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Abstract

A trajectory planning problem for linear stochastic differential equations is considered in this
paper. The aim is to control the system such that the expected value of the output interpolates
given points at given times while the variance and an integral cost of the control effort are
minimized. The solution is obtained by using the dynamic programming technique, which
allows for several possible generalizations that are also considered. The results of this paper
can be used for control of systems with a stochastic growth rate. This is frequently the case in
investment problems and in biomathematics.

1 Introduction

We are concerned with controlling the state or some measured quantity of the state to given values
at discrete times. That is given a system of the form

ẋ = f(x) + u1g1(x) + · · · + ukgk(x)

and
y = Cx

where x ∈ R
n and y ∈ R

p we look for a system of controls that drive the output through or close
to a prescribed sequence of set points

{y(ti) = αi : i = 1, · · · , N}.

In this paper we specialize this problem to one in which the system is linear but the evolution
equation is stochastic. Such systems occur in a variety of settings. We consider a rather complete
example of a model that contains variable interest rates in Section 3. A second example, considered
in Section 4, is trajectory planning for a feedback linearized mobile robot. Here the combined effect
of surface irregularities, friction, and other disturbances is modeled as a multiplicative stochastic
disturbance. Another set of problems occurs in biomathematics when considering the chemostat.
There are extensive references on physical, biological and mathematical background of the chemo-
stat available in the literature, see for example [5]. In many situations the nutrient content of

1



the chemostat is not deterministic and a better model would be obtained by replacing the linear
growth rate of the standard models by a random variable. This variable reflects the rate at which
the nutrient is consumed and/or naturally degrades. This rate is a function of temperature and
many other variables that are not modelled and hence could and should be taken to be stochastic.
It is beyond the scope of this paper to consider a complete analysis of such systems but a model in
this form fits the theory described in this paper.

The specific topic of this paper is the problem of designing a feedback control for a linear stochastic
differential equation in such a way that the mean value of a specific output interpolates given points
at given times at the same time as the variance and the expected value of an integral quadratic
cost along the trajectory are minimized. By minimizing the variance at the interpolation points we
minimize effect of uncertainty due to the diffusion term in the system equation. By using a new
notation we obtain compact formulas for the design equations. The problem is related to several
methods based on optimal control for interpolating splines that recently have been proposed in
the literature, see for example [4, 3, 12]. Apart from considering stochastic models, this paper
distinguishes itself by using a dynamic programming approach which leads to feedback solutions of
the corresponding control problem.

In Section 5 we discuss a generalization, where we optimize over a finite set of possible interpo-
lation points at each time instance. This problem reminds of the standard shortest path problem,
see e.g. [1], but is complicated by the dynamic nature which make the cost corresponding to each
node dependent on future interpolation points as well as the initial condition. The complexity of
this problem can be reduced by considering suboptimal techniques such as discretization or tree
pruning. We briefly review some related work in [2, 6, 8, 9].

2 Stochastic Trajectory Planning

We consider a path planning problem where a stochastic disturbance enters the differential equation.
As our basic problem we consider

J0(x0) = min
u∈M(t0,tN )

N−1∑

k=0

wk+1Var2{CX(tk+1)} + Et0,x0

{∫ tN

0
|u|2dt

}

subject to

{
dX = (AX + Bu)dt + G(X)dZ, X(t0) = x0

Et0,x0{CX(tk+1)} = αk+1, k = 0, . . . , N − 1

(2.1)

where wk ≥ 0 and (A, B) is a controllable pair. The last term in the stochastic differential equation
corresponds to a multiplicative noise on the state vector defined by a m-dimensional Brownian
motion Zt. In other words, Zt is a process with zero mean and independent increments, i.e.
E{dZtdZ

T
s } = δ(t − s)Idt, where δ denotes the dirac function. We assume that G(x) is a linear

function on the form

G(x) =
n∑

i=1

xiGi

where Gk ∈ R
n×m. In (2.1), Et0,x0 is the expectation operator given that X(t0) = x0 and

Var2{CX(tk)} = Et0,x0{(CX(tk) − Et0,x0{CX(tk)})2}.
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We consider optimization over all Markov controls, i.e. feedback controls on the form u(t, ω) =
µ(t, X(t, ω)). We let M(t0, tN ) denote the set of Markov controls on an interval (t0, tN ). It can be
shown that our optimal solution also is optimal over all F t adapted processes, where Ft denotes
the σ algebra generated by Zs for s ≤ t, see e.g. [10].

It turns out that there will be linear and constant terms in the value function due to the variance
term in the objective function. It is therefore no essential addition in complexity to consider a
more general path planning problem, where we allow the dynamics to be time-varying and different
from stage to stage. We also consider integral costs that penalizes the state vector. This gives the
following generalization of (2.1).

J0(x0) = min
u∈M(t0,tN )

Et0,x0

{
N−1∑

k=0

(
wk+1|C1X(tk+1) − βk+1|2 +

∫ tk+1

tk

σk(t, X, u)dt

)}

subject to

{
dX = (Ak(t)X + Bk(t)u)dt + Gk(t, X)dZ, t ∈ [tk, tk+1], X(t0) = x0

Et0,x0{C2X(tk+1)} = αk+1, k = 0, . . . , N − 1

(2.2)

where

σk(t, x, u) = xT Qk(t)x + 2xT Sk(t)u + uT Rk(t)u + 2qk(t)T x + 2rk(t)T u + �k(t)

and

Gk(t, x) =
n∑

i=1

xiGk,i(t)

and where everything else is defined in a similar way as in (2.1). Here Ak, Bk, Qk, . . . , ρk and Gk,i

are piecewise continuous functions of time and all pairs (Ak(t), Bk(t)) are assumed to be completely
controllable and the cost is strictly convex, which is the case if for all t ∈ [tk, tk+1], k = 0, . . . , N−1,
we have

Rk(t) > 0 and

[
Qk(t) Sk(t)
Sk(t)T Rk(t)

]
≥ 0 (2.3)

Note that if C1 = C2 = C and αk = βk then Et0,x0
{
|CX(tk) − βk|2

}
= Var2{CX(tk)}.

Let us define the cost-to-go functions

Jk(x) = min
u∈M(tk,tN )

Etk,x

{
N−1∑

i=k

(
wi+1|C1X(ti+1) − βi+1|2 +

∫ ti+1

ti

σi(t, X, u)dt

)}

subject to

{
dX = (Ai(t)X + Bi(t)u)dt + Gi(t, X)dZ, t ∈ [ti, ti+1], X(tk) = x

Et0,x0{C2X(ti+1)} = αi+1, i = k, . . . , N − 1

JN (x) =0
(2.4)

Due to the Markov property of the stochastic differential equation we can use dynamic programming
to solve (2.1). We next state two propositions and then the main result that solves (2.1). The first
states the dynamic programming recursion.
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Proposition 2.1. The optimal cost satisfies the following dynamic programming equation.

Jk(x) = min
u∈M(tk,tk+1)

Etk,x

{∫ tk+1

tk

σk(t, X, u)dt + wk+1|C1X(tk+1) − βk+1|2 + Jk+1(X(tk+1))
}

subject to

{
dX = (Ak(t)X + Bk(t)u)dt + Gk(t, X)dZ, X(tk) = x

Etk,x{C2X(tk+1)} = αk+1

JN (x) = 0

The next proposition states the solution to the following stochastic optimal control problem. It
shows that Jk(x) is a quadratic function which is instrumental in solving the dynamic programming
iteration.

V (x0, α, t0, tf ) = min
u∈M(t0,tf )

Et0,x0

{∫ tf

t0

σ(t, X(t), u(t))dt + X(tf )T Q0X(tf ) + 2qT
0 X(tf ) + �0

}

subject to

{
dX = (A(t)X + B(t)u)dt + G(t, X)dZ, X(t0) = x0

Et0,x0{CX(tf )} = α

(2.5)

where

σ(t, x, u) = xT Q(t)x + 2xT S(t)u + uT R(t)u + 2q(t)T x + 2r(t)T u + �(t)

and where Q, R, and S satisfies the conditions in (2.3).

Proposition 2.2. We have

V (x0, α, t0, tf ) = xT
0 P (t0)x0 + 2p(t0)T x0 + ρ(t0) + (N(t0)T x0 + m(t0))T W (t0)−1(N(t0)T x0 + m(t0))

where

Ṗ + AT P + PA + Q + Π(P ) = (PB + S)R−1(PB + S)T , P (tf ) = Q0

Ṅ + (A − BR−1(BT P + ST ))T N = 0, N(tf ) = CT

ṗ + (A − BR−1(BT P + ST ))T p + q = (PB + S)R−1r, p(tf ) = q0

Ẇ + NBR−1BT N = 0, W (tf ) = 0

ṁ = NT BR−1(BT p + r), m(tf ) = −α

ρ̇ + � = (r + BT p)T R−1(r + BT p), ρ(tf ) = �0

(2.6)

and where Π(P ) is a linear matrix function with elements Π(P )k,l = 1
2tr(GT

k PGl). The optimal
control is

u∗ = −R−1(BT P + ST )X − R−1BT Nv − R−1(BT p + r)

with v = −W (t0)−1(N(t0)T x0 + m(t0)).

Remark 2.1. If Q, R and S satisfies a condition analogous to (2.3), then the linearly perturbed
Riccati equation in (2.6) has an absolutely continuous unique positive semidefinite solution [11].
All other differential equations in (2.6) are linear with bounded piecewise continuous coefficients,
which ensure existence of unique absolutely continuous solutions. Note also that we have W (t) > 0
for t ∈ [t0, tf ) by the complete controllability of (A(t), B(t)).

4



Proof. The proof is done by Lagrangian relaxation of the linear constraint. See Appendix A for
the complete details.

In order to obtain a compact notation we introduce

Q̂0 =

[
Q0 q0

qT
0 �0

]
, Q̂ =

[
Q q

qT �

]
, Ŝ =

[
S

rT

]
,

P̂ =

[
P p

pT ρ

]
, N̂ =

[
N

mT

]
, Ŵ = W, R̂ = R

Â =

[
A 0
0 0

]
, B̂ =

[
B

0

]
, Ĉ(α) =

[
C −α

]
,

Ĝ(t, x) =

[
G(t, x)

0

]
, Π̂(P̂ ) =

[
Π(P ) 0

0 0

]
.

(2.7)

If we finally let X̂ =
[
XT 1

]T
and x̂0 =

[
xT

0 1
]T

then the optimization problem (2.5) can be
written

V (x0, α, t0, tf ) = min
u∈M(t0,tf )

Et0,x̂0

{∫ tf

t0

[X̂T Q̂X̂ + 2X̂T Ŝu + uT R̂u]dt + X̂(tf )T Q̂0X̂(tf )
}

subject to

{
dX̂ = (Â(t)X̂ + B̂(t)u)dt + Ĝ(t, X)dZ, X̂(t0) = x̂0

Et0,x̂0{Ĉ(α)X̂(tf )} = 0

(2.8)

and the optimal solution can be written

V (x0, α, t0, tf ) = x̂T
0

[
P̂ (t0) + N̂(t0)Ŵ (t0)−1N̂(t0)T

]
x̂0

where

˙̂
P + ÂT P̂ + P̂ Â + Q̂ + Π̂(P̂ ) = (P̂ B̂ + Ŝ)R̂−1(P̂ B̂ + Ŝ)T , P̂ (tf ) = Q̂0

˙̂
N + (Â − B̂R̂−1(B̂T P̂ + ŜT ))T N̂ = 0, N̂(tf ) = Ĉ(α)T

˙̂
W + N̂T B̂R̂−1B̂T N̂ = 0, Ŵ (tf ) = 0

The optimal control is

u∗ = −R̂−1(B̂T P̂ + Ŝ)x̂ − R̂−1B̂T N̂Ŵ (t0)−1N̂(t0)T x̂0

There is an equivalent feedback form given as u∗ = −R̂−1(B̂T (P̂ + N̂Ŵ−1N̂T ) + ŜT )X̂.
We can now state the solution of the general stochastic trajectory planning problem in (2.2).

Proposition 2.3. Consider the optimal control problem in (2.2), where the condition (2.3) holds.
The optimal Markov control in each time interval [tk, tk+1] is (all variables are defined analogously
with (2.7))

u∗(t) = −R̂k(t)−1(B̂k(t)T P̂k(t) + Ŝk(t)T )X̂(t) − R̂k(t)−1B̂k(t)T N̂k(t)Ŵk(tk)−1N̂k(tk)T X̂(tk)
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where for k = N − 1, . . . , 0

˙̂
P k + ÂT

k P̂k + P̂kÂk + Q̂k + Π̂k(P̂k) = (P̂kB̂k + Ŝk)R̂−1
k (P̂kB̂k + Ŝk)T ,

˙̂
Nk + (Âk − B̂kR̂

−1
k (B̂T

k P̂k + ŜT
k ))T N̂k = 0, N̂k(tk+1) = Ĉ2(αk+1)T ,

˙̂
W k + N̂T

k B̂kR̂
−1
k B̂T

k N̂k = 0, Ŵk(tk+1) = 0,

and where P̂N−1(tN ) = wN Ĉ1(βN )T Ĉ1(βN ) and for k = N − 2, N − 3, . . . , 0

P̂k(tk+1) = P̂k+1(tk+1) + N̂k+1(tk+1)Ŵk+1(tk+1)−1N̂k+1(tk+1)T + wk+1Ĉ1(βk+1)T Ĉ1(βk+1).

The cost-to-go is

Jk(x) = x̂T
[
P̂k(tk) + N̂k(tk)Ŵk(tk)−1N̂k(tk)T

]
x̂.

Proof. By dynamic programming.

The formulation of Proposition 2.3 in the compact notation (2.7) gives appealing formulas but
in a numerical implementation it is more efficient to perform computations using a system on the
form (2.6). For the basic trajectory planning in (2.1) this reduces to the following result

Corollary 2.1. Consider the optimal control problem in (2.1), where the pair (A, B) is controllable.
The optimal Markov control in each time interval [tk, tk+1] is

u∗(t) = −R−1BT Pk(t)X(t) − R−1BT Nk(t)vk − R−1BT pk(t)

with vk = −Wk(tk)−1(Nk(tk)T X(tk) + mk(tk)), where

Ṗk + AT Pk + PkA + Π(Pk) = PkBR−1BT Pk,

Ṅk + (A − BR−1BT Pk)T Nk = 0,

ṗk + (A − BR−1BT Pk)T pk = 0,

Ẇk + NT
k BR−1BT Nk = 0,

ṁk = NT
k BR−1BT pk,

ρ̇k = pT
k BR−1BT pk,

(2.9)

where Π(Pk) is a linear matrix function with elements Π(P )k,l = 1
2tr(GT

k PGl) and the boundary
conditions are

Pk(tk+1) = Pk+1(tk+1) + Nk+1(tk+1)Wk+1(tk+1)−1Nk+1(tk+1)T + wk+1C
T C

pk(tk+1) = pk+1(tk+1) + Nk+1(tk+1)Wk+1(tk+1)−1mk+1(tk+1) + wk+1α
T
k+1C

T

ρk(tk+1) = ρk+1(tk+1) + mk+1(tk+1)T Wk+1(tk+1)−1mk+1(tk+1) + wk+1α
T
k+1αk+1

and Nk(tk+1) = CT , mk(tk+1) = −αk+1 and Wk(tk+1) = 0.
The optimal cost-to-go is

Jk(x) = xT Pk(tk)x + 2pk(tk)T x + ρk(tk) + (Nk(tk)T x + mk(tk))T Wk(tk)−1(Nk(tk)T x + mk(tk))
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3 A Homeowners Investment Problem

We consider a very simple problem arising in portfolio optimization. For most people their home is
the most dominant feature of the portfolio. In this example we consider the problem of controlling
the investment in the home when interest rates fluctuate and inflation, either positive or negative,
occurs. In this example we are aware that in addition to making monthly payments the homeowner
will usually make improvements to the home thus increasing the value over and above the increase
caused by inflation, some features of the home deprecate lowering the value of the home and the
homeowner has the option to borrow against the value of the home at several points during the
course of ownership. We model the value of the home in terms of two linear stochastic differential
equations and allow the noise to enter as a multiple of the state. The variables are categorized in
Table 3.

P (t) is the principal remaining on the loan at time t

P0 initial purchase price

V (t) the actual market value of the home at time t

u1(t) the amount of cash either paid toward the principal
and interest or withdrawn from the home in terms of
equity loans

u2(t) money applied to the value of the house in terms of
improvements or taken form the value of the house
through the sale of assets

dZ(t) a Brownian motion processes representing inflation
and fluctuation in interest

i nominal annual interest rate

Table 1: Variables

We begin by considering the discrete time case. The fundamental law of payments can be
expressed as the principal at time n + 1 is equal to the principal at time n plus interest drawn
during the time period plus or minus the payment, i.e.,

Pn+1 = (1 + in)Pn ± Qn

where Pn denotes principal, in denotes the interest in the nth period and Qn denotes the nth
payment. Now using the notation from the table we have

P (t + h) = P (t) + h(i(t)P (t) − u1(t) + u2(t)), P (0) = P0 (3.10)

where u1(t) is rate of payment. The control u2(t) represents money borrowed from the bank to
make improvements. This variable enters into the equation for the value of the house. We divide
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the interest rate into two parts. The first is a nominal rate and the second is ”random” motion of
the rate. For the sake of simplicity we assume that this rate is equal to the rate of inflation. We
can think of i(t) = i + Z(t + h)−Z(t) where Z(t + h)−Z(t) is an increment of Brownian motion.

The second part of the model is the market value of the home. Here we have

V (t + h) = V (t) + hu2(t) + (Z(t + h) − Z(t))V (t), V (0) = P0 (3.11)

We allow both u1 and u2 to be either positive or negative. If u1 is negative we consider this to
be money that is withdrawn from the value of the home as an equity loan. If u2 is negative we
consider this to be money that is achieved through the sale of assets associated with home. Any
such money will be assumed to be applied to the principal. This is not a real restriction since we
can immediately borrow this money in terms of an equity loan. We can pass to the limit to obtain
a continuous time model.

For the continuation of this model we take the following equations describing the evolution of
the value of the home.

dP (t) = iP (t)dt + (u2(t) − u1(t))dt + P (t)dZ(t), P (0) = P0 (3.12)

dV (t) = V (t)dZ(t) + u2(t)dt, V (0) = P0 (3.13)

In the first equation we see that dZ(t) can denote the variation that occurs in interest rates.
This is of course an approximation of reality. It is unlikely that interest rates would ever become
negative and in most home loans there is a provision to bound from above the interest rate. The
incorporation of these bounds complicates the problem and obscures the application that we wish
to exhibit. In the second equation dZ(t) denotes the effect of inflation on the value of the home.
At one time it would not have seemed reasonable to have negative inflation. However during the
1990s and into the beginning of the 21 century we have seen negative inflation in Japan. To use
the same rate for inflation and interest fluctuation is not entirely correct but for the purpose of an
example to support the theory developed in this paper it is adequate.

The variable of primary interest is a linear combination of P (t) and V (t). We let

Y (t) = V (t) − P (t) (3.14)

this variable represents the cash value of the home. A reasonable objective is to ask that Y (t)
should double during the thirty years of the standard loan. That is we state as one objective that

E{Y (30)} = 2P0

where E{·} denotes expected value. In general we might expect that y(t) should follow a curve
such as

2P0(eβt − 1)

where the variable β is chosen so that e30β − 1 = 2. We will for the purpose of the example ask
that the following constraints be met.

E{Y (10k)} = 2P0(e10kβ − 1), k = 1, 2, 3 (3.15)

We want to find an investment strategy that minimizes the financial activity as well the variance
of the constraints (3.15). The problem that we consider is hence on the following form.
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Problem 3.1.

min
u

E

{∫ 30

0
(u1(t)2 + u2(t)2)dt +

3∑

k=1

wkVar2(Y (10k))

}

subject to the constraints of equation (3.12), (3.13) and (3.15).

We consider the case when wk = 0.01, i = 0.075 and P0 = 105$. In Figure 1 we show a stochastic
simulation of the result. In the upper left plot we show a simulation of the cost value Y . The
upper right plot shows an estimate of the expected value E{Y (t)} obtained by averaging over 1000
simulations. The lower left plot shows the controls u1, u2 (u1 in solid line and u2 in dashed line)
and the lower right plot shows the P and V (P in solid line and V in dashed line).

0 10 20 30
0

500

1000

1500

2000
Y

0 10 20 30
0

500

1000

1500

2000
EY

0 10 20 30
−600

−400

−200

0

200

400

0 10 20 30
−1000

−500

0

500

1000

1500

Figure 1: Stochastic simulation of the solution to the investment problem.

4 Path Planning for Mobile Robot

We consider the problem of steering a robot from rest at an initial condition (−5, 1) to rest at
the final position (−1, 5) in such a way that it stays inside the corridor in the upper left part of
Figure 2. We assume the linear dynamics

ÿ = u + w

where w is a noise signal that take into account friction, irregularities in the floor, and other
error sources. The linear dynamics can be obtained after feedback linearization of realistic robot
models [7]. If we let the noise be modeled as a Brownian motion, then the state space realization
of the robot dynamics becomes the stochastic system

dX = (AX + Bu)dt + G(X)dW

Y = CX
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where

A =





0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0



 , B =





0 0
1 0
0 0
0 1



 , C =

[
1 0 0 0
0 0 1 0

]
, G(x) =





0 0
x2 0
0 0
0 x4



 .

Let us use the design equation

−5 −4 −3 −2 −1 0

0

1

2

3

4

5

−5 −4 −3 −2 −1 0

0

1

2

3

4

5

0 2 4 6
−3

−2

−1

0

1

2

3

−5 −4 −3 −2 −1 0

0

1

2

3

4

5

Figure 2: The upper left figure shows the initial and final positions for the robot. The upper right
figure shows one realization of the optimal path of the robot and the lower right figure shows the
corresponding control signals, where u1 corresponds to the solid line and u2 is the dashed line.
The weights w1 = 7 and w2 = 1 were used in the optimization problem (4.16). Finally, the lower
right figure shows an estimate of the expected path obtained by averaging over 100 stochastic
simulations.

minE0,x0

{
w1|C1X(3) − α1|2 + w2|C3X(6) − α3|2 +

∫ 6

0
|u|2dt

}

subj. to

{
dX = (AX + Bu)dt + G(X)dW, X(0) = x0

E0,x0 {C2X(3)} = α2, E0,x0 {C3X(6)} = α3

(4.16)

where

C1 =

[
1 0 0 0
0 0 1 0

]
, α1 =

[
−1
1

]

C2 =
[
1 0 1 0

]
, α2 = 0

C3 =





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



 , α3 =





−1
0
5
0



 .
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Stage NStage N−1Stage N−2Stage 2Stage 1Stage 0

Figure 3: We consider optimization of the path from a given initial state at stage 1 to a given node
αN at stage N . The path must pass trough one node in the graph at each stage.

The idea behind the optimization problem is to divide the control problem into two stages. First,
we steer the robot to the switching surface C2x = α2 in such a way that the expected deviation
from the point C1x = α1 is small. Then in the next stage we steer to the final position x = α3

in such a way that the variance of the deviation from this point is small. The integral cost is
introduced to keep the expected control energy small. With the weights w1 = 7 and w2 = 1 we get
the result in Figure 2. We see from the lower plot that the expected path of the robot stays well
inside the corridor as desired. It is possible to push the trajectory further toward the middle of
the corridor by adding an integral cost E0,x0

{∫ 6
0 q|Cx − y0(t)|2dt

}
, where q ≥ 0 and y0(t) is some

nominal trajectory near the middle of the corridor. The corresponding optimization problem still
belongs to the problem class considered in this paper.

5 Route optimization

We can also consider trajectory planning problems where we at each time instant can choose to
interpolate one out of several points. This is illustrated in Figure 3, where we have fixed initial
and terminal nodes but can choose between several different routes between these two nodes. For
consistency with the previous discussion we assume that the initial node is the initial state vector,
i.e., α0 = x0. At all other time instants we have a number of possible nodes, each corresponding
to a subspace on the form {x ∈ R

n : Cx = αkj
}. The nodes at each stage are thus defined by

the set Sk = {αk1 , . . . , αkNk
}. We define a set-valued function Nk : Sk �→ P(Sk+1) (P(Sk+1) is

the set of all subsets of Sk+1) that defines the possible successors of each node. This means that
Nk(Cxk) ⊂ Sk+1 if Cxk ∈ Sk and Nk(Cxk) = ∅ otherwise. We can now generalize (2.1) and (2.2)
to the case when we not only optimize a continuous time trajectory interpolating a given number
of interpolation points (nodes) but also optimize over the set of nodes at each time instant. Let us
consider

J0(x0) = min
u∈M(t0,tf )

N−1∑

k=0

(
wk+1Var2{CX(tk+1)} + Et0,x0

{∫ tk+1

tk

σk(t, X, u)dt

})

subject to

{
dX = (AkX + Bku)dt + Gk(X)dZ, t ∈ [tk, tk+1], X(0) = x0

Et0,x0{CX(tk+1)} ∈ Nk(Et0,x0{CX(tk)}), k = 0, . . . , N − 1

(5.17)
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For the investment example in the Section 3 this would mean that we can choose between a number
of selected cash values in the intermediate time instances. If we let1

Uk(xk, αk+1) =

{
u ∈ M(tk, tk+1) :

{
dX = (AkX + Bku)dt + Gk(X)dZ, X(tk) = xk

Etk,xk{CX(tk+1)} = αk+1

}

Ck(u, αk+1) =
∫ tk+1

tk

σk(t, X, u)dt + wk+1|CX(tk+1) − αk+1|2

then the dynamic programming iteration for (5.17) can be written as

Jk(xk) = min
αk+1∈Nk(Cxk)

min
u∈Uk(xk,αk+1)

Etk,xk {Ck(u, αk+1) + Jk+1(X(tk+1))} .

Note that if Cxk �∈ Sk then Nk(Cxk) = ∅ and the optimal objective is unbounded. The solution of
the inner optimization can be constructed as in Proposition 2.3. We notice that this value function
is completely determined by the node for the case when C = I, i.e. when each node is a point in
the state space of the dynamical system. For this case the route optimization can be performed
by discrete dynamic programming iteration over the discrete state space Sk at each stage. Once
we know the optimal route, i.e., the optimal αk ∈ Sk, k = 1, . . . , N , then we can construct the
optimal control as in Proposition 2.3.

For the general case when C has full row rank m < n, then the problem is much harder because
Jk(xk) is not completely determined by the choice of nodes at stage k, . . . , N . The problem is then
computationally very expensive for large N . One way to reduce the computational complexity is
to discretize the state vector in each node. In this way a suboptimal solution can be obtained by
discrete dynamic programming. In essense this means that we optimize over a finite collection of
predefined trajectories, which is an approach that have been discussed for trajectory planning in,
for example, [2, 6]. Another way to reduce the complexity is to prune the search tree in some
effiscient way in order to find an optimal (or a near optimal) sequence of nodes. In order to discuss
this problem we introduce some new notation. We let ᾱk = (αk, . . . , αN−1, αN ), where αn ∈ Sn,
denotes an admissible node sequence from stage k to the terminal fixed node αN , and let

Ak =
{
ᾱk ∈ ΠN

n=kSn : αn+1 ∈ N (αn)
}

be the set of all admissible node sequences from stage k + 1 to the terminal node αN . Similarly

Ak(αk) =
{
ᾱk+1 ∈ ΠN

n=k+1Sn : αn+1 ∈ N (αn)
}

is the set of all sequences of nodes from stage k to stage N with the kth node fixed to be αk. In the
same way as above, the value function in a particular node αk = Cxk at stage k can be computed
as

Jk(xk) = min
ᾱk+1∈Ak(Cxk)

Jk(xk, ᾱk+1)

We would like to remove as many node sequences as possible from Ak during the dynamic program-
ming recursion. Let Ak,O(αk) denote sequences that are candidates for optimality (the index O

1In Ck(u, αk+1) we implicitly assume that X(t) satisfies the stochastic differential equation in the definition of

Uk(xk, αk+1).
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stands for the open candidates and is a standard notation). Then at each node during the dynamic
programming recursion we take the following two steps

(i) Ak,O(αk) = {(αk+1, ᾱk+2) : ᾱk+2 ∈ Ak+1,O(αk+1);αk+1 ∈ N (αk)}.

(ii) Remove branches from Ak,O(αk) that cannot correspond to the optimal node sequence.

This gives us the value function Jk(xk) = minᾱk+1∈Ak,O(αk) Jk(xk, ᾱk+1). The second step is not
easy since each function Jk(xk, ᾱk+1) depends on the particular node sequence ᾱk+1 ∈ Ak+1 but
also on the the state vector at node k which depends on prior stages and in particular the initial
condition. An alternative idea, discussed in for example [8, 9], is to replace step (ii) above with

(ii)′ Remove branches from Ak,O(αk) that are unlikely to be the optimal node sequence.

This generally give suboptimal solutions but the computational complexity may be reduced signif-
icantly. Some appealing and promising ideas for implementing (ii)′ was suggested in [8, 9]. There
they consider optimization of switching sequences for LQR control of switched linear systems. This
is mathematically closely related to the route optimization considered in this section and their
results can be adapted to the problem discussed in this section.
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Appendix A: Proof of Proposition 2.2

We use the compact notation introduced in (2.7) and (2.8) after the proposition. If we apply the
Lagrange multplier rule to (2.8) then we obtain

V (x0, α, t0, tf ) =max
λ

min
u∈M(t0,tf )

Et0,x̂0

{∫ tf

0
[X̂T Q̂X̂ + 2X̂T Ŝu + uT R̂u]dt

+ X̂(tf )T Q̂0X̂(tf ) + 2λT Ĉ(α)X̂(tf )
}

subject to dX̂ = (Â(t)X̂ + B̂(t)u)dt + Ĝ(t, X)dZ, X̂(t0) = x̂0

The solution to the inner optimization can be obtained from the Hamilton-Jacobi-Bellman Equation
(HJBE)

−∂V

∂t
= min

u∈Rm




x̂T Q̂x̂ + 2x̂T Ŝu + uT R̂u +
∂V

∂x̂

T

(Âx̂ + B̂u) +
1
2

n∑

i=1

n∑

j=1

aij
∂2V

∂xi∂xj






V (x, tf ) = x̂T Q̂0x̂ + 2λT Ĉ(α)x̂

where

aij = (σσT )ij =

(
(

n∑

k=1

xkGk)(
n∑

l=1

xlG
T
l )

)

ij

=
n∑

k,l=1

xkxlGkiG
T
lj ,

where Gki is the ith row of Gk. With the value function V (x̂, t) = x̂T P̄ (t)x̂ we get

1
2

n∑

i=1

n∑

j=1

aij
∂2V

∂xi∂xj
=

1
2

n∑

k=1

n∑

l=1

xkxltr(GT
k PGl) = x̂T Π̂(P̄ )x̂,

If we plug the ansatz V (x̂, t) = x̂T P̄ (t)x̂ into the HJBE we get the optimal control u = −R̂−1(B̂T P̄+
Ŝ)x̂, and that the following Riccati equation must hold

˙̄P + ÂT P̄ + P̄ Â + Q̂ + Π̂(P̄ ) = (P̄ B̂ + Ŝ)R̂−1(P̄ B̂ + Ŝ)T ,
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with boundary condition P̄ (tf ) = Q̂0 + λT Ĉen+1 + eT
n+1Ĉ

T λ. The optimal cost becomes

V (x0, α, t0, tf ) =max
λ

x̂T
0 P̄ (λ, t0)x̂0 (5.18)

To perform the optimization with respect to λ we need to obtain an explicit expression of P̂ as a
function of λ. It turns out that we can use

P̄ = P̂ + N̂λeT
n+1 + en+1λ

T N̂T − λT Ŵλen+1e
T
n+1

where P̂ , N̂ and Ŵ are given in (2.7). This follows since

P̄ (tf ) = P̂ (tf ) + N̂(tf )λeT
n+1 + en+1λ

T N̂(tf )T + λT Ŵ (tf )λen+1e
T
n+1

= Q̂0 + λT Ĉen+1 + eT
n+1Ĉ

T λ

and

˙̄P = −ÂT P̂ − P̂ Â − Q̂ − Π̂(P̄ ) + (P̂ B̂ + Ŝ)R̂−1(P̂ B̂ + Ŝ)T − (Â − B̂R̂−1(B̂T P̂ + ŜT ))T N̂λeT
n+1

− en+1λ
T N̂T (Â − B̂R̂−1(B̂T P̂ + ŜT )) − λT N̂T B̂R̂−1B̂T N̂λen+1e

T
n+1

= −ÂT P̄ − P̄ Â − Q̂ − Π̂(P̂ ) + (P̄ B̂ + Ŝ)R̂−1(P̄ B̂ + Ŝ)T

which follows since

ÂT (en+1λ
T N̂T + λT Ŵλen+1e

T
n+1) = 0,

B̂T (en+1λ
T N̂T + λT Ŵλen+1e

T
n+1) = 0.

The optimization in (5.18) thus becomes

max
λ

x̂T
0 (P̂ (t0) + N̂(t0)λeT

n+1 + en+1λ
T N̂(t0)T − λT Ŵ (t0)λen+1e

T
n+1)x̂0

= x̂T
0 (P̂ (t0) + N̂(t0)Ŵ (t0)−1N̂(t0)T )x̂0

and the optimal Lagrange multiplier is λ = Ŵ (t0)−1N̂(t0)T x̂0. Finally, the optimal control becomes

u = −R̂−1(B̂T (P̂ + N̂Ŵ (t0)−1N̂(t0)T x̂0en+1T ) + Ŝ)x̂

= −R̂−1(B̂T P̂ + Ŝ)x̂ − R̂−1B̂T N̂Ŵ (t0)−1N̂(t0)T x̂0

Considering the optimal control problem from the “initial point” (t, x(t)) gives the following feed-
back formulation of the optimal control u = −R̂−1(B̂T (P̂ + N̂Ŵ−1N̂T ) + ŜT )X̂. We note that
under the conditions of the proposition there exists solutions P̄ and P̂ to the Riccati equations that
are involved in the proof. Indeed, the special structure of the system matrices imply that only the
upper left blocks of P̄ and P̂ satisfy nonlinear equations, which are identical to the first equation
in (2.6). The other blocks corresponds to p and ρ in (2.6). Hence, the existence of P̄ and P̂ follows
from Remark 2.1.
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