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Abstract

This paper is concerned with a study on the variational systems and their adjoints

of Hamiltonian control systems and its application to iterative learning control, which

is applicable to a class of electro-mechanical systems. First of all, the self-adjoint

structure of the variational of those systems is clarified. Then a novel iterative learning

control scheme is proposed based on it. This method does not require either the

knowledge of physical parameters of the target system nor the time derivatives of the

output signals. A concrete and effective learning algorithm for mechanical systems is

also derived.

1 Introduction

Hamiltonian control systems are the systems described by well known Hamilton’s canonical

equations with controlled Hamiltonians [2]. They are introduced mainly to characterize

variational properties of dynamical systems and is used for optimal control, see also [15].

Those systems were also utilized to describe physical systems, and the related geometric

methods of controlling this class of systems supplied fruitful results in control engineering

[11, 8, 6]. Furthermore, this control framework was generalized in order to handle electro-

mechanical systems as well as conventional mechanical ones [7], and several control methods

are proposed for them [7, 4, 12, 9]. Thus a scope of this paper contains control of a class of

physical systems such as mechanical and electrical systems.

In this paper, we investigate the self-adjoint structure of Hamiltonian systems. It is re-

vealed that the variational systems of Hamiltonian systems have self-adjoint structures. This

fact implies that the input-output mappings of the adjoints of the variational of Hamiltonian

systems can be obtained without using precise knowledge of the target system.

This paper also studies iterative learning control of Hamiltonian systems based on the

self-adjoint structure of the variational of Hamiltonian systems. A novel framework for

iterative learning control of Hamiltonian systems will be proposed. This control scheme is

very simple in the sense that it does not require the knowledge of any physical parameters

of the target system. Also it does not require any time derivative of the output signal either,

whereas existing well-known simple learning scheme by Arimoto [1] does require high order
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time derivatives. Furthermore, we will show a concrete control system synthesis method for

mechanical systems.

2 Self-adjoint structure of Hamiltonian systems

This section discusses the self-adjoint structure of the variational of Hamiltonian systems.

Consider an operator Σ : X×U → X×Y with Hilbert spaces X, U and Y with a state-space

realization

(x1, y) = Σ(x0, u) :







ẋ = f(x, u, t) x(t0) = x0

y = h(x, u, t)

x1 = x(t1)

(2.1)

defined on a time interval [t0, t1] 3 t. Typically, X = Rn, U = Lm
2 [t

0, t1] and Y = Lr
2[t

0, t1].

A simpler notation Σx0
: U → Y with

y = Σx0

(u) :

{
ẋ = f(x, u, t) x(t0) = x0

y = h(x, u, t)

is also employed.

Here let us recall Fréchet derivative of nonlinear operators.

Definition 2.1 Consider an operator Σ : X → Y with Banach spaces X and Y . Σ is said

to be Fréchet differentiable at x ∈ X if there exists an operator dΣ : X ×X → Y such that

dΣ(x, ξ) is linear in ξ and that

lim
‖ξ‖X→0

‖Σ(x+ ζ)− Σ(x)− dΣ(x, ξ)‖Y
‖ξ‖X

= 0.

Under these circumstances, dΣ(x, ξ) is called the Fréchet derivative of Σ at x.

The Fréchet derivative dΣx0
(u)(du) of Σx0

(x) is given by [2, 10, 3]

yv = dΣx0

((u), (uv)) :







ẋ = f(x, u, t), x(0) = x0

(
ẋv

yv

)

=
∂

∂(x, u)

(
f(x, u, t)

h(x, u, t)

)(
xv

uv

)

, xv(0) = 0
.

By its construction in Definition 2.1, the Fréchet derivative dΣ(x, dx) is a locally linear

approximation to Σ(x), that is

dΣ(u, du) ≈ Σ(u+ du)− Σ(u) (2.2)

holds when dx is small.
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Next we consider a Hamiltonian system ΣH with a controlled Hamiltonian H(x, u, t) with

dissipation

(x1, y) = ΣH(x
0, u) :







ẋ = (J −R)
∂H(x, u, t)

∂x

T

, x(t0) = x0

y = −∂H(x, u, t)

∂u

T

x1 = x(t1)

. (2.3)

Here the structure matrices J ∈ Rn×n and R ∈ Rn×n are skew-symmetric and symmet-

ric positive semi-definite, respectively. The matrix R represents dissipative elements such

as friction of mechanical systems and resistance of electric circuits. For this system, the

following theorem holds.

Theorem 2.1 Consider the Hamiltonian system with dissipation ΣH in (2.3). Suppose that

J and R are constant and that there exist nonsingular matrix Tx ∈ Rn×n satisfying

J = −TxJ T−1
x

R = TxR T−1
x

∂2H(x, u, t)

∂(x, u)2
=

(
Tx 0

0 I

)
∂2H(x, u, t)

∂(x, u)2

(
T−1
x 0

0 I

)

.

(2.4)

Then the Fréchet derivative of ΣH is described by another Hamiltonian system

(x1
v, yv) = dΣH((x

0, u), (x0
v, uv)) :







ẋ = (J −R)
∂H(x, u, t)

∂x

T

, x(t0) = x0

ẋv = (J −R)
∂Hv(x, u, xv, uv, t)

∂xv

T

, xv(t
0) = x0

v

yv = −∂Hv(x, u, xv, uv, t)

∂uv

T

x1
v = xv(t

1)
(2.5)

with a controlled Hamiltonian Hv(x, u, xv, uv, t)

Hv(x, u, xv, uv, t) =
1

2

(
xv

uv

)T
∂2H(x, u, t)

∂(x, u)2

(
xv

uv

)

.

Furthermore, the adjoint of the variational system with zero initial state ua 7→ ya = (dΣx0
(u))∗(ua)

is given by

ya = (dΣx0

H (u))∗(ua) :







ẋ = (J −R)
∂H(x, u, t)

∂x

T

, x(t0) = x0

ẋv = −(J −R)
∂Hv(x, u, xv, ua, t)

∂xv

T

, xv(t
1) = 0

ya = −∂Hv(x, u, xv, ua, t)

∂ua

T

. (2.6)
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Suppose moreover that J−R is nonsingular. Then the adjoint (x1
a, ua) 7→ (x0

a, ya)(dΣ(x
0, u))∗(x1

a, ua)

is given by the same state-space realization







ẋ = (J −R)
∂H(x, u, t)

∂x

T

, x(t0) = x0

ẋv = −(J −R)
∂Hv(x, u, xv, ua, t)

∂xv

T

, xv(t
1) = −(J −R)Tx x1

a

ya = −∂Hv(x, u, xv, ua, t)

∂ua

T

x0
a = −T−1

x (J −R)−1xv(t
0)

. (2.7)

Proof. First of all, let us calculate the variational system of ΣH .







ẋ = (J −R)
∂H(x, u, t)

∂x

T

, x(t0) = x0

(
ẋv

yv

)

=
∂

∂(x, u)






(J −R)
∂H(x, u, t)

∂x

T

−∂H(x, u, t)

∂u

T






(
xv

uv

)

, xv(t
0) = x0

v

x1
v = xv(t

1)

.

We obtain

(
ẋv

yv

)

=

(
J −R 0

0 −I

)
∂2H(x, u, t)

∂(x, u)2

T(
xv

uv

)

=

(
J −R 0

0 −I

)[

∂

∂(xv, uv)

{

1

2

(
xv

uv

)T
∂2H(x, u, t)

∂(x, u)2

T(
xv

uv

)}]T

=

(
J −R 0

0 −I

)
∂Hv(x, u, xv, uv, t)

∂(xv, uv)

T

=







(J −R)
∂Hv(x, u, xv, uv, t)

∂xv

T

−∂Hv(x, u, xv, uv, t)

∂uv

T







which equals to (2.5). Next we calculate its adjoint as







ẋ = (J −R)
∂H(x, u, t)

∂x

T

, x(t0) = x0

(
ẋa

ya

)

=

(
−I 0

0 I

)((
J −R 0

0 −I

)
∂2H(x, u, t)

∂(x, u)2

)T(
xa

ua

)

, xa(t
1) = x1

a

x0
a = xa(t

0)

.

Here let us define a (possibly singular) coordinate transformation x̄a = −(J −R)Txxa, then
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we obtain

(
˙̄xa

ya

)

=

(
−(J −R)Tx 0

0 I

)(
ẋa

ya

)

=

(
−(J −R)Tx 0

0 I

)(
−I 0

0 I

)((
J −R 0

0 −I

)
∂2H(x, u, t)

∂(x, u)2

)T(
xa

ua

)

= −
(
−(J −R) 0

0 −I

)(
Tx 0

0 I

)
∂2H(x, u, t)

∂(x, u)2

(
−J −R 0

0 −I

)(
xa

ua

)

=

(
−(J −R) 0

0 −I

)(
Tx 0

0 I

)
∂2H(x, u, t)

∂(x, u)2

(
−T−1

x (J −R)Txxa

ua

)

=

(
−(J −R) 0

0 −I

)(
Tx 0

0 I

)
∂2H(x, u, t)

∂(x, u)2

(
T−1
x 0

0 I

)(
−(J −R)Txxa

ua

)

=

(
−(J −R) 0

0 −I

)
∂2H(x, u, t)

∂(x, u)2

(
x̄a

ua

)

.

This proves (2.6). Furthermore, if J −R is nonsingular then the behavior of the state xa(t)

can be recovered by xa(t) = −T−1
x (J − R)−1x̄a(t). This implies (2.7) and completes the

proof. 2

Remark 2.1 Note that the dynamics of xa in (2.6) or (2.7) is the time reversal version of

that of xv in (2.5). Suppose the input u is given such that the time history of the Hessian of

the Hamiltonian ∂2H/∂(x, u)2 is symmetrical with respect to the middle of the time interval

t0 + (t1 + t0)/2, i.e.,

∂2H(x, u, t)

∂(x, u)2
(t− t0) =

∂2H(x, u, t)

∂(x, u)2
(t1 − t), ∀t ∈ [t0, t1].

Then dΣH has a self-adjoint state-space realization. This condition often occurs in a PTP

control of robot manipulators.

Under the circumstances in Remark 2.1, Theorem 2.1 implies that the time reversal system

of the adjoint (dΣH)
∗ coincide with the variational dΣH , that is,

R ◦ (dΣH(u))
∗ ◦ R = dΣH(u) (2.8)

where R is a time reversal operator defined by

R(u)(t− t0) = u(t1 − t), ∀t ∈ [t0, t1]. (2.9)

Namely, the variational of the Hamiltonian system (2.3) has self-adjoint structure. Combined

with the property of the variational system (2.2), we can calculate the input-output mapping

of the adjoint by only using the input-output data of the original system.
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Figure 1: LCR-circuit

Example 2.1 Consider an LCR-circuit depicted in Figure 1. Let ϕ1 and ϕ2 denote the flux

linkages, HL(·) denote the inductance energy (a nonlinear function of ϕ1 and ϕ2), R1 denote

the resistance, HC(·) denote the stored energy of capacitance (a nonlinear function of Q), Q

denote the charge, and V denote the input voltage. Let us definite the input u = V and the

state x = (Q,ϕ1, ϕ2). Then we obtain the Hamiltonian system (2.3) with

H(Q,ϕ1, ϕ2, u) = HC(Q) +HL(ϕ1, ϕ2) +Q u

J =





0 −1 −1
1 0 0

1 0 0





R =





0 0 0

0 0 0

0 0 R1



 .

This system reduces to a port-controlled Hamiltonian system











Q̇

ϕ̇1

ϕ̇2



 =





0 −1 −1
1 0 0

1 0 −R1











∂(HC+HL)
∂Q

T

∂(HC+HL)
∂ϕ1

T

∂(HC+HL)
∂ϕ2

T







+





0

1

1



 u

y = −Q

.

This system satisfies the matching condition (2.4) with

Tx =





1 0 0

0 −1 0

0 0 −1



 .

Therefore, we can calculate the adjoint of the variational system by using the input-output

mapping of the original system provided the assumptions in Remark 2.1 hold.
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3 Iterative learning control

This section explains how to apply the results in Section 2 to iterative learning control. The

simplest problem setting of iterative learning control is as follows. Consider the nonlinear

system (2.1) and a prescribed desired output yd. The main purpose of learning control is to

find an input u = ud which achieves Σ(ud) = yd. To this end, the iteration law

u(i+1) = u(i) + k(yd − y(i))

is adopted. Here u(i) and y(i) denote the input and output at the i-th operation. The

objective is to find an appropriate law k(·) such that

y(i) → yd as i→∞.

Arimoto et.al [1] adopted the iteration law k(·) in a PD like controller form without using

the precise knowledge of the target system (2.1) under mild assumptions. Yamakita and

Furuta [14] proposed to use the adjoint of the target system as the iteration law k(·) based
on optimization theory, see e.g. [13]. Though this approach brings fast convergence, it needs

precise knowledge of the target system. There are some other results adopting in-between

approaches, e.g. [5], which give faster convergence and require less information of the target

system. The main strategy taken here is similar to the Furuta’s approach. But our result

does not require the precise knowledge of the target system. Here we are going to utilize

qualitative properties of physical systems rather than quantitative ones.

3.1 General framework

Let us consider the system Σ in (2.1) and a cost function Γ : X2 × U × Y → R such as

Γ(x0, u, x1, y) = ‖x0−x0d‖2Γ
x0
+‖x1−x1d‖2Γ

x1
+

∫ t1

t0

(

‖u(t)− ud(t)‖2Γu
+ ‖y(t)− yd(t)‖2Γy

)

dt

with the desired initial and final states x0d and x1d, and the desired input and output ud

and yd. Here ‖x‖Γx
with Γx ∈ Rn×n denotes

√
xTΓxx. The objective is to find the optimal

input (x0
?, u?) minimizing the cost function Γ, that is,

(x0
?, u?) := arg min

(x0,u)∈X1×U1

Γ(x0, u, x1, y) (3.10)

with X1 × U1 ⊂ X × U . In general, however, it is difficult to obtain a global minimum

since the cost function Γ is not convex. Hence we try to obtain a local minimum here, i.e.,

X1 × U1 ( X × U . Note that the Fréchet derivative of Γ is

dΓ(x0, u, x1, y)(dx0, du, dx1, dy)

where

dΓ(x0, u, x1, y) ∈ (X2 × U × Y )∗.
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It follows from well-known Riesz’s representation theorem and the linearity of Fréchet deriva-

tive that there exists an operator Γ′ : X2 × U × Y → X2 × U × Y such that

dΓ(x0, u, x1, y)(dx0, du, dx1, dy) = 〈 Γ′(x0, u, x1, y), (dx0, du, dx1, dy) 〉X2×U×Y . (3.11)

Since (x1, y) = Σ(x0, u), the cost function Γ is described by

Γ(x0, u, x1, y) = Γ((x0, u),Σ(x0, u)).

Hence a necessary condition for the optimality (3.10) is characterized via its Fréchet deriva-

tive as

d
(
Γ((x0

?, u?),Σ(x
0
?, u?))

)
(dx0, du) = 0, ∀(dx0, du).

Here we can calculate

d
(
Γ((x0, u),Σ(x0, u))

)
(dx0, du)

= dΓ((x0, u),Σ(x0, u))
(
(dx0, du), dΣ(x0, u)(dx0, du)

)

= 〈Γ′((x0, u),Σ(x0, u)),

(
idX×U

dΣ(x0, u)

)

(dx0, du)〉X2×U×Y

= 〈
(
idX×U , (dΣ(x0, u))∗

)
Γ′((x0, u),Σ(x0, u)), (dx0, du)〉X×U

= 〈
(
idX×U , (dΣ(x0, u))∗

)
Γ′(x0, u, x1, y), (dx0, du)〉X×U .

Therefore, if the adjoint (dΣ(x0, u))∗ is available, we can reduce the cost function Γ down at

least to a local minimum by an iteration law

(x0
(i+1), u(i+1)) = (x0

(i), u(i))−K(i)

(
idX×U , (dΣ(x0

(i), u(i)))
∗
)
Γ′(x0

(i), u(i), x
1
(i), y(i)) (3.12)

or, in the case x0 is fixed, by another one

u(i+1) = u(i) −K(i) (0UX , idU)
(
idX×U , (dΣ(x0

(i), u(i)))
∗
)
Γ′(x0

(i), u(i), x
1
(i), y(i)) (3.13)

with a small K(i) > 0.

The results in Section 2, especially the relation (2.8), enable us to execute this procedure

without using the parameters of the original operator Σ, provided Σ is a Hamiltonian system

ΣH . More precise discussion in the case of a special class of cost functions will be made in

the following subsection.

3.2 Iterative learning control

In this subsection, we consider the Hamiltonian system Σ = ΣH in (2.3) and execute the

iterative learning procedure (3.12) with respect to a typical cost function. A typical problem

of iterative learning control is to produce an input ud letting the output y track a given

desired trajectory yd, that is, to reduce the cost function

Γ(y) =

∫ t1

t0
(y(t)− yd(t))TΓy(y(t)− yd(t))dt (3.14)
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with a positive definite matrix Γy ∈ Rm×m. In this case, Γ′ in (3.11) is given by

Γ′(y) = 2
(
0, 0, 0, Γy(y − yd)

)
.

Hence the iteration law (3.13) reduces to

u(i+1) = u(i) +K(i)(dΣ
x0

H (u(i)))
∗Γy(y

d − y(i)).

The input-output mapping of the adjoint (dΣx0

H (u(i)))
∗ can be obtained by that of the original

operator ΣH using (2.2) and (2.8).

Thus iterative learning control with respect to the cost function (3.14) can be executed.

Of course this procedure can be performed with any cost function Γ(x0, u, x1, y), provided

Σ = ΣH as in (2.3) (under the circumstances in Remark 2.1). Here we formally adopt the

following assumptions according to Remark 2.1 in order to use the self-adjoint property (2.8).

Assumption A1 It is assumed that the desired trajectory xd(t) and input ud(t) satisfy

∂2H(x, u)

∂(x, u)2

∣
∣
∣
∣

x=xd(t−t0)

u=ud(t−t0)

=
∂2H(x, u)

∂(x, u)2

∣
∣
∣
∣

x=xd(t1−t)

u=ud(t1−t)

, ∀t ∈ [t0, t1].

Procedure 3.1 Consider the Hamiltonian system (2.3) with a given desired trajectory xd(t).

Suppose the assumptions in Theorem 2.1 and Assumption A1 hold. Then the iterative

learning control law is given by

u(2i+1) = u(2i) +R (κ(i)Γy(y
d − y(2i))) (3.15)

u(2i+2) = u(2i) +K(i) R (y(2i+1) − y(2i)) (3.16)

for i = 0, 1, 2, · · · . Here Γy defines the cost function Γ in (3.14) and Tu is the parameter

defined in Theorem 2.1. The parameters κ(i) > 0 ∈ R and K(i) > 0 ∈ Rm×m are small

enough design parameters. R denotes the time reversal operator defined in (2.9).

This result will provide a basis of a new iterative learning control for a class of physical

systems. Unfortunately, this iteration procedure only guarantees the convergence to a local

minimum of the cost function (3.14), that is, the convergence to an optimal input ud is not

ensured in general.

4 Iterative learning control of mechanical systems

A typical mechanical system can be described by a Hamiltonian system

ΣH :







(
q̇

ṗ

)

=

(
0 I

−I −Rp

)( ∂H(q,p,u)
∂q

T

∂H(q,p,u)
∂p

T

)

y = ∂H(q,p,u)
∂u

T
= q

(4.17)
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with the Hamiltonian

H(q, p, u) = H0(q, p)− uTq =
1

2
pTM(q)−1p+ V (q)
︸ ︷︷ ︸

H0(q,p)

−uTq

where a positive definite matrix M(q) > 0 ∈ Rm×m denotes the inertia matrix, a scalar

function V (q) denotes the potential energy of the system and H0 denotes the total physical

energy.

Unfortunately, however, this system does not satisfy the assumptions in Theorem 2.1 since

there does not exist the matrix Tx satisfying the matching condition (2.4). The procedure

in the sequel enables the system to satisfy this condition approximately.

Typically, feedback controllers are employed to control the system (4.17) even when the

iterative learning control is applied, since it is marginally stable. This subsection discusses

feedback system design for iterative learning control. It was shown in [11] that a simple PD

feedback preserves the structure of the Hamiltonian system (4.17). Further discussions on

controller design preserving the structure of general Hamiltonian systems can be found in

[12, 4, 9]. Let us consider a PD controller

u = ū−Kq q −Kp q̇ (4.18)

where ū is a new input and Kq, Kp > 0 ∈ Rm×m are symmetric positive definite matrices.

Applying a coordinate transformation

q = εq̄

with a positive constant ε > 0 converts the system into another Hamiltonian system







(
˙̄q

ṗ

)

=

(
0 1

ε
I

−1
ε
I −(Rp +Kp)

)




∂H̄(q̄,p,ū)
∂q̄

T

∂H̄(q̄,p,ū)
∂p

T





y = −∂H̄(q̄,p,ū)
∂ū

T
= εq̄ = q

(4.19)

with a new Hamiltonian

H̄(q̄, p, ū) =
1

2
pTM(εq̄)−1p+ V (εq̄)
︸ ︷︷ ︸

H0(εq̄,p)

+
ε2

2
q̄TKq q̄ − ε ūTq̄.

Let us choose the parameter matrices in Theorem 2.1 as

Tx =

(
I 0

0 −I

)

(4.20)

and check the matching condition (2.4). The former two equations hold straightforwardly
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and the left and right hands of the last equation become

∂2H̄(q̄, p, ū)

∂(q̄, p, ū)2
=







ε2
(

∂2H0(q,p)
∂q2 +Kq

)

ε∂M(q)−1p

∂q

T
−I

ε∂M(q)−1p

∂q
M(q)−1 0

−I 0 0







(
Tx 0

0 I

)
∂2H̄(q̄, p, ū)

∂(q̄, p, ū)2

(
T−1
x 0

0 I

)

=







ε2
(

∂2H0(q,p)
∂q2 +Kq

)

−ε∂M(q)−1p

∂q

T
−I

−ε∂M(q)−1p

∂q
M(q)−1 0

−I 0 0







.

Hence, if the “P gain” Kq is chosen large enough and the parameter ε is taken small enough

accordingly, then the relation

∂2H̄(q̄, p, ū)

∂(q̄, p, ū)2
≈
(

Tx 0

0 Tu

)
∂2H̄(q̄, p, ū)

∂(q̄, p, ū)2

(
Tx 0

0 Tu

)−1

holds, that is, the assumption (2.4) in Theorem 2.1 is satisfied approximately. Note that

the “D gain” Kp should also be chosen large enough to let the matrix Rp + Kp, which

describes the dissipation behavior of the system (4.19) in the coordinate (q̄, p), sufficiently

large compared with the matrix I/ε, which denotes the oscillation behavior. This should be

done for numerical stability of the iterative learning procedure. Here we adopt the following

assumptions corresponding to Assumption A1.

Assumption B1 It is assumed that the desired trajectory xd(t) = (qd(t), pd(t)) satisfies

∂2H0(q, p)

∂(q, p)2

∣
∣
∣
∣
x=xd(t−t0)

=
∂2H0(q, p)

∂(q, p)2

∣
∣
∣
∣
x=xd(t1−t)

, ∀t ∈ [t0, t1].

Assumption B2 PD gains Kq and Kp are large enough.

Remark 4.1 When the desired trajectory xd(t), t ∈ [t0, t1] does not satisfy Assumption B1,

we can produce a desired trajectory fulfilling B1 by simply reproducing the same trajectory

in the time domain t ∈ [t1, 2t1 − t0] as

xd
new(t) =

{
xd(t) t ∈ [t0, t1]

xd(2t1 − t0 − t) t ∈ [t1, 2t1 − t0]
.

The iterative learning procedure is given below on the assumptions B1 and B2.

Procedure 4.1 Consider the mechanical Hamiltonian system (4.17) with the PD feedback

(4.18) and a prescribed desired trajectory qd(t). Suppose Assumptions B1 and B2 hold.

Then the iterative learning control law is given by

ū(2i+1) = ū(2i) +R (κ(i)Γy(q
d − q(2i)))

ū(2i+2) = ū(2i) +K(i) R (q(2i+1) − q(2i))
(4.21)
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for i = 0, 1, 2, · · · . Here Γy defines the cost function Γ in (3.14). The parameters κ(i) > 0 ∈ R
and K(i) > 0 ∈ Rm×m are small enough design parameters. R denotes the time reversal

operator defined in (2.9).

This iterative learning control scheme is very simple in the sense that it does not employ

any physical parameters of the target system. Compared with Arimoto’s method [1] which

is also simple, the proposed method is expected to be numerically more stable because our

approach does not employ time derivative of the output signal whereas Arimoto’s method

requires second order time derivative of q.

Furthermore, we can prove the convergence to the global minimum, i.e., the convergence to

the optimal input ūd, of this iteration procedure, though the general version of this procedure

given in Procedure 3.1 only guarantees the convergence to a local minimum.

Proposition 4.1 Consider the mechanical Hamiltonian system (4.17). Suppose Assump-

tions B1 and B2 hold and there exists a positive constant ε satisfying

κ(i)K(i) ≥ εI > 0, ∀i. (4.22)

Then, for any initial input ū(0), the iterative learning control law (4.21) in Procedure 4.1

converges to an optimal input ūd.

Proof. The variational system dΣx0

H of the mechanical Hamiltonian system (4.17) can be

described by






(
q̇v
ṗv

)

=

(
A11(t) A12(t)

A21(t) A22(t)

)(
qv
pv

)

+

(
0

I

)

uv

yv = qv

with appropriate matrices Aij’s. Let us now calculate the zero-dynamics of this system.

Take yv ≡ 0. Then it follows that

0 ≡ q̇v = A11qv + A12pv = A12pv = M(q)−1pv.

Therefore we prove pv ≡ 0 . Finally we obtain

0 ≡ ṗv = A21pv + A22qv + uv = uv.

This suggests that the variational system has no zero-dynamics. Therefore, the iteration law

(4.21) and the assumption (4.22) imply

ū(2i) → ū(2i+2) ⇒ q(2i) → qd,

that is, the control law converges to an optimal input ūd. This completes the proof. 2
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5 Conclusion

This paper has discussed the self-adjoint properties of the adjoints of the variational systems

of Hamiltonian control systems. A novel iterative learning control scheme has been proposed

based on these properties. This method does not require either the knowledge of physical

parameters of the target system nor the time derivatives of output signals. A concrete and

effective learning algorithm for mechanical systems is also derived.
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