) − m1m
−1
2 (EL(L2) − F2) + m1m

−1
2 u2 (2.2)

where mi is the mass tensor of Li.

2.2 Reduction of Controlled Lagrangian Systems with Symmetry

Based on the work on the Lagrangian reduction in [3], we develop the reduction theory of controlled
Lagrangian systems with symmetry. This will draw a clearer picture of the relation between CL
systems with symmetry and the reduced CL systems.
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2.2.1 Reduction of CL Systems with Symmetries

We defined the CL system in Definition 2.1. Here, we define G-invariant CL systems on TQ and
reduced CL systems on TQ/G where G is a Lie group acting on Q.

Definition 2.3. Let G be a Lie group acting on Q. A G-invariant controlled Lagrangian (G-

CL) system is a CL system, (L, F, W ), where L is a G-invariant Lagrangian, F is a G-equivariant
force map and W is a G-invariant subbundle of T ∗Q.

Definition 2.4. A reduced controlled Lagrangian (RCL) system is a triple (l, f, U) where
l : TQ/G → R is a smooth function called the reduced Lagrangian, the fiber-preserving map f :
TQ/G → T ∗Q/G is called the reduced force map, and U , called the reduced control bundle, is a
subbundle of T ∗Q/G. A feedback control for the RCL system is a (fiber-preserving) map of TQ/G

into U .

Suppose that we are given a G-CL system (L, F, W ). The G-invariance of L induces a reduced
Lagrangian l on TQ/G satisfying

l ◦ τ/G = L. (2.3)

The G-equivariance of F induces a reduced force map [F ]G : TQ/G → T ∗Q/G satisfying

[F ]G ◦ τ/G = π/G ◦ F. (2.4)

This leads to the following definition:

Definition 2.5. The RCL system of a G-CL system (L, F, W ) is a triple (l, [F ]G, W/G) where l

is the reduced Lagrangian satisfying (2.3), and [F ]G is the reduced force satisfying (2.4).

One naturally asks if there exists a G-CL system on TQ when one is given a RCL system on
TQ/G. The following proposition proves its unique existence.

Proposition 2.1. Given a RCL system (l, f, U) on TQ/G, there exists a unique G-CL system
(L, F, W ) on TQ whose RCL system is (l, f, U).

Proof. Define L by (2.3). Define a force map F on TQ as follows: for vq, wq ∈ TqQ,

〈F (vq), wq〉 = 〈f ◦ τ/G(vq), τ/G(wq)〉. (2.5)

One can check the G-equivariance of F . One can also check that relation (2.5) defines a unique
fiber-preserving map F of TQ to T ∗Q. Let W := τ−1

/G (U). By construction, (L, F, W ) is the unique
G-CL system whose RCL system is (l, f, U).

By Proposition 2.1, we can, without loss of generality, write an arbitrary RCL system in the form
of the RCL system of a G-CL system.

Given a G-CL system (L, F, W ), the G invariance of L implies the G-equivariance of the map
EL(L) : T (2)Q → T ∗Q, which induces a quotient map

REL(l) := [EL(L)]G : T (2)Q/G → T ∗Q/G,
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which depends only on the reduced Lagrangian l on TQ/G induced from L. The operator REL is
called the reduced Euler-Lagrange operator. The equation of motion of a RCL (l, [F ]G, W/G)
with a choice of control [u]G : TQ/G → W/G is given by

REL(l)([q, q̇, q̈]G) = [F ]G([q, q̇]G) + [u]G([q, q̇]G).

To write computable equations of REL, one has to choose a principal connection on the principal
bundle Q → Q/G to make the following identifications:

TQ/G = T (Q/G) ⊕ g̃, T (2)Q/G = T (2)(Q/G) ×Q/G 2g̃, T ∗Q/G = T ∗(Q/G) ⊕ g̃∗

where g̃ is the adjoint bundle Ad(Q), g̃∗ is the coadjoint bundle Ad∗(Q), 2g̃ := g̃ ⊕ g̃, and ⊕ is
the Whitney sum(see Lemma 2.4.2 and Lemma 3.2.2 in [3]). With these identifications, REL(l)
induces the Lagrange-Poincaré operator

LP(l) : T (2)(Q/G) ×Q/G 2g̃ → T ∗(Q/G) ⊕ g̃∗. (2.6)

Hence, the reduced Euler-Lagrange operator, REL may be replaced by the Lagrange-Poincaré
operator LP in the following as long as one chooses a connection on Q → Q/G. More details may
be found in [3].

We study the relation between trajectories of G-CL systems and trajectories of RCL systems.
Let (L, F, W ) be a G-CL system and (l, [F ]G, W/G) be its RCL system. Choose an arbitrary G-
equivariant feedback control law u : TQ → W for (L, F, W ). The control u induces a reduced map
[u]G : TQ/G → T ∗Q/G. If (q(t), q̇(t)) ∈ TQ is a trajectory of the closed-loop system (L, F, u), then
τ/G(q(t), q̇(t)) ∈ TQ/G is the trajectory of the closed-loop system (l, [F ]G, [u]G).

2.2.2 Reduced CL-Equivalence

We now define the reduced simple controlled Lagrangian system.

Definition 2.6. A reduced simple controlled Lagrangian (RSCL) system is the reduced
CL system (l, [F ]G, W/G) of a G-invariant simple CL system (L, F, W ). If the G-invariant simple
Lagrangian L is given by L(q, q̇) = 1

2mq(q̇, q̇) − V (q), then its reduced Lagrangian l is denoted by

l([q, q̇]G) =
1
2
[m]G([q, q̇]G, [q, q̇]G) − [V ]G([q]G)

where [m]G ∈ Γ(Q/G, T ∗Q/G⊗ T ∗Q/G) is the reduced mass tensor induced from the G-invariance
of the mass tensor m ∈ Γ(Q, T ∗Q ⊗ T ∗Q) and [V ]G : Q/G → R is the reduced potential energy.

We defined the Euler-Lagrange matching conditions and the CL-equivalence relation in Defini-
tion 2.2. We now define an equivalence relation among RCL systems on TQ/G.

Definition 2.7. Two RSCL systems (li, [Fi]G, Wi/G), i = 1, 2 are said to be reduced-CL-equiv-

alent (RCL-equivalent) if the following reduced Euler-Lagrange matching conditions hold:

RELM-1 : W1/G = [m1]G[m2]−1
G ,

RELM-2 : Im [REL(l1) − [F1]G − [m1]G[m2]−1
G (REL(l2) − [F2]G)] ⊂ W1/G
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where [mi]G is the reduced mass tensor of li, i = 1, 2.

The following proposition explains the relationship between the CL-equivalence relation among
G-SCL’s and the RCL-equivalence relation among RSCL’s.

Proposition 2.2. Two G-SCL systems are CL-equivalent if and only if their associated RSCL
systems are RCL-equivalent.

Proof. Let (L, F, W ) be a G-SCL system, and (l, [F ]G, W/G) be its associated RSCL system. Then,
the proposition follows from the G-invariance of W and the following relations:

REL(l) ◦ τ
(2)
/G = π/G ◦ EL(L), [F ]G ◦ τ/G = π/G ◦ F

where τ
(2)
/G : T (2)Q → T (2)Q/G is the G quotient map.

Hence, one can check the RCL-equivalence of two RSCL’s in two ways: one is to directly check
it, and the other is to check CL-equivalence of their associated unreduced G-SCL’s.

The following theorem explains the main property of the RCL-equivalence relation:

Theorem 2.2. Suppose that two RSCL systems (li, [Fi]G, Wi/G), i = 1, 2 are RCL-equivalent.
Then, for an arbitrary control law for one system, there exists a control law for the other system
such that the two closed-loop RSCL systems produce the same equations of motion. The explicit
relation between the two feedback control laws [ui]G, i = 1, 2 is given by

[u1]G = REL(l1) − [F1]G − [m1]G[m2]−1
G (REL(l2) − [F2]G) + [m1]G[m2]−1

G [u2]G (2.7)

where mi is the mass tensor of Li, i = 1, 2.

Proof. Let [ui]G be a feedback control for (li.[Fi]G, Wi/G), i = 1, 2. Let (Li, Fi, Wi) be the unre-
duced G-SCL system of (li.[Fi]G, Wi/G), i = 1, 2. By Proposition 2.2, the two G-SCL are CL-
equivalent. By Theorem 2.1, the two closed-loop G-SCL systems (Li, Fi, ui), i = 1, 2 produce the
same equations of motion when u1 and u2 satisfy (2.2). Hence, the two closed-loop RSCL systems
(li.[Fi]G, [ui]G), i = 1, 2 produce the same equations of motion when [u1]G and [u2]G satisfy (2.7)
because each term in (2.2) is G-equivariant. In addition,notice that for any choice of [ui]G, one can
choose the other [uj ]G such that (2.7) holds.

2.2.3 Euler-Poincaré Matching.

Here we briefly sketch the proof that the set of Euler-Poincaré matching conditions in [2] is a
special case of the reduced Euler-Lagrange matching conditions. This set of matching conditions
can handle such examples as a spacecraft with a rotor and underwater vehicles with internal rotors.
Let Q = G × H be the configuration space where G is a Lie group acting trivially on H, and H is
an Abelian Lie group 1. We choose the trivial connection on Q → H to write down the Lagrange-
Poincaré equation on TQ/G 
 g×TH with the Lie algebra g of the Lie group G. We use η = (ηα)

1In [2], they used H for the symmetry group. For the sake of consistency, we use G for the symmetry group in

this paper.
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as coordinates on g and (θ, θ̇) = (θa, θ̇a) as coordinates on TH. The Lagrange-Poincaré operator
LP with respect to the trivial connection is given by

LP(l) =

(
d
dt

∂l
∂ηα − cβ

αγηγ ∂l
∂ηβ

d
dt

∂l
∂θ̇a

− ∂l
∂θa

)
(2.8)

for any reduced Lagrangian l = l(ηα, θ̇a, θa), where cβ
αδ are the structure coefficients of the Lie

algebra g. See [3] for the derivation of (2.8).
Let (l, 0, T ∗H) be the given RCL system with the reduced Lagrangian,

l(ηα, θ̇a) =
1
2
gαβηαηβ + gαaη

αθ̇a +
1
2
gabθ̇

aθ̇b,

where gαβ , gαa, gab are constant functions on TQ/G. Notice that this Lagrangian is cyclic in the
Abelian variables θa and the controls act only on the cyclic variables. Let (lτ,σ,ρ, 0, T ∗H) be an
another RCL system with the reduced Lagrangian of the following form:

lτ,σ,ρ = l(ηα, θ̇a + τa
αηα) +

1
2
σabτ

a
ατ b

βηαηβ

+
1
2
(ρab − gab)(θ̇a + gacgcαηα + τa

αηα)(θ̇b + gbcgcβηβ + τ b
βηβ) (2.9)

which is exactly the equation (11) in [2]. See also [2] for the motivation of this choice of the form for
the Lagrangian. The paper [2] assumes the following so-called Euler-Poincaré matching conditions:

EP-1 : τa
α = −σabgbα,

EP-2 : σab + ρab = gab.

Then, one can show that the two assumptions of EP-1 and EP-2 imply the RCL-equivalence of
the two reduced CL systems (l, 0, T ∗H) and (lτ,σ,ρ, 0, T ∗H). By Theorem 2.2, one can equivalently
work with the second system . See [2] for some applications.
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