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Abstract
We present in this paper a study concerning the conditioning analysis of a continuous-
time deterministic subspace-based model identification algorithm. We show that the
conditioning number of the associated extended observability matrices depends on an
exponential way from both: the estimated order of the system and the dimension of
the system output vector.

1 Introduction

As far as linear time-invariant multivariable systems are concerned, subspace-based model
identification algorithms constitute a broad family of identification methods mainly char-
acterized by the use of geometric information (see for instance [3], [4], and [5]). The
subspace-based methods compute the estimated parameters, i.e., a state space realization
of the system, from an approximation of the observability subspace of the concerned sys-
tem. This approximation is obtained from a discrete-time set of input-output measurements.
Continuous-time data is filtered and sampled in order to obtain discrete-time information
(see [1]). We present in this paper an algorithm to identify a continuous linear time-invariant
model from a given set of discrete-time input-output measurements. Our algorithm is based
on the method proposed in [3], and depends essentially on the pseudo-inverse of the so-called
extended observability matrices. We present then the analysis of the conditioning number
of these observability matrices, which is the main purpose of this paper.

In Section 2 we present our proposed algorithm, while in Section 3 we discuss its numerical
properties.

! Corresponding author, on leave from Departamento de Control Automéatico, CINVESTAV-IPN, México.
E-mail address: martinez@ctrl.cinvestav.mx.



2 The CN4SID algorithm

Consider the continuous linear time-invariant system (A, B, C, D) described by:

p () = Az (t) + Bu(t).
{ () = Cx (1) + Du(t). 21)

where: p denotes the differential operator, i.e. p = d/dt; z(-) € R™ denotes the state;

u () € R™ denotes the input, and y (-) € RP denotes the output. A, B, C' and D are linear

maps represented by real constant matrices. It is assumed that (C, A) is observable.
Consider the scalar causal stable operator:
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14 pr’

(2.2)

where 7 is a scalar such that 7 > 0. Given a R? valued signal y (t), we define the *"-filtered
signal [Ay| (t) as follows:

Wl o={50." " Sanito

Applying this filtering action to the system (A, B, C, D) we obtain the modified system:

x (t) = Ay [Az] (t) + By [\ (1)
{ y(t) = Cx(t) + Du(t), (2.3)

where Ay = I +7A and B, = 7B. Since (A, B) and (A,, B,) are linked through a biyective
map, the obtention of estimates for A and B results in the obtention of estimates for A and
B.

Suppose constant sampling and a sampling time sequence {tk},]fz'lo be given, where t; =
to+ kh (with h denoting the sampling period). Let input-output measurements {uk}fcvzt and
{yx}2"1 on system (2.3) be given. The deterministic Continuous Subspace Identification
(CSId) problem is then defined as follows:

Definition 2.1. CSId problem: Consider the filtered model (2.3) and the input-ouput mea-
surements {u}n_o and {yp}r_s, estimate then the unknown matrices A, B, C, and D.

We can then build the following matrices:

[)‘Hy]o [)‘Hyh T [)‘i_ly]N-l
)\i—Z )\z’-Z . )\i—2
v o— [ 'y]o [ '9]1 ' [ g.J]N—l (2.4)
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and:

N uly ]y [Ny
)\z’-QU )\z’-QU . )\z’-QU
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In what follows we present the CN4SID algoritm, which is based on: the N4SID algo-
rithm [3], and the space trasformation discussed in [1].

CN4SID Algorithm: Consider a continous linear-time invariant system described by (2.1)
and the corresponding filtered model (2.3). Let the input-output sequences {uy }r—p, and
{yk}]kvz'}) be given. Let ¢ be an the estimated order of the system such that N >> i > n,
where n denotes the real system. It is then possible to find matrices ﬁ, B , C , and D
(i.e., the estimates of A, B, C, and D, respectively), according to the procedure:

1. Build matrices Y and U as defined in (2.4) and (2.5), respectively.
2. Build matrices [\'Y] and [\'U].
3. Build matrices [N'W] and [A*W] defined as follows:

0 = iy | o 0w = |y |
4. Compute the proyections:
| oot | = L 20 oy |

and:

[ 50])- 2e  [52])

5. From the singular value decomposition of L,,:

NXi =L, NW] = [ Uy Uy ] {Sn 0 } {Vé

- Vo,}pw]

compute the i"-A-extended observabilily matrices:
A; = U,SY2, (2.6)
where S/? stands for the Cholesky factor of S,,.
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6. From extended observabilily matrices A; compute the state sequences:

X; = AL, NW]
and:
AX] = Al Ly [N W]

Al stands for the pseudo-inverse of A,;.

7. Solve the following optimization problem:
X; AX)] }
. -K .
{ [A'y] ] { [\

A,\ B)\
C D

2

min

A ?

F

where:

and ||«|| stands for the Frobenius norm of «.

8. Finally:

~ AT

A=22
-

and:

~ B

B =22
T

In what follows we discuss the numerical properties of the CN4SID algoritm.

3 Numerical properties

Since the CIN4SID algoritm depends essentially on the pseudo-inverse of the A-extended

observability matrices A; given by (2.6), in this section we discuss the conditioning of these

matrices.

We first present some preliminary results concerning the nature of A;. Let us define the

i'"-extended observability matrix I'; as follows:

_ 8. -
CA
Fi = CA2

| CA™
Then:

(3.7)



Lemma 3.1. Let I'; be as defined in (3.7), then:

A =TT,
where:
[ ] 0 0 0 7
I Tl 0 0
T=|1 271 ™ .0 € RP*%P, (3.8)
i ] (1—11)7_] (Zél) 7_2] 7_1 1] i
with:

Proof. Because of the definition of A; we have that:
C
C' Ay
cAs
where:
Ay=1+T1A. (3.10)

Thus:

_ o _
C+71CA

A; = C+2rCA+ T*CA? (3.11)

Rert (i_ll)TCA—i— (1-21)726%2 o rrloAr |

which implies:

s
I

TT:. (3.12)

Thus, the numerical conditioning of A;, in terms of the Frobenius norm, is given by:

kr () = || Asl| o [| AT

F?
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and from Lemma 3.1:
kp () = [|TTl| [(TT)) -
Consequently:

ke (M) < 1T |7 o Tl 17

I Ul

ke (A)) < ke (T) ke (T) . (3.13)

Remark 3.1. Because of its dependence on the input-output measurements, it is not possible
to have a priori knowledge of kr (I';). However, it is suitable to have a small value for this
conditioning number. As far as kp (T') is concerned, it is possible to have a priori knowledge
of its value. For the above reason, we focus our analysis on the study of the conditioning
number of T'.

Lemma 3.2. Let T be as defined in (3.8), then:

7 k k-1 2
1Tl =p>2 3" (j_l) .

k=1 j=1

Proof. Let matrix T be as defined in (3.8). Then, the block matrix T}; € RP*? can be written
as follows:

E-1\
Tyj = (j_l)rﬂ-llpxp (3.14)
and its corresponding transpose block matrix is given by:
-1\ .
Tj = (j_l)ﬂ'l]pxp (3.15)

and consequently the kl-block matrix of 77", i.e. (T1"),; € RP*P, is given by:

k1 -1\ .
(TTI)kl = z (]‘1> Tj_ljpxp (]‘1) Tj_l‘[pxp

j=1
: k-1> (l-l) 20-1)
= > (. i il A (3.16)
= (J-l J-1
Moreover:
L RN (A1
tr (TT') = ( ,_1> ( ,_1) 720 Dp
k=l=1 j=1 J J
% k 2
k-1 -
_ ( 1) P21, (3.17)
1 g1 \”
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and because of the definition of the Frobenius norm:

ITI5 = tr(TT) (3.18)
_ p;2< ) 2(5-1) (3.19)
O

Remark 3.2. From the previous lemma we have that ||T)|% is a 2 (j — 1) polynomial function
of 7. It is usual that 0 < 7 < 1. Thus, |T||> usually has a small value.

As far as the Frobenius norm of 7! is concerned, we have the following result, which gives
the Frobenius norm of adj (T'), i.e., the adjunct of T":

Lemma 3.3. Let T be as defined in (3.8), then:

Jadj (T)]% = pT"’“ZZ( ) b,

k=1 j=1
where p > 0 denotes the dimension of the output vector.

Proof. Let matrix T" be as defined in (3.8). Then, the adjunct of 7' can be written in terms
of its kj-block matrix, i.e. (adjT),; € RF*F, as follows:

(k-1 i
(adiT); = (~1)** (j-l)f%‘““‘”fw (3.20)
and the corresponding block matrices of the transpose of adj (T') are given by:
(-1 e
(adjT)y = (=1)"* (j-l)f%“‘”fw. (3.21)

Then, the block matrices of the matrix product adj (T) adj (T')' can be written as:

. . : (k-1 iy
(adjT (adjT")),, = z(_l)kﬂ(- )T 2 (kl)[pxp

=1 It

(-1 o
. (_1)l+] (]_1) (l 1)[p><p

_ (_1)k+l+2j (kj"l> (Z"1>Ti(i-l)-Q(k-l)]po' (3.22)
1

= J-1)\y-1

As far as the trace of the matrix product adj (T) ad] (T)" is concerned we have:

tr (adj (T) adj (T)') = Z Z 1y (kfl>

k=Il=1 j=1 ‘71

l—]_ (e 2(2
( 1)74—11 (k1) 252D,
]_

_ ( > (3-1)-2(k- l)p (323)
1

k=1 j=
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Consequently:

ladj (T)|I: = = tr (adj (T) adj (T))

LIS A
I )
]_

k=1 j=1
O

We can at this level present our main result. Combining Lemma 3.2 and Lemma 3.3 we
have:

Theorem 3.1. Let T be as defined in (3.8), then:

i RN LAY
ko (T) = pr— 3 0 B 2(5-1) ) 2(5-1) | .
o (T) = pr52 (;2 (j—l) ; ) (k:1§; (j_1> . )

Proof. By definition:

kp (T) = Tl |77 (3.25)

l.e.:

ke (T) = \Jtr (TT")tr (T-1(T-1))

- \/ oy 00 D e (1) (3.26)

det (TT")

. . ip(i-1)
Now, taking into account Lemma 3.2, Lemma 3.3, and since det (T') = 7 = , we have:

P ARV S (k1)
_ i(i-1)(1-p - 2(4-1) B -2(k-1) | | 3.27
o <k=1 ; <j_1) ' ) <k=1 ; <j_1) ' > >

O

Remark 3.3. Asis established in Theorem 3.1, the conditioning number of T increases (and
so the conditioning number of A;) in an exponential way with both the estimated order of the
system, i, and the number of outputs, p.



References

1]

R. Johansson, M. Verhaegen, and C. T. Chou: “Stochastic Theory of continuous-time
state-space identification”, IEEFE Transactions on Automatic Control, Vol. 47, No. 1, pp.
41-51, 1999.

M. Moonen, B. De Moor, L. Vandenberghe, and J. Vandewalle: “On- and off-line iden-
tification of linear state-space models”, International Journal of Control, Vol. 49, No. 1,
pp. 219-232; 1989.

P. V. Overschee and B. de Moor: “N4SID: Subspace algorithms for the identification of
combined deterministic-stochastic systems”, Automatica, Vol. 30, No. 1, pp. 75-93, 1994.

M. Verhaegen and P. Dewilde: “Subspace model identification. Part I: The output-error
state-space model identification class of algorithms”, International Journal of Control,
Vol. 56, No. 5, pp. 1187-1210, 1992.

M. Verhaegen and P. Dewilde: “Subspace model identification. Part II: The analysis of
the elementary output-error state-space model identification algorithm”, International
Journal of Control, Vol. 56, No. 5, pp. 1187-1210, 1992.



