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Abstract

The fundamental Filippov–Wažwski Relaxation Theorem states that the solution
set of an initial value problem for a locally Lipschitz inclusion is dense in the solution set
of the same initial value problem for the corresponding relaxation inclusion on compact
intervals. In our recent work, a complementary result was provided for inclusions
with finite dimensional state spaces which says that the approximation can be carried
out over non-compact or infinite intervals provided one does not insist on the same
initial values. This note extends the infinite-time relaxation theorem to the inclusions
whose state spaces are Banach spaces. To illustrate the motivations for studying such
approximation results, we briefly discuss a quick application of the result to output
stability and uniform output stability properties.
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1 Introduction

In the study of control systems, it is very often that a system can be modeled by differential

inclusions, especially when a system is subject to external signals such as disturbances. In

this work we study the approximation of a differential inclusion of the type:

ẋ(t) ∈ F (t, x(t)), (1.1)

where the trajectories x(·) take values in a separable Banach space X, and the set-valued

function F is a locally Lipschitz map with nonempty compact values. For such systems of

differential inclusions, it is desirable to have F convex and closed. One of the main reasons

is that when F is closed and convex, the solutions of the differential inclusion form a closed

set in some topology. When F does not possess the convexity property, it may be helpful to

consider the corresponding relaxed inclusion defined by

ẋ(t) ∈ clcoF (t, x(t)), (1.2)

where clco stands for closed convex hull. It is thus interesting to understand how well a

trajectory of the relaxation of (1.2) can be approximated by trajectories of the inclusion (1.1).

The fundamental result in this aspect is the Filippov–Wažewski Theorem (cf. [2, 3, 7, 8, 9]),

which states that the solution set of (1.1) is dense in the solution set of (1.2) in the uniform

topology on compact intervals. In particular, the Filippov–Wažewski Theorem says that

every trajectory of (1.2) defined on a finite interval can be approximated by trajectories of

(1.1) with the same initial condition as the given trajectory of (1.2).

In the recent work [5], a complementary result was presented in the special case when X

is of finite dimension. Roughly speaking, it was shown that in the finite dimensional case,

the solution set of initial value problems of the type

ẋ(t) ∈ F (t, x(t)), x(0) = ξ1, (1.3)

is dense in the solution set of initial value problems of the type

ẋ(t) ∈ clcoF (t, x(t)), x(0) = ξ2, (1.4)

in the “C0 Whitney topology” on the infinite interval [0,∞). More specifically, the result

in [5] provides the existence of trajectories which are approximations in weighted norms on

[0,∞), for example |f | := supt≥0{|f(t)| et}. Indeed, given any r : R≥0 → R>0, there is an

approximation in the norm |f | := supt≥0{|f(t)| r(t)}. This is achieved by demanding that

the approximation lie in a tube around the reference trajectory which has possibly vanishing

radius. In this note, we generalize this result to the case when X is infinite dimensional.

We remark that the approximation result in this note is not a generalization of the

Filippov–Wažewski theorem. Given a trajectory of the relaxation (1.4), our result does

not guarantee the existence of an approximating trajectory of (1.3) with ξ1 = ξ2, but rather
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only with ξ arbitrarily close to ξ2. In fact, it was shown in [5] by a counterexample that

one cannot achieve an approximation on the infinite interval with the same initial condition

when the error function r(t) is required to decay to 0 as t → ∞. In this note, the example

is modified to show that this is still the case even if the error function r(t) is a constant.

Our motivation for this work originated from the study of stability and uniform stability

properties of systems with disturbances. Our efforts in this area started in [10] where it

was shown that a differential inclusion ẋ ∈ F (x) is globally asymptotically stable if and

only if it is uniformly globally asymptotically stable, provided that the state space X is

finite dimensional and the set-valued map F admits a parameterization of the form F (x) =

{f(x, u) : u ∈ U} where f(·, ·) is locally Lipschitz and U is compact. (See [1] for a more

general result). As a quick application of the approximation result in this note, we show the

result on stability can be extended to the case of output stability.

2 Preliminaries

For each T > 0, let L[0, T ] be the σ-field of Lebesgue measurable subsets of [0, T ]. Let X be

a separable Banach space, whose norm is denoted simply by |·|. Let P(X) denote the family

of all nonempty closed subsets of X. We use B(X) for the family of Borel subsets of X.

For each interval I ⊆ [0,∞), let L1(I, X) be the Banach space of Bochner integrable func-

tions u : I → X with norm ‖u‖ =
∫
I |u(t)| dt, and let L1

loc (I, X) be the corresponding space

of locally integrable functions. Let AC(I, X) be the Banach space of absolutely continuous

functions u : I → X with the norm ‖u‖AC = |u(0)|+ ‖u̇‖.
We define the distance from a point ξ ∈ X to a set K ∈ P(X) as

d(ξ,K) := inf{|ξ − η| : η ∈ K}.

For a set A ∈ P(X), let B(A, r) denote the set {ξ ∈ X : d(ξ, A) ≤ r}. For singleton A =

{ξ} we write B(ξ, r). For each set A and each constant c ∈ R, we denote cA = {cξ : ξ ∈ A}.

Definition 2.1 The Hausdorff distance between two sets K,L ∈ P(X) is defined as

dH(K,L) := max

{
sup
ξ∈K

d(ξ, L), sup
η∈L

d(η,K)

}
.

Definition 2.2 Let O be an open subset of X. Let I ⊆ R≥0 be an interval. The set-valued

map F : I ×X → P(X) is said to be locally Lipschitz on O if, for each ξ ∈ O, there exists

a neighbourhood U ⊂ O of ξ and a kU ∈ L1(I,R) so that for any η, ζ in U ,

dH(F (t, η), F (t, ζ)) ≤ kU(t) |η − ζ| a.e. t ∈ I.

Definition 2.3 Let I ⊆ [0,∞) be an interval. A function x : I → X is said to be a solution

of the differential inclusion

ẋ(t) ∈ F (t, x(t)) (2.5)

3



if it is absolutely continuous and satisfies (2.5) for almost every t ∈ I.

For T > 0, a function x : [0, T ) → X is called a maximal solution of the differential

inclusion if it does not have an extension which is a solution in X. That is, either T = ∞
or there does not exist a solution y : [0, T+] → X with T+ > T so that y(t) = x(t) for all

t ∈ [0, T ). 2

The next result on continuous selections of approximations of a relaxed trajectory over

finite intervals was derived in [5] based on the Filippov-Wažewski relaxation theorem (see

e.g., [9]).

Lemma 2.4 Let T > 0, ξ0 ∈ X, and a set-valued map F : [0, T ] × X → P(X) be given.

Consider, for t ∈ [0, T ], the solutions of the differential inclusion

ẋ ∈ F (t, x), (2.6)

and the solutions of the initial value problem

ẋ ∈ clco F (t, x), x(0) = ξ0. (2.7)

Suppose z : [0, T ]→ X is a solution of (2.7), and let ε > 0 be given. Let

T := {ξ ∈ X : |ξ − z(t)| ≤ ε for some t ∈ [0, T ]},

the ε-tube around the image of z. Then, if F satisfies

(H1) F is L[0, T ]⊗ B(X) measurable;

(H2) there exists k0 ∈ L1([0, T ],R) such that for any ξ, η ∈ B(T , 1)

dH(F (t, ξ), F (t, η)) ≤ k0(t) |ξ − η| a.e. t ∈ [0, T ];

(H3) there exists α ∈ L1([0, T ],R) such that for each ξ ∈ B(T , 1)

sup{|ζ| : ζ ∈ F (t, ξ)} ≤ α(t) a.e. t ∈ [0, T ];

it follows that there exists a δ > 0 and a function x : [0, T ] × V → X, where V := B(ξ0, δ)

such that

(a) For every η ∈ V , the function t 7→ x(t, η) is a solution of the initial value problem

ẋ ∈ F (t, x), x(0) = η, for t ∈ [0, T ]; (2.8)

(b) the map η 7→ x(·, η) is continuous from V into AC([0, T ], X);

(c) for each η ∈ V ,

|z(t)− x(t, η)| < ε

for all t ∈ [0, T ]. 2
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3 Approximations of Relaxed Trajectories

In this section we present the main result of this work.

Theorem 3.1 Let 0 < T ≤ ∞, and suppose F : [0, T )×X → P(X) satisfies the following

properties.

(H1′) F is L[0, T )⊗ B(X) measurable;

(H2′) for each R > 0, there exists kR ∈ L1
loc ([0, T ),R) such that for any ξ, η ∈ B(0, R)

dH(F (t, ξ), F (t, η)) ≤ kR(t) |ξ − η| a.e. t ∈ [0, T );

(H3′) for each R > 0, there exists αR ∈ L1
loc ([0, T ),R) such that for each ξ ∈ B(0, R)

sup{|ζ| : ζ ∈ F (t, ξ)} ≤ αR(t) a.e. t ∈ [0, T );

Fix ξ ∈ X and let z : [0, T )→ X be a solution of

ẋ ∈ clco F (t, x), x(0) = ξ.

Let r : [0, T ) → R>0 be a continuous function. Then, there exists some η0 ∈ B(ξ, r(0)) and

a solution γ : [0, T )→ X of

ẋ ∈ F (t, x), x(0) = η0,

which satisfies

|z(t)− γ(t)| ≤ r(t) ∀ t ∈ [0, T ).

Proof. Let {Tk} be any strictly increasing sequence of times so that T0 = 0 and Tk → T as

k →∞, and define {rk} by

rk = min{r(s) : s ∈ [Tk, Tk+1]}.

Without loss of generality, we assume that {rk} is nonincreasing. Let zk = z(Tk). On each

interval [Tk−1, Tk], we will consider the differential inclusions in backward time:

ẋ ∈ −F (Tk − t, x), t ∈ [0, Tk − Tk−1], (3.9)

and

ẋ ∈ clco(−F (Tk − t, x)), x(0) = zk, t ∈ [0, Tk − Tk−1] (3.10)

Let δ0 = r0. We will prove by induction the following: for each k ≥ 1, there exist 0 < δk ≤ rk
and a map xk : [0, Tk − Tk−1]× Vk, where Vk = B(zk, δk), such that the following holds:

• for every η ∈ Vk, the function t→ xk(t, η) is a solution of

ẋ ∈ −F (Tk − t, x), x(0) = η

for t ∈ [0, Tk − Tk−1];
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• the map η 7→ xk(·, η) is continuous from Vk into AC([0, Tk−Tk−1], X), and in particular,

the map ϕk : η 7→ xk(Tk − Tk−1, η) is continuous on Vk;

• for each η ∈ Vk,

|xk(t, η)− z(Tk − t)| ≤ δk−1 ∀ t ∈ [0, Tk − Tk−1],

and in particular, xk(Tk − Tk−1, η) ∈ B(zk−1, δk−1); and

• for each 1 ≤ i ≤ k, define inductively ζk−ik = ϕ
k−i+1

(ζk−i+1
k ) with ζkk = zk. Then∣∣ζjk+1 − ζ

j
k

∣∣ ≤ δj
2k

∀ j ≤ k. (3.11)

Consider the case when k = 1. Note that z(T1 − t) is a solution of (3.10) with k = 1.

Further, the hypotheses of Lemma 2.4 are satisfied by the map F , and hence, −F , since

there exists R large enough so that B(0, R) contains the image of z(T1 − t) over t ∈ [0, T1]

(so that the local conditions assumed in the hypotheses can be made global by redefining the

function outside of such a ball). Applying the Lemma with ε = δ0, it follows that there exists

a 0 < δ1 < r1 and a function x1 : [0, T1] × V1 → AC([0, T1], X), where V1 := B(z(T1), δ1),

which satisfies

• For every η ∈ V1, the function t 7→ x1(t, η) is a solution of

ẋ ∈ −F (T1 − t, x), x(0) = η,

for t ∈ [0, T1];

• the map η 7→ x1(·, η) is continuous from V1 into AC([0, T1], X);

• for each η ∈ V1,

|x1(t, η)− z(T1 − t)| < δ0 ∀t ∈ [0, T1];

and consequently,

• with ζ0
0 = z0, ζ0

1 = x1(T1, z1), it holds that |ζ0
1 − ζ0

0 | < δ0.

Let k ≥ 1. Suppose for each 1 ≤ j ≤ k, there exist 0 < δj < rj and

xj : [0, Tj − Tj−1]× Vj → X,

where Vj = B(zj, δj), such that

• for every η ∈ Vj, the function t 7→ xj(t, η) is a solution of

ẋ ∈ −F (Tj − t, x), x(0) = η,

for t ∈ [0, Tj − Tj−1];
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• the map η 7→ xj(·, η) is continuous into AC([0, Tj − Tj−1], X), and so the map ϕj :

Vj → X defined by ϕj(η) = xj(Tj − Tj−1, η) is continuous on Vj;

• for each η ∈ Vj,

|z(Tj − t)− xj(t, η)| < δj−1 ∀t ∈ [0, Tj+1 − tj];

and

• for the sequence {ζji }i≥j defined by ζjj = zj, ζ
j
i = ϕj+1(ζj+1

i ), it holds that

∣∣ζji+1 − ζ
j
i

∣∣ < δj
2i

for all 0 ≤ j ≤ i ≤ k − 1.

Below we produce δk+1, xk+1, and {ζjk+1} for 0 ≤ j ≤ k + 1.

Since, for each j = 1, . . . , k, ϕj is continuous on Vj, and ϕj(Vj) ⊆ (Vj−1), there exists some

0 < δ̂k <
δk
2k

such that for any η ∈ B(zk, δ̂k) and any 0 ≤ j ≤ k − 1, it holds that∣∣(ϕj+1 ◦ · · · ◦ ϕk)(η)− ζjk
∣∣

= |(ϕj+1 ◦ · · · ◦ ϕk)(η)− (ϕj+1 ◦ · · · ◦ ϕk)(zk)| < δj
2k
.

(3.12)

Applying Lemma 2.4, there exists some 0 < δk+1 < rk+1 and xk+1 : [0, Tk+1 − Tk] × Vk+1,

where Vk+1 = B(zk+1, δk+1), such that

• for every η ∈ Vk+1, the function t 7→ xk+1(t, η) is a solution of

ẋ = −F (Tk+1 − t, x), x(0) = η,

for t ∈ [0, Tk+1 − Tk];

• the map η 7→ xk+1(·, η) is continuous from Vk+1 into AC([0, Tk+1 − Tk], X), and in

particular, ϕk+1 : η 7→ xk+1(Tk+1 − Tk, η) is continuous on Vk+1;

• for each η ∈ Vk+1,

|xk+1(t, η)− z(Tk+1 − t)| < δ̂k ≤ δk, ∀t ∈ [0, Tk+1 − Tk],

and in particular,

xk+1(Tk+1 − Tk, zk+1) ∈ B(zk, δ̂k). (3.13)

Define inductively, for 0 ≤ j ≤ k, ζk−jk+1 = ϕk−j+1(ζk−j+1
k+1 ), where ζk+1

k+1 = zk+1. By the choice

of δ̂k and (3.13), one sees that∣∣ζjk+1 − ζ
j
k

∣∣ =
∣∣(ϕj+1 ◦ · · · ◦ ϕk)(ζkk+1)− ζjk

∣∣ < δj
2k
,
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for all 0 ≤ j ≤ k − 1. For the case of j = k, we have

∣∣ζkk+1 − ζkk
∣∣ = |xk(Tk+1 − Tk, zk+1)− zk| ≤ δ̂k ≤

δk
2k
.

We have shown that (3.11) holds for all 0 ≤ j ≤ k.

Thus, by induction, we conclude that for each k ≥ 1, there is some 0 < δk < rk and xk
such that

• for each η ∈ B(zk, δk), xk(·, η) is a solution of

ẋ ∈ −F (Tk − t, x), x(0) = η,

for t ∈ [0, Tk − Tk−1];

• xk is continuous from B(zk, δk) to AC([0, Tk − Tk−1], X);

• for each k ≥ 0, there is a sequence {ζkj }j≥k such that ζkj ∈ B(zk, δk) = Vk for each

j ≥ k; and

(a.) xk+1(Tk+1 − Tk, ζk+1
j ) = ζkj for all j ≥ k + 1; and

(b.)
∣∣ζki+1 − ζki

∣∣ ≤ δk
2i

for all i ≥ k, and hence, {ζki }i≥k is a Cauchy sequence.

Since X is a Banach space, {ζki }i≥k converges. Let ζk be the limit of the sequence {ζki }. With

the continuity property of xk, we get the following compatibility property for the boundary

values of xk:

xk(Tk − Tk−1, ζ
k) = lim

i→∞
xk(Tk − Tk−1, ζ

k
i ) = lim

i→∞
ζk−1
i = ζk−1.

We now define a trajectory γ(·) for the inclusion

ẋ = F (t, x)

by γ(t) = xk(Tk − t, ζk) if t ∈ [Tk−1, Tk). Then γ(0) = ζ0 ∈ B(z0, r0), and

|γ(t)− z(t)| ≤ rk

for all t ∈ [Tk, Tk+1]. This then implies that

|γ(t)− z(t)| < r(t)

for all t ∈ [0, T ).
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4 An Example

Theorem 3.1 provides a complementary result to the Filippov-Wažewski Theorem in the

sense that the approximation of a relaxed trajectory by regular trajectories can be carried

out over noncompact intervals. However, as shown in [5] by a counterexample, it is in general

impossible to have an infinite-time approximation which satisfies the same initial conditions

as a given relaxed trajectory. The counterexample in [5] dealt with a specific function r(t)

which decays to 0 as t → ∞. Below we modify the example in [5] to show that even in

the case when r(t) ≡ ε for some ε > 0, it may still be impossible to find an infinite-time

approximation with the same initial conditions as a given relaxed trajectories.

Example 4.1 Consider the system of differential inclusion:

ẋ1(t) = x2
2(t)

ẋ2(t) = x2
3(t)

ẋ3(t) ∈ {−1, 1},

and the relaxation to convex values:

ẋ1(t) = x2
2(t)

ẋ2(t) = x2
3(t)

ẋ3(t) ∈ [−1, 1].

Note that x(t) ≡ 0 is a relaxed trajectory with initial condition x(0) = 0, where x(t) =

(x1(t), x2(t), x3(t)).

Clearly, the set-valued function F (x) satisfies all conditions in Theorem 3.1. For any ε > 0,

applying Theorem 3.1 with r(t) ≡ ε, one sees that there exists a solution x(t) of the original

system which satisfies |x(t)| ≤ ε for all t ≥ 0 with |x(0)| ≤ ε.

However, the inclusion does not admit any solution satisfying the condition |x(t)| ≤ ε with

x(0) = 0. For any solution x(t) with x(0) = 0, it holds that

x2(1) =

∫ 1

0

x2
3(t) dt = σ

for some σ > 0. Since ẋ2(t) ≥ 0 for all t ≥ 0, one sees that x2(t) ≥ σ for all t ≥ 1.

Consequently,

x1(t) =

∫ t

0

x2
2(s) ds ≥ σ2(t− 1) ∀t ≥ 1.

Hence, it is impossible to have |x1(t)| ≤ ε for any given ε > 0. 2

5 Output Stability

In this section we consider the following system with outputs:

ẋ(t) ∈ F (x(t)), y(t) = h(x(t)), (5.14)
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where F : X → P(X) is locally Lipschitz with nonempty compact values, and h : X → R
p

is continuous. For this system, we will use y(t) to denote h(x(t)) when there is no confusion.

Throughout this section, we assume that X is finite dimensional.

For each C ⊆ X we let S(C) denote the set of maximal solutions of (5.14) satisfying

x(0) ∈ C. If C is a singleton {ξ} we will use the shorthand S(ξ). We set S := S(X), the set

of all maximal solutions.

The following notions, which generalize the notions of global asymptotic stability and

uniform global asymptotic stability to the output case, were introduced in [4] for systems of

differential equations.

Definition 5.1 The system (5.14) is output-globally asymptotically stable (oGAS) if the

output trajectory is uniformly stable in the following sense: for all ε > 0, there exists a

δ > 0 so that for all |h(ξ)| ≤ δ and all x(·) ∈ S(ξ)

|y(t)| ≤ ε ∀t ≥ 0, (5.15)

and is output-attractive: for every x(·) ∈ S,

lim
t→∞
|y(t)| = 0. (5.16)

Definition 5.2 The system (5.14) satisfies the uniform output-global asymptotic stability

condition (oUGAS) if it is uniformly stable as in (5.15) and the outputs are uniformly

attractive: for all κ > 0 and ε > 0, there exists some T = T (ε, κ) > 0 so that for all

x(·) ∈ S(B(0, κ)),

|y(t)| ≤ ε ∀t ≥ T. (5.17)

The next result generalizes the result [4, Theorem 2] to systems defined by differential

inclusions as defined in (5.14).

Proposition 5.3 Suppose that the system (5.14) is forward complete. Then the system

satisfies (oGAS) if and only if it satisfies (oUGAS). 2

The proof of Proposition 5.3 follows the same ideas as in the work [4]. A key result used

in the proofs is that, for systems that are forward complete, every relaxed trajectory can

be approximated by regular trajectories over the interval [0,∞). With the approximation

result for systems of differential inclusions now available, the proofs in [4] trivially apply to

Proposition 5.3. To be more specific, an underlying result in the proofs is as in the following.

Given a forward complete system (5.14), a subset S ⊆ X, and a maximal solution x(·), we

denote the “first crossing time” as

τ(S, x(·)) = inf{t ≥ 0 : x(t) ∈ S}
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with the convention that τ(S, x(·)) = ∞ if x(t) /∈ S for all t ≥ 0. For a subset So of the

output space Rp, we denote the “first crossing time” for the output as

τ 0(S, x(·)) = inf{t ≥ 0 : y(t) ∈ So}

with the convention that τ 0(S, x(·)) = ∞ if y(t) /∈ So for all t ≥ 0. Following the same

ideas as in the proofs given in Section 2 of [4] with the help Theorem 3.1, one can get the

following:

Lemma 5.4 Let (5.14) be a forward complete system. Assume given a compact subset

C ⊆ X, an open subset Φ ⊆ Rp, a compact subset J ⊆ Φ, such that

∀x(·) ∈ S(C), ∃ t ≥ 0 s.t. y(t) ∈ J.

Then

sup{τ o(Φ, x(·)) : x(·) ∈ S(C)} <∞.
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