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Abstract
For time-varying control systems various characterizations of the
non-uniform in time input-to-state stability property (ISS) are
provided. These characterizations enable us to derive sufficient
conditions for ISS and feedback stabilization for composite
systems.

1. Introduction

This paper constitutes a continuation of authors’ works [5,6,7,18,19] on the concept of non-
uniform Input-to-State Stability (ISS) and its applicability to stability and feedback
stabilization of time-varying systems:

x=f(t,x,u)

xeR" . ueR",t>0

(1.1)

where f is of class CO(iR+ xR xR R" ), being locally Lipschitz with respect to (x,u)
and satisfies f(-,0,0)=0.

In Section 2 we first provide the definitions of the non-uniform in time Robust Global
Asymptotic Stability (RGAS) and Input-to-State Stability (ISS) as given in [6]. It should be
pointed out that the concept of non-uniform in time ISS as proposed in [6] extends the ISS
property as described in [16] for the autonomous case. In Section 3 we give the non-uniform
in time extension of the familiar notion of uniform in time ISS as proposed by Sontag in [10]
(see also [11-14]) concerning autonomous systems and we provide in Proposition 3.1
equivalence between this notion and the concept of ISS as suggested in [16]. Further
equivalent characterizations of ISS are also given in Proposition 3.1 and links between ISS
and the concepts of CICS (Converging-Input-Converging-State) and BIBS (Bounded-Input-
Bounded-State) are provided in Corollary 3.4. Another important consequence of Proposition
3.1 is Corollary 3.5 concerning autonomous systems:

x = f(x,u)

1.2
xeR" ,ueR” (12)

Particularly, we prove that, if (1.2) is forward complete and satisfies the 0-GAS property,
namely, 0 € R" is GAS with respect to the unforced system:

%= £(x,0) (1.3)



then (1.2) satisfies the (non-uniform in time) ISS property. It should be emphasized here that,
as proved in [2], system (1.2) under the same hypotheses fails in general to satisfy the uniform
in time ISS property.

In Section 4 we provide sufficient conditions for the (non-uniform in time) ISS for
composite time-varying systems:

x=f(t,x,y,u) (1.4a)
y=g(t,x,y,u) (1.4b)
xeR", yeRF ueR™, 120

where f(-,0,0,0)=0, g2(-,0,0,0)=0 and we assume that f and g are c? mappings being
locally Lipschitz with respect to (x,y,u). It is known (see for instance [3,4,15]) that for
autonomous systems the uniform ISS for (1.4a) with (y,u) as input and for (1.4b) with (x,u)

as input, respectively, leads to a simple characterization of a sufficient condition under which
the overall system satisfies the ISS property from the input u . For the time-varying case (1.4)
Theorem 4.1 asserts that a set of additional conditions concerning qualitative behavior of the
solutions of (1.4a) and (1.4b) guarantees ISS for the overall system (1.4). For the particular
case of systems (1.4) when g(-) is independent of x, namely for the cascade interconnection:

x=f(t,x,y,u) (1.5a)
y=g(t,y,u) (1.5b)
xeR", yeiRk, ueR”, >0

the sufficient conditions of Theorem 4.1 are considerably simplified. Particularly, Corollary
4.2 provides sufficient conditions for ISS for the case (1.5) and generalizes a well-known
result concerning the autonomous case.

Finally, by exploiting the notion of non-uniform in time Input-to-Output Stability (IOS),
we study the problem of the propagation of the non-uniform in time ISS property through one
integrator. Specifically, consider the system:

x=f(t,x,y) (1.6a)
y=gtx,y)+d(t,x,y)u

(1.6b)
xeR" ,yeR,t20,uecR

We assume that the dynamics f,g, d are C°, locally Lipschitz with respect to (x,y) and
satistfy  f(-,0,0)0=0, g(-,0,0)=0. Theorem 4.3 provides sufficient conditions for the
existence of an output static feedback stabilizer:

u=k(t,y)+v (1.7)

that renders the closed-loop system (1.6) with (1.7) (non-uniformly) ISS with v as input.



2. Review of the Notion of RGAS and the Non-Uniform in Time ISS
Property

In this section we provide the definitions of non-uniform in time Robust Global Asymptotic
Stability (RGAS) and ISS as precisely given in [6]. We consider time-varying systems:

x=f(t,x,d)

(2.1)
xeR",t>20,deD

where D c R” is a compact set, f/:R*xR"xD —R" is a C° map being locally Lipschitz
with respect to x € R" and satisfies f(2,0,d) =0 for all (¢,d) e R" xD. By M, we denote

the set of all measurable functions from R* to D.

Definition 2.1 We say that zero 0e€R" is (non-uniformly in time) Robustly Globally
Asymptotically Stable (RGAS) for (2.1), if for every t, 20, deM, and x,eR" the
corresponding solution x(-) of (2.1) exists for all t > t, and satisfies the following properties:

P1I (Stability). For every ¢ >0, T >0, it holds that

sup{[x():d e M, 121, ,|x,|< 6,1, €[0,T] f<+0 (2.2a)
and there exists a 6 .= 0(g,T) > 0 such that
x|<5, 1, €[0,T]= |x()|<e,Vizt,deM, (2.2b)

P2 (Attractivity). For every € >0, T >0 and R>0, there exists a 7 :=1(&,T,R) >0, such
that

x| <R, 1, €[0,T] = |x(t)|<e,Vi2t,+7,deM, (2.2¢)

<

Definition 2.2 We say that system (2.1) satisfies the 0-GAS property, if 0 e R" is GAS for
(2.1) with D = {0}, or equivalently, for the unforced system x = f(t,x,0).

<

Definition 2.2 Consider system (1.1) and let 7(t,s):(iR+)2 —R" bea C° function, locally
Lipschitz in s, such that for each fixed t >0 the mapping y(t,-) is positive definite. We say
that (1.1) satisfies the “weak” (non-uniform in time) Input-to-State Stability property
(wISS) with gain }/(- ), if each solution x(t) = x(t,t,,x,;u(-)) of (1.1) exists for all t > t\, and
satisfies Properties P1 and P2 of Definition 2.1, provided that

x(1)

u(@)| < y(t,|x(0)). a.e. for t 21, (2.3)



If in addition for each t > 0 the function y(t,-) is of class K, then we say that (1.1) satisfies
the (non-uniform in time) Input-to-State Stability property (ISS) with gain 7(- )

<

The following proposition summarizes some useful equivalent descriptions of the ISS
property.

Proposition 2.4 ([6]) Let y(t,s): (‘B+)2 —R" bea C° function, locally Lipschitz in s, such
that for each fixed t >0 the mapping y(t,-) is a positive definite function. Then the following
Statements are equivalent:

(i) System (1.1) satisfies the wiSS property with gain }/(- )
(i) 0 € R" is non-uniformly in time RGAS for the system:

x = f(t,x,y(t,|x)Dd)
xeR",deB[0l]]cR",t>0

X

(2.4)

where B[0,1] denotes the closed sphere of radius 1 around 0eR™.

(iii) There exist a function o of class KL and a function f3:R" — R" of class K" such that
the following property holds for all t > ¢ :

i—1,) (2.5)

x(r)|) a.e. for T €[t,,t]= |x(t)| < a(ﬂ(lo )|)c0

ju(z)| < 7(z,

(iv) There exist a C” function V :R* xR" — R", functions ay, aye K, and e K" such
that the following hold for all (t,x,u) € R* xR" xR" :

a, () <V (t,x) < a,(B@)x) (2.6a)
U] < (1.]x) :V(z,x,u)\“_n <—V(t,x) (2.6b)

Remark 2.5: The precise description of property (iii), which is given in [6], is as follows:

(v) There exist functions a, ,a, of class K, and a function ,E "RT >R of class K" such
that the following property holds for all t >t :

X)) ae for T elty, 1= a,(x))) < exp((t = 1,) Bty )ay (x,) (2.7)

ju(o)| < 7 (z,
It can be easily established that (2.5) and (2.7) are equivalent.

The following proposition extends a well-known result concerning the autonomous case
(see for instance [4,17]).



Proposition 2.6 System (1.1) satisfies the wiISS property from the input u , if and only if it
satisfies the 0-GAS property.

The proof of Proposition 2.6 is an immediate consequence of the following lemma, which is a
direct extension of Lemma IV.10 in [2] and constitutes a powerful tool for the results of next
section.

Lemma 2.7 Consider the system (1.1) and suppose that it satisfies the 0-GAS property. Then,
for every function u(-) of class K”, there exists a C* map V :R" xR" - R, functions

a,(-)(i=1..4) of class K, and p(-),x(-) of class K", such that

xR (2.8)

a—V(t )+a—(z x) f(t, x,u) < =V (t,x) +exp(-2¢) a{ i j 4(/c(t)|u|)

V(t,x,u) e R xR" xR" (2.9)

<

Similarly with ISS we may extend the notion of uniform in time Input-to-Output Stability
(I0S) (as proposed in [12]) to the non-uniform case.

Definition 2.8 Consider the system (2.1) with output y =h(t,x), where the map h(-) is of

class CO(ERJr xR" ;ﬁik) and satisfies h(-,0)=0. We say that (2.1) is (non-uniformly in time)
Robustly Globally Asymptotically Output Stable (RGAOS), if for every t, 20, d e M, and

X, €R" the corresponding solution x(-) of (2.1) exists for all t>t, and satisfies the
following properties:

P1 (Output Stability). For every € >0, T >0, it holds that
sup{|h(t,x(t))| deMp ., t>tg, |x0| <¢,ty€[0,T] }< + 00 (2.10a)
and there exists a 6 .= 0(g,T) > 0 such that
x| <8, 1, €[0,T]1= |h(t,x(t)| <& .,Vi=1y,deMp (2.10b)

P2 (Output Attractivity). For every &>0, T2>=0 and R2=0, there exists a
t:=1(¢,T,R) >0, such that

x| <R, 1, €[0,T] = |h(t,x(t)|<e,Viztg+7,deMp (2.10c)
<
Definition 2.9 Consider system (1.1) with output y = h(t,x), where h(-) e CO(ERJr xR ;iRk)

with h(-,0)=0 and let }/(t,S):(iRJr)2 —RY be a C° function, locally Lipschitz in s, such
that for each fixed t >0 the mapping y(t,-) is of class K,,. We say that (1.1) satisfies the



(non-uniform in time) Input-to-Output Stability property (10S) with gain 7/(-), if each
solution x(t) = x(t,t,,x,;u(-)) of (1.1) exists for all 1>, and satisfies Properties Pl and P2
of Definition 2.8, provided that (2.3) holds.

3. Characterizations of the Non-Uniform in Time ISS Property

The following proposition provides equivalent characterizations of the (non-uniform in
time) ISS property.

Proposition 3.1 The following statements are equivalent:
(i) System (1.1) satisfies the ISS property.

(ii) There exist functions p(-)e K_, ¢(-), B(-) € K™ and o(-) € KL such that

Plp@u)) < |x@)| ae. for t>1, = [x(0)| < (Bt x| 1 —1,), V121, (3.1)

(iii) There exist functions p(-)e K_, ¢(-), p(-)e K" and o(-) € KL such that, for every

(t,,X,) € R xR" and for every input u=u(t) of class L, ([to ,+oo)), the corresponding

loc

solution x(t) of (1.1) with x(t,) = x, exists for all t >t, and satisfies:

[x(1)| < max{ (Bt )| ot~ 1), sup (@) plp(fu(2))), 1 - z')} (3.2)

(iv) There exist functions {(-)e K, [(-),0(-)e K" and o(-) € KL such that, for every

(t,,%,) € R xR" and for every input u=u(t) of class L) ([to ,+oo)), the corresponding

loc

solution x(t) of (1.1) with x(t,) = x, exists for all t > t, and satisfies:

|x(#)| < max{ o (B(ty)x| . - to),tsup é’(é‘(r)|u(2')|)} (3.3)

0 STt

(v) There exist a function 0(-)e K, , being locally Lipschitz on R*, and a function
O6(:)e K" such that 0 e R" is RGAS for the system:

x=f(tde) d(yeM (3.4)
L) 50) ’ B[0,1] .

(vi) System (1.1) satisfies the 0-GAS Property and there exist functions & (-), ()e K,
S(),u(-),B(-)e K" such that for every (ty,x,) €R" xR" and u=u(t) of class

L, ([t0,+00)) the corresponding solution x(t) of (1.1) with x(t,) =x, exists for all t>t,

and satisfies:



(1) < ﬂ@[a(ﬁao )+ sup 5(3(1)|u(r)|)} (3.5)

0 STt

(vii) There exist a C” function V :R" xR" = R", functions a,(-), a,(-),a,(-) of class K
and functions p(-), q(-) of class K" such that for all (t,x,u) € R" xR" xR" we have:

a,(|x)) <V (t,x) < a,(p(1)|x]) (3.6a)
a—V(t, x) + a—V(z, X) f(t,x,u) <=V (1,x) + a5 (q(0)|u) (3.6b)
ot Ox

Remark 3.2: When the functions ¢(-) and S(-) are bounded, then (3.1) is equivalent to the
uniform in time ISS property, as given in [16,17]. Likewise, when f(-) and o(-) are
bounded, then (3.3) is equivalent to ISS property, as originally proposed in [10] by Sontag.
The equivalence between (3.1) and (3.3) generalizes the well known fact that for the
autonomous case and when y(-) is independent of #, namely, y(-) is of class K, , the

uniform in time ISS property as given by Sontag is equivalent to the corresponding
characterization given in [16,17]. Finally, we note that, when p(-) and ¢(-) are bounded,

then (3.6a,b) coincides with the Lyapunov characterization in [11] for the uniform in time ISS
property. <

Remark 3.3: By exploiting the result of Proposition 3.1 and particularly the equivalence
between (1) and (iv), it can be established that the notion of non-uniform in time ISS remains
invariant under:

S1 Scaling of time t:_[a(s)ds, where a(-)e C°(R*) with a(s)>0, for all s>0 and
0

+j:oa(s)ds =+00.

0

S2 Transformations x=®(¢,z) of the state, where ®(-)e C*(R*xR";R"), with
D(1,0)=0, O(t,R")=R" and det(aa—q)(t,z)J #0 for all (¢£,z)e R* xR" and such that
z

there exists a pair of functions a,(-)e K, (i=12) with a102|)£|®(t, z)| Sa2QZ|) for all
(t,z) e R xR".

S3 Input transformations u = g(¢,v), where g(-)e C’(R* xR” ; R™) satisfying ¢(¢,0)=0
for all >0, and in such a way that there exists a function ¢'(-) € C*(R* xR" ; R") with
u=q(t,q ' (t,u)) forall (t,u) e R* xR" and such that £(¢,x,q(t,v)) is locally Lipschitz with
respectto ve R".



It should be emphasized here that the uniform in time ISS, does not in general remain
invariant under S1 or S3.

An immediate consequence of Proposition 3.1 is the following corollary, which provides
links between non-uniform in time ISS and the concepts of BIBS and CICS.

Corollary 3.4 Suppose that system (1.1) satisfies the ISS property, and in particular assume
that (3.3) holds for certain functions { € K, o€ KL, 3,0 € K. Let u =u(t) be an input of

class L (SR*) such that:

loc
1) (t)|u(t)| is bounded over R*

Then for every (t,,x,) € R* xR", the solution x(-,t,,x,;u(-)) is bounded over R* as well. If
in addition

lim S(Ou(n)| =0

then for every (t,,x,) € R* xR", it holds that lim x(t,t,,x,;u(-))=0.
t—>+00

<

Statement (vii) of Proposition 3.1 shows that, under a special type of forward completeness,

the 0-GAS Property for (1.1) is equivalent to (non-uniform in time) ISS for (1.1). For the

autonomous case we establish below that 0-GAS plus forward completeness is equivalent to
ISS, which in general is not true for the uniform in time ISS (see [2]).

Corollary 3.5 Consider the autonomous system (1.2), where f is locally Lipschitz with
respect to (x,u) and satisfies f(0,0) =0. Suppose that:

(1) 0 e M" is GAS for the unforced system (1.3) (0-GAS Property).
(11) System (1.2) is forward complete with u as input.

Then the solutions of (1.2) satisfy (3.5) (statement (vii) of Proposition 3.1), and therefore (1.2)
fulfills the ISS property.

Proof Since 0 € R" is GAS for the system (1.3), then by Lemma IV.10 in [2] and Theorem 3
in [14], there exists a smooth function V' :R" — R", functions a,,a,,4,5 of class K,

such that for all (x,u) € R" xR" we have:

a, (M)S V(x)<a, (M) (3.7a)

‘Z—Z(x) f(xu) <=V (x)+ )5 (u)) (3.7b)



Clearly, inequalities (3.7a,b) give the following estimate for the solution x(-) of (1.2)

initiated from x, € R" at time ¢, 20 and corresponding to some input u =u(t) of class

L. ([2y.+0)):

a,(x(2))) < exp((t — 1)), (x| + [exp(~(t - NAx(@))5(u)| e, vez1,  (3.7c)

fo

Furthermore, since (1.2) is forward complete, Corollary 2.11 in [1] guarantees the existence
of a smooth and proper function W :R" — R", functions a,,a, ,o of class K, and a

constant R > 0 such that for all (x,u) € R" xR" it holds:

a, ()< W (x) < a,(x])+ R (3.8a)
a—W(x) [ u) <W(x)+o(u]) (3.8b)

It follows from (3.8a,b) that the solution x(-) of (1.2) satisfies
a, (x(0)]) < exple — 1, Nay (x,[)+ R)+ J.exp t—)o(u()|r , Vi1, (3.9)

Define 4 (s):= /1(2513‘ : (2s)). It then follows from (3.7¢) and (3.9) that for all 7 > ¢ it holds:

Qx(t)|) < exp (t—t ) x0 Ji[jexp(r s)a(}u(s)DdsJ Qu(r)|)dr

fo Iy

| (3.10)
+ .[/T(exp(z' =) )(04 (|x0|) + R))éQu(r)|)dT

Corollary 10 and Remark 11 in [14] guarantee the existence of a function ¢(-) € K, such
that

a(rs)-i- o(rs)+ /T(rs) < q(r)q(s), Vr,s >0 (3.11)

and let ¢ € K be a function that satisfies the following inequality for all 7> 0:

1 exp(—t)
< 3.12
q[w)j 1+ g(exp(0) G-12)

By virtue of (3.11) and (3.12) it follows:



3.11) z (3.12)
jexp(z‘ s)aQu(s)|)ds < exp(r) sup q¢(s)|u(s)| jq(ﬂ )j s < exp(r) sup q(¢(s)|u(s)|)

¢ t,S<S<7T ¢ t,<8<7T

0 0

forall 7>¢, (3.13)

By exploiting (3.10), (3.11), (3.12) and (3.13) we obtain the following estimation for the
solution x(¢#) of system (1.2) initiated at x(¢,)=x, and corresponding to some input

u(-) el ([1:+)):

(3.11), (3.13)
a Qx(t)|) < exp(—(t—t9))az qx0|)

+ sup q(¢(r>|u(r)|){ sup q(qlg (T)|M(T)|))+Q(a4(|xo|)+R} [alexp(r))g [ ¢( )]

t,<t<t t, <7<t

(3.12)
< ay(xo|)+ sup q(¢<r>|u(r)|){ sup q(q(¢(r)|u<r>|))+q(2a4(|xo|>)+q<2R)}

<< (<
(3.14)

We define:
a(s) = a7’ (2a,(5) +(q(2a, () ) (3.150)
£(s) = a7 (4g2R)g(5) + 4(q(5) + g(a(5)))) (3.15b)

It follows from estimation (3.14) and definitions (3.15a,b) that

), Vi1,

|x(t)| < an0|)+ ;Sllgf é’(

The last inequality asserts, by recalling statement (vi) of Proposition 3.1, that system (1.2)
satisfies the ISS property. <

4. Applications

I Small-Gain Theorem

We first provide sufficient conditions for ISS for composite systems (1.4). The next theorem
constitutes a generalization of the well-known small gain theorem for autonomous systems
under the presence of (uniform in time) ISS (see [3,4]).

Theorem 4.1 For the system (1.4) we assume:

Al Subsystem (1.4a) satisfies the ISS property from the input (y,u). Particularly, there
exist functions o1(-)e KL, pj(-)e Ky, ¢/(-)e K™, p1(-)e K" such that for every

(tg,xp) € RT xR and for every input (y,u) = (y(t),u(t)) of class L. ([to ,+oo)), the

loc

10



solution x(t) of (1.4a) with x(ty) = x¢ exists for all t >ty and the following property
holds:

Ji—=ty), sup o1(B(2)p1 (¢ (1) max{y(z)

1, <7<t

b

|x(1)| < max{al (B (t0)]x0 u(o)}),t—7) }(4.1)

A2 Subsystem (1.4b) satisfies the ISS property from the input (x,u). Particularly, there
exist a constant A >0, functions o5(-)eKL, py(-)e Ky, ¢r(-)eK", Br(-)eK™
such that for every (ty,yq) € R xR* and for every input (x,u) = (x(t),u(t)) of class
L;ZC ([to ,+oo)), the solution y(t) of (1.4b) with y(ty) =y exists for all t >ty and it
holds that

J—1g), sup o(Bs () (¢ () max{i|x(r)

1, <7<t

2

|y(t)|3max{02(ﬂz (10)|v0 u(r)|}),r—r)}(4.z>

A3 The following properties hold for all t; 20, s>0:

tim B (0)p1 (1 (003 (5.1~ 19))= 0 (4.3a)
lim S5 () p2 (62 (1) Aoy (s, —19))=0 (4.3b)
t—+00

A4 There exists a function a(-) of class K, with
a(s)y<s, Vs>0 (4.4)

such that the following inequalities are satisfied for all to >0 :

sup o1 (B () p1 (¢ (D2 (B2 (t9) P2 (#2 (tg)A5).t —1)),0) < a(s), Vs=0  (4.5)

>,

sup o3 (B2 () p2 (¢ (DA 01 (B (10) 1 (1 (19)s).t —10)),0) < a(s), Vs =0 (4.5b)

£2t,

Then system (1.4) satisfies the ISS property from the input u .

IT Cascade Connections

It is known that the cascade connection of two autonomous independent ISS subsystems
satisfies the ISS property. This is not in general true for the time-varying case under the
assumption of the non-uniform in time ISS property. Particularly, by specializing Theorem
4.1 to the case 1.5 we obtain the following result, which constitutes a generalization of recent
results concerning time-varying systems (see [9, 20]).

11



Corollary 4.2 Consider the system (1.5) and suppose that the following hold:

Al The subsystem (1.5a) satisfies the (non-uniform in time) ISS property from the input
(y,u) and that there exist functions o,(-)€ KL, p,(-)e K and ¢,(-), B,(-) of class

K™ such that for every (t,,x,)€ R xR" and for every input (y,u) = (y(t),u(t)) of
class L. ([z‘0 ,+00)) the corresponding solution x(t) of (1.5a) with x(t,) = x, exists for
all t > t, and inequality (4.1) holds.

A2 The subsystem (1.5b) satisfies the (non-uniform in time) ISS property from the input u
and there exist functions o,(-)e KL, p,(-)e K and ¢,(-), B,(-) of class K" such

that for every (t,,v,) € R xR* and for every input u = u(t) of class L}, ([t0,+oo)) the
corresponding solution y(t) of (1.5b) with y(t,) =y, exists for all t>t, and the
following property holds:

,t—1,), sup o, (ﬂz (0)p, (¢2 () |u(7)

ty<r<t

),t—r)} (4.6)

|y(t)| < max{az (8., )|J’0

A3 The following property holds for all (t,,s) € ( i )2 :
lim 5,(0)p, (4, ()0, (5,1~ 1,)) =0 (4.7)

Then system (1.5) exhibits the non-uniform in time ISS property from the input u .

III Output Feedback Stabilization
We derive sufficient conditions for robust output static feedback stabilization for systems in
feedback form. The following result extends the corresponding results in [3,16].

Theorem 4.3 Suppose that:

Bl There exists a C* function k:R"xR" >R, with k(-,0)=0, such that system (1.6a)
with y =k(t,x)+ z satisfies the non-uniform in time ISS property from the input z for
certain gain function y(-).

B2 System (1.6a) with y = k(t,x) + z satisfies the non-uniform in time 10S property from the
input z with k(-,-) as output function and the same gain y(-) as in Bl.

B3 There exists a function ¢ of class K such that

ot)d(t,x,y) =21, V(t,x,y) e R" xR" xR

Then for every function ]7(t,s):(iR+)2 —R", which is C°, locally Lipschitz in s, with
y(t,-) e K foreach t >0, there exists a C” function k:R* xR >R with l;(-,O) =0 such

12



that system (1.6) with u = k (t,y—k(t,x))+v satisfies the ISS property from the input v with
gain y(t,s).
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