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Abstract

Optimization formulations seek to take advantage of structure and information in a particular
problem, and investigate how successfully this information constrains the performance measures
of interest. In this paper, we apply some recent results of algebraic geometry, to show how the
underlying geometry of the problem may be incorporated in a natural way, in a semidefinite
optimization formulation. In particular, we discuss two examples; the first, an application to
partial differential equations, and the second, an application to deriving optimal inequalities in
probability theory. In both cases, the additional “geometry–constraints” significantly improve
the quality of the bounds. Furthermore, we believe this framework to be a general one, with
many potential applications.

1 Introduction

Is the set over which we optimize connected? Is the set compact? Is it convex? What is the na-
ture of its nonconvexity? Is it discrete? These are among the first questions one encounters when
attempting to solve an optimization problem. They help us determine, to a first degree, whether
the problem is difficult, how difficult it is, and what solution methods might prove tractable. In
many instances, this information may help us properly formulate the problem, and use the correct
optimization framework. However, the specific details of this geometry are rarely exploited as ex-
tensively as they can, and should be exploited. In this paper, we use the underlying geometry to
propose two powerful applications of semidefinite optimization.

The first problem we consider, is obtaining bounds on linear functionals of linear partial differ-
ential equations. We do this without the usual discretizing of the state space, into a grid or mesh,
as is typical. In addition, by enforcing the constraints implied by the geometry, we are able to
obtain information about the nonlinear functionals max and min.

The second problem we consider is that of obtaining optimal inequalities in probability theory.
This was first considered by Bertsimas and Popescu in [2]. Here, we show how the geometry–
induced constraints may be strengthened, to yield tighter solutions. In both, we apply some results
from the field of Real Algebraic Geometry, and show how a priori knowledge of the support of the
solution, in the PDE problem, and the support of the distribution, in the probability inequality
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problem, can be incorporated via semidefinite optimization and the theory of moments, and fruit-
fully exploited to obtain significantly improved bounds.

In section 2 we give the main idea behind the geometry–induced bounds, and ouline the pertinent
theory of moments, polynomials, and semidefinite optimization. In section 3 we give a semidefinite
approach to solving for linear functionals of linear PDEs, along with some promising numerical
results in section 4. In section 5 we outline the procedure for obtaining optimal probability in-
equalities, first given by Bertsimas and Popescu ([2]), and then show how this may be strengthened
with the algebraic ideas discussed here.

2 Exploiting Geometry via Moments

Every distribution µ, has a sequence of moments (bounded or not) given by integration:

mα :=
∫

xα dµ,

where α is a multiindex. Of course, not every sequence of numbers is a moment sequence. For
instance, we know that the second moment must be nonnegative. The problem of classifying
valid moment sequences has a long history in mathematics, and is intimately connected with the
analytic, geometric, and algebraic branches of mathematics. See [1], [2], and the references therein
for more on the history and developments. Let V (K) denote all the possible moment sequences
that correspond to a distribution with support on the set K ⊆ Rn. Next, let P denote a polyhedral
set, defined by some inequalities and equalities. Suppose that we wish to maximize some function
f(m) of the moments of an unknown distribution, and suppose we know that these moments must
lie in the polyhedron P . Then, we could solve:

max : f(m)
s.t. : m ∈ P.

In this case, however, we have not used two important pieces of information specified by the
problem: First, the sequence m is not just a vector, it must correspond to the moments of some
distribution. In addition, that distribution has known support K. In this paper, we show that
solving, instead, the strengthened problem

max : f(m)
s.t. : m ∈ P ∩ V (K),

can result in a significantly tighter formulation. We use this tighter formulation to give two novel
applications of semidefinite optimization. Furthermore, we provide a discussion of the complexity
tradeoff of capturing this geometry constraint.

2.1 The Moment Problem

The key then is in computing the set V (K) above, as it is there where the geometry constraints
are encoded. As mentioned above, computing V (K), i.e. characterizing all moment sequences with
support on the set K, is known as the classical moment problem. The problem is to determine,
given some sequence of numbers, whether it is a valid moment sequence, that is to say, whether the
numbers given are indeed the moments of a nonnegative function or distribution, with the given
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support. In one dimension, a sequence of moments {mi} comes from a distribution with support
on R, if and only if the matrix

M2n =


m0 m1 · · · mn

m1 m2 · · · mn+1
...

. . .
...

mn m2n


is positive semidefinite for every n. If we demand that the support be [0,∞), we need to add the
additional constraint, that the matrix

M2n+1 =


m1 m2 · · · mn+1

m2 m3 · · · mn+2
...

. . .
...

mn+1 m2n+1


also be positive semidefinite.

In multiple dimensions, it is generally unknown which are the exact necessary and sufficient
conditions for Mα to be a valid moment sequence, when we are working over a general domain.
For a wide class of domains, however, Schmüdgen [10] and Putinar [8] find such conditions. We
review this work briefly, and use it to derive the necessary and sufficient conditions for Mα to be
a moment sequence.

An Operator Approach

Given a closed subset Ω of Rd, a sequence of numbers Mα defines a valid moment sequence if there
exists a measure µ such that

Mα =
∫

Ω
xαdµ.

We define the linear operator

Hf =
∫

Ω
f(x)dµ.

It is obviously necessary that Hf ≥ 0, whenever f ≥ 0 on Ω. A classical theorem says that it is
also sufficient:

Theorem 1 (Haviland [4]). If Ω ⊆ Rn is closed, then Mα defines a valid moment sequence if
and only if the linear operator H is nonnegative on all polynomials that are nonnegative on Ω.

Theorem 1 implies that the problem of finding necessary and sufficient conditions for Mα to
be a moment sequence, reduces to checking the nonnegativity of the image of a polynomial that
is nonnegative on Ω. In one dimension, we know that any polynomial that is nonnegative may be
written as the sum of squares. Since the square of a polynomial may be written as a quadratic
form, the nonnegativity of the operator reduces to matrix semidefiniteness conditions. The Motzkin
polynomial in R3,

P (x, y, z) = x4y2 + x2y4 + z6 − 3x2y2z2,

is an example that shows that in higher dimensions, the sum of squares decomposition of a non-
negative polynomial is not in general possible (see Parrilo [7] or Reznick [9] for details). However,
Schmüdgen [10] and Putinar [8] give a representation of all polynomials that are nonnegative over
a compact finitely generated semialgebraic set K, as defined in the theorem below. This leads to
necessary and sufficient conditions for a moment sequence to be valid on K.
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Theorem 2 (Putinar [8]). Suppose K := {x ∈ Rn : fi(x) ≥ 0, 1 ≤ i ≤ r} is closed and bounded,
where fi(x) are polynomials. Suppose further that there exists a polynomial h(x) with compact level
set, that is of the form

h(x) = s0(x) +
m∑

i=1

si(x)fi(x),

where the si(x) are sums of squares of polynomials. Then a polynomial g(x) is positive on K if
and only if it is expressible as a sum of terms of the form

q2
i (x)fi(x),

for i ∈ {0, 1, . . . , r}, f0 = 1, and qi(x) some polynomial.

Theorems 1 and 2 lead to the following result.

Theorem 3. Consider the vector F (x) = xα, and the semidefinite matrix F (x)F (x)′. Given
M = [Mα], there exists a distribution µ(x) such that

Mα =
∫

Ω
xα dµ(x)

for a closed and bounded domain Ω of the form above, if and only if the following matrices are
positive semidefinite: ∫

Ω
[F (x)F (x)′]fi(x), (1)

for i ∈ {0, 1, . . . , r}.

Examples of domains for which the above result applies include the unit ball in Rd, which can
be written as

B = {x ∈ Rd : 1− x2
1 − · · · − x2

d ≥ 0},

the unit hypercube,
C = {x ∈ Rd : xi ≥ 0, 1− xi ≥ 0, 1 ≤ i ≤ d},

and the discrete set,

{−1, 1}d = {x ∈ Rd : x2
i − 1 ≥ 0, 1− x2

i ≥ 0, i = 1, . . . , d}.

Complexity

Note that in general, while the above semidefinite conditions are necessary and sufficient, the
semidefiniteness of the truncated matrix is only a necessary condition. This is a consequence
of the fact that in Putinar’s representation of positive polynomials, the degree of the sum of
squares polynomials is not specified. Indeed, unless P = NP, then we are guaranteed that in the
worst case, the representation will require exponentially high degree polynomials. Nevertheless,
the semidefiniteness of each truncation of the matrices is a necessary condition. Thus, we have
obtained a hierarchy of increasingly tight semidefinite constraints on our moments, giving us a
tradeoff between complexity, and tight description of the set V (K) of valid moments.
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3 Partial Differential Equations

In this section, we give what we believe to be a novel approach to bounding functionals of linear
partial differential equations. The linear functionals we consider, are functions of the moments of
the solution to the PDE. First, we exploit the linearity of the operator to obtain linear constraints
on the moments. Stopping at this stage would yield an optimization problem of the form illustrated
at the beginning of section 2:

max / min : f(m)
s.t. : m ∈ P,

where P denotes the polytope defined by the linear constraints. In the sequel, we use the method-
ology developed in section 2 above, to formulate the significantly stronger optimization problem,

max / min : f(m)
s.t. : m ∈ P ∩ V (K),

As the numerical results in section 4 indicate, the geometry–induced constraints are critical for
obtaining reasonably tight upper and lower bounds.

Linearity

Suppose we are given the partial differential operators L and G operating on some distribution
space A:

L,G : A −→ A,

and we are interested in finding ∫
Gu(x),

where u ∈ A (note also that f ∈ A) satisfies the PDE,

Lu(x) = f(x), x = (x1, . . . , xd) ∈ Ω ⊂ Rd, (2)

including the appropriate boundary conditions on ∂Ω,
Eq. (2) is understood in the sense that both sides of the equation act in the same way on a

given class of functions D, i.e.,

Lu = f ⇐⇒
∫

(Lu)φ =
∫

fφ, ∀φ ∈ D,

where D is taken to be some sufficiently nice class of test functions—typically a subset of the smooth
functions C∞.

We will assume that the operators L and G are linear operators with coefficients that are
polynomials of the variables. In Section 3.5 we discuss extensions for a nonlinear operator G. In
particular,

Lu(x) =
∑
α

Lα(x)
∂αu(x)

∂xα , Gu(x) =
∑
α

Gα(x)
∂αu(x)

∂xα ,

where α = (i1, . . . , id) is a multi-index,

∂αu(x)
∂xα =

∂
∑

k iku(x)
∂xi1

1 · · · ∂xid
d

,
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and Lα(x) and Gα(x) are multivariate polynomials (we discuss extensions in Section 3.6). We will
restrict ourselves to the case where D is separable, that is, it has a countable dense subset. This
restriction is not as limiting as it might first appear. In particular, if the solution u has compact
support, then we may also assume without loss of generality that every element of D has compact
support as well, and thus by the Stone–Weierstrass theorem, D is separable. The condition that u
have compact support may also be replaced by the (slightly) weaker condition that u have expo-
nentially decaying tails.

Let F = {φ1, φ2, . . . } generate (in the basis sense) a dense subset of D. Then, by the linearity
of integration we have

Lu = f ⇐⇒
∫

(Lu)φ =
∫

fφ, ∀φ ∈ D,

⇐⇒
∫

(Lu)φi =
∫

fφi, ∀φi ∈ F .

We discuss different choices for the subset F in Section 3.6. One separable subspace around which
this paper focuses is the subspace spanned by the monomials xα = xi1

1 . . . xid
d . Polynomials have

the property that they are closed under action by polynomial coefficient differential operators.

The Adjoint Operator

The adjoint operator, L∗, is defined by the equation:∫
(Lu)φ =

∫
u(L∗φ), ∀φ ∈ D.

Therefore, if we have both L and L∗, then equality in the original PDE becomes:

Lu = f ⇐⇒
∫

(Lu)φ =
∫

fφ, ∀φ ∈ D,

⇐⇒
∫

(Lu)φi =
∫

fφi, ∀φi ∈ F ,

⇐⇒
∫

u(L∗φi) =
∫

fφi, ∀φi ∈ F . (3)

To illustrate the computation of the adjoint operator, we consider the one dimensional case.
The general term of this operator is, up to a constant multiple:

xa ∂b

∂xb
.

Using the notation φ̃ = xaφ, this term’s contribution to the adjoint operator is as follows.∫
Ω

xa(∂bu)φ =
∫

Ω
(∂bu)(xaφ) dx =

∫
Ω
(∂bu)φ̃ dx

= u(b−1)φ̃
∣∣∣
∂Ω

+ · · ·+ (−1)k+1u(b−k)φ̃(k−1)
∣∣∣
∂Ω

+ · · ·

+(−1)b+1uφ̃(b−1)
∣∣∣
∂Ω

+ (−1)b

∫
Ω

u∂bφ̃ dx.

Thus, while perhaps notationally tedious in higher dimensions, computing the adjoint of a linear
partial differential operator with polynomial coefficients is essentially only as difficult as performing
the chain rule for differentiation on polynomials, and in particular, it may be easily automated.
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3.1 Linear Constraints

Let us define variables in an optimization sense

Mα =
∫

Ω
xαu(x) =

∫
Ω

x1
i1 · · ·xd

idu(x),

together with variables related to the boundary ∂Ω:

zα =
∫

∂Ω
xαu(x) =

∫
∂Ω

x1
i1 · · ·xd

idu(x).

The specific form of these variables depends on the nature of the boundary conditions we are
given (see Section 4 for specific examples). We refer to the quantities Mα and zα as moments,
even though u(·) is not a probability distribution. We select as φi’s the family of monomials xα.
Since, for the case we are considering, L, and thus L∗, are linear operators with coefficients that
are polynomials in x, then Eqs. (3) can be written as linear equations in terms of the variables
M = (Mα) and z = (zα).

3.2 Objective Function Value

Given that the operator G is also a linear operator with coefficients that are polynomials of the
variables, then the functional

∫
Gu can also be expressed as a linear function of the variables M

and z. So if we minimize or maximize this particular linear function, we obtain upper and lower
bounds on the value of the functional.

3.3 Geometry–Induced Constraints

Let us assume that the solution we are looking for is bounded from below, that is u(x) ≥ u0. The
constant u0 is in fact unknown. In certain cases, u0 is naturally known; for example if u(x) is a
probability distribution, then u(x) ≥ 0, i.e., u0 = 0; or if u(x) represents temperature, then again
u(x) ≥ 0. In any case, û(x) := u(x) − u0 ≥ 0. Therefore all our work from section 2 applies. We
can now impose semidefinite constraints on the moments that we have so–far managed to constrain
with linear constraints. Indeed, we know that since u(x)−u0 ≥ 0 for all x ∈ Ω, then the “moments”
m̂, of û(x) = (u(x) − u0) are indeed valid moments, and must therefore satisfy the constraints of
section 2. Furthermore, these moments m̂ are related to m by the known and computable relation

mα = m̂α + u0

∫
Ω

xα

= m̂α + u0cα,

where the {cα} are known constants. Therefore, the semidefinite constraints on {m̂α} become
semidefinite constraints on {mα − u0cα}. Note, therefore, that we need not assume that we know
u0. If it is unknown, then it simply becomes one more decision variable in the optimization.

3.4 The Overall Formulation

As we mentioned, the variables are the triplet (Mα, zα, u0) where we have the moments Mα =∫
Ω xαu(x), the boundary moments zα =

∫
∂Ω xαu(x) and the bound u0, which might be natu-

rally known. The semidefinite optimization consists of linear equality constraints generated by the
adjoint operator for different test functions xα, and of the semidefinite constraints that express
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the fact that the variables Mα and zα are in fact moments of a distribution with a known sup-
port. Subject to these constraints, we maximize and minimize a linear function of the variables
that expresses the given linear functional. The overall steps of the formulation process are then
summarized as follows:

(i) Compute the adjoint operator L∗.

(ii) Generate the nth equality constraint by requiring that∫
u(L∗φn) =

∫
fφn.

(iii) Generate the desired semidefinite constraints; note that these only depend on the domain Ω
and not on the operator L.

(iv) Compute upper and lower bounds on the given functional by solving a semidefinite opti-
mization problem over the intersection of the positive semidefinite cone and the equality
constraints.

3.5 The Maximum and Minimum Operator

Suppose that the given functional is
Gu = min

x∈Ω
u(x).

Then, we will formulate the objective function

minu0.

This approach gives a lower bound on the minimum of u(x) over Ω. However, if we maximize maxu0

we do not obtain a true upper bound on the minimum of u(x) over Ω, only an approximation.
Similarly, if we are interested in

max
x∈Ω

u(x)

we solve max v0 such that u(x) ≤ v0, which leads to semidefinite constraints involving M , z and
v0. This approach gives an upper bound on v0, while minimizing v0 only leads to an approximation.

Note that here the semidefinite constraints are absolutely crucial. This is because the additional
variable u0 is introduced linearly, and because of the linearity of integration, cannot possibly be
calculated by the family of linear constraints. Rather, the linear constraints link it to the variables
of the optimization, and then it is constrained by the semidefinite constraints.

3.6 Using Trigonometric Moments

Instead of choosing polynomials as test functions, we could choose other classes of test functions.
Polynomials are particularly convenient as they are closed under differentiation. While this property
is not a necessary condition for the proposed method to work, it significantly limits the proliferation
of variables we introduce. When the linear operator has coefficients that are not polynomials, other
bases might be more appropriate.

The trigonometric functions {sin(nx), cos(nx)} are also closed under differentiation (again we
can form products in higher dimensions, just as with monomials). Using trigonometric functions
as a basis of our test functions provides a straightforward way for us to deal with linear operators
with trigonometric coefficients. This is an important point, namely, that the choice of test function
basis ought to depend on the coefficients of the linear operator.
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4 Examples

In this section, we illustrate our approach with two examples: (a) a simple, but interesting ODE:
Bessel’s equation, and (b) a two-dimensional partial differential equation known as Helmholtz’s
equation. We take the solution to have support on the unit interval for the ODE, and on the unit
square for the PDE.

4.1 The Bessel Equation

In this section we consider Bessel’s differential equation

x2u′′ + xu′ + (x2 − p2)u = 0.

The Bessel function and its variants appear in one form or another in a wide array of engineering
applications, and applied mathematics. Furthermore, while there are integral and series represen-
tations, the Bessel function is not expressible in closed form. The series representation of the Bessel
function, which can be found in, e.g. Watson’s “Treatise on the Theory of Bessel Functions,” is:

Jp(x) :=
∞∑

k=0

(−1)k(x/2)2k+p

k!(k + p)!
.

Also, over the appropriate range, the Bessel function is neither nonnegative, nor convex. In order
to avoid numerical difficulties from large constant factors, we solve a modified version of Bessel’s
equation:

x2u′′ + xu′ + (49x2 − p2)u = 0. (4)

The solution is u(x) = Jp(7x). Assuming we are given the value of the derivatives on the boundary,
using the monomials as the test functions, we obtain the adjoint equations:

φ = 1 : ⇒ −u(1) + (1− p2)m0 + 49m2 = u′(1),
φ = x : ⇒ −2u(1) + (4− p2)m1 + 49m3 = u′(1),

φ = x2 : ⇒ −3u(1) + (9− p2)m2 + 49m4 = u′(1),
...

φ = xn : ⇒ −(n + 1)u(1) + ((n + 1)2 − p2)mn + 49mn+2 = u′(1).

In what follows, we choose p = 1. We used SeDuMi (see [11]) to compute the moments, and also
to compute the max and min. Recall from the discussion in Section 3.5 that while we are able to
obtain bounds for the moments, our method can only compute approximations to the max and min
of the solution. In the case of the Bessel function, the approximations we obtain of the minimum
are greater than the actual value, and the approximations for the maximum are less than the actual
value. The true values are: min = −0.347 and max = 0.583. In Table 1 we report the results from
using SeDuMi. Next, we use these results to translate the function so that it is nonnegative, and so
that we can compute the moments of the translated function. We use u(x)−u0 ≥ 0 with u0 = −0.4.
Again using SeDuMi, we obtain very accurate bounds to the moments. We give the first few in
Table 2. We would expect by linearity, and indeed the results show, that just having a lower bound
on the function is enough to find accurate results on the moments of the function.
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N Minimum Maximum
20 -0.3087 0.4986
24 -0.3101 0.5068
30 -0.3111 0.5081
40 -0.3142 0.5046

Table 1: Approximations for the maximum and the minimum of the solution of Eq. (4)
computed using SeDuMi. True Values: min = −0.347, max = 0.583. Note that these are
nonlinear functionals and generally very difficult to compute.

Variable LB UB
m1 0.1766 0.1766
m2 0.0903 0.0903
m3 0.0583 0.0583
m4 0.0438 0.0438
m5 0.0361 0.0361

Table 2: Upper and lower bounds for the moments of the solution to Eq. (4) for N = 24,
computed using SeDuMi.

4.2 The Helmholtz Equation

In this section we consider the two dimensional PDE

4u + k2u = f, (5)

over Ω = [0, 1]2. To compute the adjoint operator we need to use Stokes’s formula:∫
Ω

dω =
∫

∂Ω
ω.

Recall that in two dimensions we have:

ω = f dx + g dy ⇐⇒ dω =
(

∂g

∂x
− ∂f

∂y

)
dxdy,

and thus computing the adjoint operator, we have:∫
Ω

(
∂2u

∂x2

)
φ dxdy =

∫
Ω

(
∂

∂x

(
∂u

∂x
· φ

)
− ∂u

∂x

∂φ

∂x

)
dxdy

=
∫

∂Ω

∂u

∂x
· φ dy −

∫
Ω

(
∂

∂x

(
u

∂φ

∂x

)
− u

∂2φ

∂x2

)
dxdy

=
∫

∂Ω

(
∂u

∂x
· φ− u

∂φ

∂x

)
dy +

∫
Ω

u
∂2φ

∂x2
dxdy,

By a similar process for the ∂2u
∂y2 term, we obtain∫

Ω

(
∂2u

∂x2
+

∂2u

∂y2
+ f

)
φdxdy =

∫
Ω

(
fφ +

∂2φ

∂x2
+

∂2φ

∂y2

)
dxdy

+
∫

∂Ω

(
∂u

∂x
· φ− u

∂φ

∂x

)
dy −

∫
∂Ω

(
∂u

∂y
· φ− u

∂φ

∂y

)
dx.
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Again we consider the family of monomials,

F = {xi · yj}, for i, j ∈ N ∪ {0}.

In addition to the variables

mi,j =
∫ 1

0

∫ 1

0
xiyju(x, y)dxdy,

we also introduce the boundary moment variables:

bx=1
i :=

∫ 1

0
u(x = 1, y)yi dy, dx=1

i :=
∫ 1

0
∂xu(x = 1, y)yi dy

bx=0
i :=

∫ 1

0
u(x = 0, y)yi dy, dx=0

i :=
∫ 1

0
∂xu(x = 0, y)yi dy

by=1
i :=

∫ 1

0
u(x, y = 1)xi dx, dy=1

i :=
∫ 1

0
∂yu(x, y = 1)xi dx

by=0
i :=

∫ 1

0
u(x, y = 0)xi dx, dy=0

i :=
∫ 1

0
∂yu(x, y = 0)xi dx.

Then the adjoint relationship above yields:

φ = 1 : ⇒ dx=1
0 − dx=0

0 + dy=1
0 − dy=0

0 + m0,0 =
∫

Ω
f dxdy

φ = xi : ⇒ dx=1
0 + i(i− 1)mi−2,0 + dy=1

i − dy=0
i + mi,0 =

∫
Ω

f · xi dxdy

φ = yj : ⇒ dx=1
j − dx=0

j + dy=1
0 + j(j − 1)m0,j−2 + m0,j =

∫
Ω

f · yi dxdy

φ = xiyj : ⇒ dx=1
j + i(i− 1)mi−2,j + dy=1

i + j(j − 1)mi,j−2 + mi,j =
∫

Ω
f · xiyj dxdy.

Note that either the {dx
i , dy

j}, or the {bx
i , by

j}, are given as boundary values. In order to compare
with the exact solution, we selected the boundary conditions such that f(x, y) = 3ex+y.

In order to illustrate the power of the semidefinite constraints, we run our optimization prob-
lem in two different stages. First, we provide the results of solving the linear optimization problem
generated by the adjoint equation, using the commercial software AMPLE. Next, we enforce the
semidefinite constraints. Solving a linear optimization problem, ignoring the semidefinite con-
straints and only imposing nonnegativity constraints on the variables, we obtain the bounds in
Table 3 for N = 5, 10, 20.

We then add the semidefinite constraints and use SDPA (see [5]) to solve the corresponding
semidefinite optimization problems. SDPA gave very tight bounds; however, there were neverthe-
less some numerical instabilities, which required us to change the desired accuracy in the search
parameters, in order to obtain answers that made sense. In Table 4 we report upper and lower
bounds for N = 5, 10, N = 20. Note that when we use monomials up to degree N , there are in
fact N2 such monomials.

We notice that the tightness of the bounds is nearly as dramatic as in the one dimensional
case. Moreover, the bounds using semidefinite optimization are significantly tighter than the ones
obtained using linear optimization. This observation is significant and emphasizes the importance
of the semidefinite constraints. For example, without the semidefinite constraints, the upper bound
on m0,0 is +∞, whereas we obtain very tight bounds for N = 10 using the semidefinite constraints.
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Variable LB, N = 5 UB, N = 5 LB, N = 10 UB, N = 10 LB, N = 20 UB, N = 20
m0,0 0.0000 +∞ 0.0000 +∞ 0.0000 +∞
m1,0 0.0000 4.3142 0.0000 4.0822 0.0000 3.8694
m1,1 0.7559 1.0881 0.8557 1.0419 0.9400 1.0120
m2,0 0.0000 4.6790 0.0000 4.6790 0.0000 4.6790
m2,1 0.0545 1.0563 0.1417 1.0059 0.1749 0.9753
m2,2 0.0000 0.9447 0.0000 0.9087 0.0000 0.9087
m3,0 0.0000 4.8743 0.0000 4.4932 0.0000 4.4414
m3,1 0.1692 0.6806 0.4015 0.6063 0.5025 0.5758
m3,2 0.0000 0.6383 0.0000 0.6105 0.0000 0.5989
m3,3 0.0000 0.5291 0.1684 0.3640 0.2573 0.3296

Table 3: Upper and lower bounds from linear optimization for N = 5, N = 10, N = 20. For the cases
N = 5, 10 we only run up to m2,2.

Variable LB, N = 5 UB, N = 5 LB, N = 10 UB, N = 10 LB, N = 20 UB, N = 20
m0,0 2.7687 5.5689 2.9113 2.9809 2.9377 2.9599
m1,0 1.8377 2.2006 1.6955 1.7276 1.7106 1.7199
m1,1 0.9679 1.0089 0.9851 1.0026 0.9988 1.0005
m2,0 1.0860 1.8173 1.2058 1.2437 1.2261 1.2353
m2,1 0.6089 0.7626 0.7019 0.7169 0.7177 0.7185
m2,2 0.3192 0.5456 0.5010 0.5107 0.5148 0.5161
m3,0 0.5263 1.8191 0.9411 1.0000 0.9601 0.9683
m3,1 0.5296 0.6076 0.5485 0.5653 0.5623 0.5639
m3,2 0.2021 0.4069 0.4009 0.4068 0.4036 0.4046
m3,3 0.1025 0.3495 0.3139 0.3191 0.3163 0.3179

Table 4: Upper and lower bounds for Eq. (5) for N = 5, 10 using SDPA. The computation of each bound
took less than 0.5 seconds for N = 5, 3-5 seconds for N = 10, and 1-3 minutes for N = 20.

5 Optimal Probability Inequalities

The following example, while trivial, illustrates our point. Suppose we know that a distribution
has mean of zero. At this point, the amount of information we have about our distribution is lim-
ited. But if in addition we happen to know that the support of the distribution is Ω = [0, 1], then
we know the entire distribution. Bertsimas and Popescu, in [2], give a semidefinite approach to
obtaining information of a distribution, based on its moments, and its support. In this section we
show that the polynomial representation theorem of Schmüdgen and Putinar, and the framework
developed in section 2, can be used to strengthen these results. First we briefly outline their results.
We refer the interested reader to [2] for the bulk of the results, as the purpose here is to stress the
importance of the geometry constraints, and show how the algebraic results outlined in section 2
aid in their impementation.

Bertsimas and Popescu consider the (n, k,Ω) problem, of obtaining as good as possible an up-
per bound on P (X ∈ S), given that X is an Rn valued random variable, with support on Ω, and
given all the moments {mα} up to degree k. Following them, we formulate the problem as an
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optimization problem, as follows:

max :
∫

S
1 dµ

s.t. :
∫

Ω
xα dµ = mα, |α| ≤ k.

This is a problem with infinitely many variables, and finitely many constraints. Using standard
duality theory, and associating a dual variable yα to each constraint above, we can consider the
dual problem, which has finitely many variables, and infinitely many constraints:

min :
∑
|α|≤k

yαmα

s.t. : g(x) =
∑
|α|≤k

yαxα ≥ 1, ∀x ∈ S

g(x) =
∑
|α|≤k

yαxα ≥ 0, ∀x ∈ Ω.

We see that in the dual formulation, the constraints amount to nonnegativity of the polynomial
g(x) over Ω, and nonnegativity of the polynomial (g(x) − 1) over the set S. Therefore we can
express these constraints using semidefinite optimization, and the algebraic methods outlined in
section 2.

Definition 1. Suppose K is defined by polynomials g1, . . . , gl, and satisfies the hypotheses of the-
orem 1. Then, let Pr(K) denote the set of polynomials positive on the set K ⊆ Rn, that have a
representation as in Putinar’s theorem, in terms of polynomials of degree at most 2r. In other
words,

Pr(K) = {f(x) ∈ R[x] : f(x) = s0(x) +
∑

i

si(x)gi(x)}

where the polynomials si(x) are sums of squares, and of degree at most 2r.

As discussed in section 2, the set Pr(K) can be characterized in terms of a semidefinite program
of size polynomial in r. Therefore, we have the following sequence of increasingly tight semidefinite
programs, as r grows:

min :
∑
|α|≤k

yαmα

s.t. : (g(x)− 1) ∈ Pr(S)
g(x) ∈ Pr(Ω).

Next we give some computational results to illustrate the added power of encorporating knowledge
about the precise geometry of the problem. We give a one dimensional example, and a two dimen-
sional example. The computations were performed using SeDuMi [11], and SOSTOOLS, [6].

Examples: The Value of Geometric Knowledge

Suppose the true distribution that provides the moments, is a uniform distribution on [−1, 3],
and we want to upper bound the probability that lies in the set S = [0.75, 1.2]. We want to explore
the value of knowing that the support of the unknown distribution is on [−1, 3], rather than simply
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Moments Assume support is R Use support [−1, 3]
0 1.0000 1.0000
1 1.0000 0.6772
2 1.0000 0.6751
3 0.4640 0.4640
4 0.4639 0.4634
5 0.4635 0.3823
6 0.4635 0.3816

Table 5: Upper bounds on P (X ∈ X), given moments of X. In the second column, we

also encorporate information about the support of X. The resulting bounds are lower,

hence tighter.

assuming it to be all of R. Given the first 6 moments, we compute the following upper bounds:
The support information improves the result by 20 to 30 percent in some cases. This is significant,
especially in light of the fact that higher order moment constraints come at a significantly higher
computational cost, than using additional lower order moment constraints. The above example
shows that there are lower order moment constraints that can be fruitfully exploited before moving
to higher order moments.

A Two Dimensional Example

Now consider a uniform distribution on the circle of radius r = 2, in the plane, R2. We want
to find upper bounds on the probability that the random variable takes a value in the circle of
radius r′ = 1/

√
2, centered at (1/2, 1/2). Again we compare the bounds obtained when we use

information about the support of the distribution, and when we do not. In this case, the first
column is the order of the highest order moment used. We see in this example, that in higher di-

Moments Assume support is R2 Use support knowledge
0 1.0000 1.0000
1 1.0000 0.6666
2 1.0000 0.5099
3 0.4516 0.4164
4 0.4516 0.3592

Table 6: Upper bounds on P (X ∈ S) given moments of X. X is uniformly distributed in

the radius 2 circle, centered at the origin. S is the radius 1/
√

2 circle centered at (1/2, 1/2).

mensions, as in the PDE semidefinite formulation of the previous section, capturing the geometric
information becomes increasingly important. We note that in the case of probability inequalities,
geometry constraints are particularly important when using only lower order moments. This should
not be surprising, given that if a distribution has all its moments, then it is in fact determined by
its moments. The computations illustrate this fact. Also, the effect of the geometry may be more
pronounced in some set ups, than in others. Nevertheless, we believe it to be substantial.
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6 Conclusion

We have given two powerful uses of semidefinite optimization, the first to solving linear partial
differential equations, and the second to obtaining optimal probability inequalities, from given
moments. The key ingredient in both, is encorporating our knowledge of the underlying geometry.
In the PDE application, as well as in the probability application, it is very often the case that
we have information about the support of the distribution. We translate this into strengthened
semidefinite constraints, using a representation theorem for positive polynomials, first proved by
Schmüdgen in 1991, and then strengthened by Putinar in 1993. In both examples, the information
the geometry provides, appears crucial for tightening the bounds, within reasonable complexity.
Furthermore, we believe this framework to be quite general, and thus we expect it to have many
more applications, where using the theorems of real algebraic geometry and the connection to
semidefinite optimizaiton, to encorporate geometry into the optimization, can yield significant
gains.
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