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Abstract

This paper examines the connections between feedback stabilization and H∞ con-
trol, model matching problems and multivariable Nevanlinna-Pick interpolation prob-
lems for multidimensional or nD linear systems.

1 Introduction

Feedback stabilization and optimal control problems for the case of classical linear sys-

tems have been much studied over the past several decades. More recently, such problems

for the case of multidimensional or nD linear systems have been drawing the attention of

researchers—see [DX99], [DXZ01], [SS92], [Sul94], and [Zerz00]. While most of these au-

thors are motivated by applications to physical situations having nD-system models, Helton

[Hel01] has pointed out a connection with adaptive control for a classical 1D system. After

D.Givone and R.Roesser [GR72], and E.Fornasini and G.Marchesini [FM76] and some other

researchers proposed various types of multidimensional linear models in the seventies, most

mathematicians and system engineers have been focusing on the development and extension

of the existence theories for classical linear systems to the nD systems. New theories and

notions, all of which are more generalized and complicated then those in the classical case,

have been introduced to describe the behavior of the nD systems.

It is well known that for linear time invariant 1D system there are various approaches

to solve the feedback stabilization problems; for instance, the pole placement, the matrix

fraction description (MFD’s), and the interpolation approaches. In the latter approach (see

[Fra87], one goes through coprime factorization to get the Q-parameter; with Q as the new

design parameter rather than the controller K, one has a model matching problem. Let F

be the performance function, which is affine in Q. Then, with the performance function F

as the design parameter rather than Q, one has an interpolation problem for F . One then

solves an interpolation problem to get F , and then backsolves for Q and finally for K, a
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desired controller. A criterion for internal stability can be expressed directly in terms of K:

K is internally stabilizing for the closed loop system whenever F is stable and satisfies the

appropriate interpolation conditions. Incorporation of a tolerance level on the performance

function then leads to an interpolation problem of Nevanlinna-Pick type.

However, this approach is much more complicated for the nD case for a number of reasons.

First of all, the reduction to the model-matching form is not obvious since the notion of co-

prime factorization splits in several independent ways in the nD case (see [YG79]). Secondly,

the multivariable analogue of Nevanlinna-Pick interpolation is much more complicated.

By using the various notions of coprime in the nD case, the matrix fraction description

(MFD) approach for nD linear systems and its connection with the properties of nD poly-

nomial and rational matrices were investigated by Z. Lin [Lin88]. He proved that, for nD

case, the rational matrix function P (z) does not always admit a minor right coprime de-

composition. From this fact, he was able to produce a counterexample to illustrate that

the determinant test for internal stability of 2D systems due to Humes-Jury [HJ77] may not

be extended to the nD case when P (z) does not admit a minor right coprime decomposi-

tion. Therefore, he introduced the notion of generating polynomials (later renamed reduced

minors) and applied it to the stability test for nD systems.

The notion of reduced minors was introduced in connection with the feedback stabiliza-

tion problem for nD systems in [Lin98], [Lin99], and [Lin00]. However, in those papers, Lin

studied the (output) feedback stabilization problem, which is the special case of the stan-

dard H∞ control framework, and provided the constructive method to obtain a set of all

stabilizing controllers via the famous Youla parameterization. This paper uses the results

of Lin to provide the connection between feedback stabilization and interpolation conditions

for nD linear systems for the case where the plant P has a double-coprime factorization (see

Definition 2.4) in the so-called 1-block case. When one goes on to demand performance in

addition to internal stability as a design goal, there results an nD matrix Nevanlinna-Pick

interpolation problem. We discuss the recent work on this problem and the remaining issues

to be settled before the nD theory reaches a state comparable to the 1D case. This con-

nection between nD matrix Nevanlinna-Pick interpolation and feedback stabilization for nD

plants has previously been pointed out by Helton [Hel01] for the scalar case.

2 Preliminaries

In the following, we shall let R denote the field of real numbers; R[z] = R[z1, . . . , zd] the

polynomial ring over R in d indeterminates (z1, . . . , zd), all of which are complex variables;

R(z) = R(z1, . . . , zd), the field of rational functions which is equal to the quotient field of

R[z]; Rs(z) ⊆ R(z) the subset of rational functions in R(z) having no poles in the closed

unit polydisk, Dd} = {(z1, . . . , zd)| |z1| ≤ 1, . . . , |zd| ≤ 1} . R
m×l(z) the set of m× l matrices

with entries in R(z) (i.e., entries are rational functions); R
m×l
s (z) the set of m × l matrices

with entries in Rs(z) (i.e., entries are stable real rational functions). The d–D polynomial is
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said to be stable if it has no zeros in Dd.

In the standard H∞-control context, the problem is to design a controller K which mini-

mizes the largest energy error signal z over all disturbances w of L2-norm at most 1, subject

to the additional constraint that K stabilizes the system:

min
Kstabilizing

max
‖w ‖2≤1

‖ z ‖2 (2.1)

where the L2-norm of any signal x(t) is regarded as the measure of energy of a vector-valued

signal and defined by

‖x ‖2
2 =

∫ ∞

0

‖x(t) ‖2 dt (2.2)

Loosely speaking, the goal of the H∞-control problem is to find a stabilizing controller

K so as to minimize the H∞-norm of the desired performance function, say F . In other

words, one needs to construct a controller K so that the closed loop system is structurally

(internally) stable with norm equal to at most a given tolerance level γ > 0.

Now consider the (output) feedback system (see diagram from [Lin00]), where P (z) and

K(z) denote the plant and controller, respectively. Then the closed loop transfer matrix

function from the input signals, u, to the error signals, e, is given by

Heu =

[
(I + PK)−1 −P (I +KP )−1

K (I + PK)−1 (I +KP )−1

]
(2.3)

Definition 2.1. A given plant P ∈ R
m×l(z) is said to be (output) feedback stabilizable if

there exists a controller K such that the closed loop transfer matrix function Heu in (2.3) is

internally stable; i.e., each entry of Heu has no poles in Dd.

As mentioned earlier, there are several definitions of the coprimeness for polynomial ma-

trices in several variables which all collapse to the classical notion in the one-variable case.

In this paper, we focus on the strongest notion of coprime for the multivariable case, namely

the notion of zero coprime. Therefore, from this point on, we will use coprime instead of

zero coprime unless otherwise specified.

Definition 2.2 ([YG79]). LetA ∈ R
l×l[z], B ∈ R

m×l[z], and F =
[
AT BT

]T ∈ R
(m+l)×l[z],

where AT denotes the transposed matrix of A. Then A andB are said to be zero right coprime

(ZRC) if the l× l minors of F have no common zero in R
n. In dual manner, A1 ∈ R

m×m[z],

and B1 ∈ R
m×l[z] are zero left coprime (ZLC) if AT

1 and BT
1 are ZRC.

Proposition 2.3 ([Zerz00]). The matrix F =
[
AT BT

]T
is ZRC if and only if there exists

a matrix
[
X Y

]
that solves the Bézout equation

[
X Y

] [
A

B

]
= I (2.4)
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By using Definition 2.2 and Proposition 2.3, one can see that the notion of double coprime

factorization defined below is analogous to that for the 1D system.

Definition 2.4 ([Lin00]). Let P ∈ R
m×l(z) be a proper real rational matrix nD system.

Then P is said to have a double coprime factorization (DCF) if

1. there exist Dl ∈ R
m×m
s (z), Dr ∈ R

l×l
s (z), and Nr, Nl ∈ R

m×l
s (z);

2. there exist Xl ∈ R
l×l
s (z), Xr ∈ R

m×m
s (z), and Yr, Yl ∈ R

l×m
s (z);

3. Dl, Dr, Xl, and Xr are all nonsingular;

4. P = NrD
−1
r = D−1

l Nl and the following Bézout identity holds:[
Xl Yl

−Nl Dl

] [
Dr −Yr

Nr Xr

]
= I(m+l)×(m+l) (2.5)

To analyze the stability issue, Lin (see [Lin88]) introduced the notion of reduced minors

and applied this notion to the stability test. Since most parts in this section are based on the

results from Lin’s works, the definition of reduced minors will be described first and followed

by some useful theorems.

Definition 2.5. Let F =
[
AT BT

]T ∈ R
(m+l)×l[z], be of normal full rank l, and let

a1, . . . , aβ be the l × l minors of the matrix F , with a1 = det(A), where β =

[
m+ l

l

]
.

Extracting the greatest common divisor (g.c.d.) d of a1, . . . , aβ gives, aj = dbj, for j =

1, . . . , β. Then b1, . . . , bβ are called the generating polynomials, (later renamed as re-

duced minors) of F .

Remark: It should be noted here that the reduced minors of E =
[
A1 B1

]
can be defined

in the similar way.

Proposition 2.6. An nD discrete-time system P ∈ R
m×l(z) represented by right MFD as

P = ND−1 is structurally stable if and only if b1 6= 0 in the polydisk, Dd, where bj are the

reduced minors of F =
[
DT NT

]T
.

Suppose now that an nD discrete system P = ND−1 ∈ R
m×l(z) is not structurally stable

(i.e., b1 has a zero in Dd). Then one needs to find a controller K so that the closed loop

system is internally stable. However, not all P s are feedback stabilizable. The next theorem

provides the necessary and sufficient conditions for such a P to be stabilizable.

Proposition 2.7 ([Lin98]). Let P = ND−1 ∈ R
m×l(z) be a given nD plant which is a

proper rational matrix function, and let b1, . . . , bβ be the reduced minors of F =
[
DT NT

]T
,

with β =

[
m+ l

l

]
. Then P is feedback stabilizable if and only if the reduced minors bj of F

(j = 1, . . . , β) have no common zeros in Dd.
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The analogue of Proposition 2.7 for the standard H∞-control problem in full generality

(see [Fra87]) does not seem to be known.

A notion somewhat weaker than stability is causality.

Definition 2.8 ([Lin98]). A rational function
n(z)

d(z)
with n, d ∈ R[z] is said to be causal if

d(0) = d(0, . . . , 0) 6= 0. It is called strictly causal if in addition n(z) = 0. A rational matrix

function P ∈ R
m×l is said to be causal if all its entries are causal. It is called strictly causal

if all its entries are strictly causal.

Proposition 2.9 ([Lin98]). If P ∈ R
m×l(z) is causal (strictly causal), there exists a right

MFD P = ND−1 such that detD(0) 6= 0 (in addition, N(0) = 0m×l). On the other hand,

if P = ND−1 ∈ R
m×l(z), and detD(0) 6= 0, then P is causal. If in addition N(0) = 0m×l,

then P is strictly causal.

Suppose that the plant P is feedback stabilizable; i.e., P satisfies the condition given in

Proposition 2.7. Then the following theorem provides the sufficient condition so that P

admits the double coprime factorization, (DCF).

Proposition 2.10 ([Lin00]). Let P ∈ R
m×l(z) represent a causal feedback stabilizable MIMO

nD systems. Let P = ND−1 be a right MFD of P (not necessarily coprime), and F =[
DT NT

]T ∈ R
(m+l)×l[z]. If there exists a unimodular matrix U ∈ R

(m+l)×(m+l)[z] such that

some single reduced minor of the polynomial matrix F1 = UF is devoid of any zeros in the

closed unit polydisk, Dd, then P has a DCF satisfying the Bézout Identity.

Corollary 2.11. Suppose P admits a DCF. Then the set of all stabilizing controllers is given

by

K = (Xl −QNl)
−1 (Yl +QDl) where det (Xl −QNl) 6= 0 (2.6)

= (DrQ+ Yr) (−NrQ+Xr)
−1 where det (−NrQ+Xr) 6= 0 (2.7)

where Q ∈ R
l×m
s (z)

Consider the transfer matrix functions in (2.3). If P is given as in the Proposition 2.10

with the set of all feedback stabilizing controllers given by (2.6), or (2.7), then it is easy to

verify that the closed loop system can be rewritten in the model matching formulation via

the Youla parameter Q, i.e.,[
(I + PK)−1 −P (I +KP )−1

K (I + PK)−1 (I +KP )−1

]
=

[
XrDl −NrQDl −NrXl +NrQNl

YrDl +DrQDl DrXl −DrQNl

]
(2.8)

Obviously, each entry in (2.8) is in the form T1 −T2QT3, i.e., in the model matching form.

For example, by letting T1 = XrDl, T2 = Nr, and T3 = Dl, the first entry of the closed loop

transfer matrix function XrDl −NrQDl can be rewritten as T1 − T2QT3.
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3 Model Matching and Interpolation Problems

Consider the model matching problem in general stated as follows: given stable rational

matrix functions T1, T2, and T3 of compatible sizes, find the stable Q so as to achieve

min
Q

‖T1 − T2QT3 ‖ (3.1)

where the norm is the supremum norm over D
d. Here T1 ∈ R

l×m
s (z), T2 ∈ R

l×l
s (z), and

T3 ∈ R
m×m
s (z). We shall focus on the so-called 1-block case (see [Fra87], i.e., we shall assume

that T2 and T3 are invertible matrix functions. The performance function F is given by

F = T1 − T2QT3, where Q ∈ R
l×m(z) (3.2)

In terms of the Q parameter, If Q ∈ R
l×m
s (z) (stable rational matrix function), then so is F .

Conversely, if F ∈ R
l×m
s (z), then one can backsolve for Q,

Q = T−1
2 (T1 − F )T−1

3 (3.3)

Since T−1
2 and T−1

3 may or may not be stable, to obtain a stable Q, this case leads to

the interpolation conditions given in the Theorem 3.3. In this section, for convenience, we

shall only demand that Q be holomorphic on the open polydisk D
d. Before stating such a

theorem, some preliminary lemmas are provided here.

Lemma 3.1 (Implicit Function Theorem (see [Sha92])). If functions f1, . . . , fk, (k <

n) are holomorphic in a neighborhood of a point z0 ∈ C
n and also det

(
∂fi

∂zj

)
6= 0 in that

neighborhood (i, j = 1, . . . , k), then the system of equations f1(z) = · · · = fk(z) = 0 is locally

solvable relative to the points z1, . . . , zk and the solution zj = gj(zk+1, . . . , zn) for j = 1, . . . , k

is holomorphic in a neighborhood of the point (z0
k+1, . . . , z

0
n).

Theorem 3.2. Suppose that we are given an irreducible polynomial g(z) in z = (z1, . . . , zd)

and that k is a given positive integer. Then a necessary condition for a holomorphic function

f on the polydisk D
d to have the form

f(z) = gk(z)ϕ(z); z ∈ D
d (3.4)

for some function ϕ holomorphic on D
d is that f satisfy the interpolation conditions

∂|j|f
∂zj

∣∣∣∣
V (g)

= 0 for |j| = 0, 1, . . . , k − 1 (3.5)

(where V (g) =
{
z0 ∈ D

d : g(z0) = 0
}
) in a neighborhood of each smooth point z0 of V (g)

inside D
d.

Conversely, if the interpolation conditions (3.5) are satisfied, then the function f can be

written as in (3.4) in a neighborhood of each smooth point z0 of V (g) in D
d.
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Proof. Suppose that f has the representation f(z) = gk(z)ϕ(z). Then f |V (g) = 0. Also, all

partial derivatives of f with respect to all variables z1, . . . , zd of order l are equal to zero

along V (g) for l = 1, . . . , k − 1 since each such derivative necessarily contains a factor of

g(z). Hence the interpolation conditions (3.5) hold.

Assume now that f satisfies the interpolation conditions (3.5) in a neighborhood of the

smooth point z0 ∈ V (g) ∩ D
d. Let U (z0, δ) =

{
z ∈ D

d
∣∣ |z − z0| < δ

} ⊂ D
d be a neigh-

borhood around a point z0 ∈ D
d for small δ > 0. Since f is holomorphic in D

d, for any

z ∈ U (z0, δ) f admits a multivariable power series representation; i.e.,

f(z) = f(z1, . . . , zd) =
∞∑

|j|=0

Cj

(
z − z0

)j
(3.6)

where Cj = Cj(z
0) =

1

j!

∂|j|f
∂zj

∣∣∣∣
z=z0

Since any partial derivative of a holomorphic function is again holomorphic, Cj is also

a holomorphic function since f is. Now for any zi ∈ C, we denote z̀i the remaining vari-

ables; i.e., z̀i = (z1, . . . , zi−1, zi+1, . . . , zd). By using this notation, the equation (3.6) may be

rewritten as

f(z) = f(z̀i, zi) =
∑

j̀∈Nd−1

j∈N

Cj̀,j(z̀i − z̀0
i )

j̀(zi − z0
i )

j (3.7)

where Cj̀,j = Cj̀,j(z̀
0
i , z

0
i )

In particular, when z̀i = z̀0
i , the equation (3.7) becomes a function of one complex variable.

f(zi) = f(z̀0
i , zi) =

∑
j∈N

C0̀,j(zi − z0
i )

j (3.8)

where C0̀,j = C0̀,j(z̀
0
i , z

0
i )

Now let V (g) be the zero variety of a holomorphic function g given by

V (g) =
{
z0 ∈ D

d : g(z0) = 0
}
.

V (g) is also irreducible since g is. Then for any z0 = (z̀0
i , z

0
i ) ∈ V (g) ∩ U (z0, δ) and by

assuming that
∂g

∂zi

(z0) 6= 0 (such an i exists if z0 is a smooth point of V (g)), the Implicit

Function Theorem 3.1 implies that there exists a holomorphic function h defined on U (z̀0
i , δ)

so that zi = h(z̀i). Such a zi is unique in a neighborhood of z0
i so that (z̀i, zi) ∈ V (g) for

z̀i ∈ U (z̀0
i , δ)

Define g̃(z) = g̃(z̀i, zi)=zi−h(z̀i) for z0 ∈ U (z0, δ). Then V (g̃) = {z ∈ U (z0, δ)| zi = h(z̀i)} =

V (g) ∩ U (z0, δ). As a result, g̃(z) = g(z)ψ(z), where ψ is holomorphic on U (z0, δ)

Since f satisfies the interpolation conditions (3.5), C0̀,j = C0̀,j(z̀
0
i , z

0
i ) = 0 for j = 0, 1, . . . , k−
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1 for each z0 = (z̀0
i , z

0
i ) ∈ V (g). Hence, (3.8) becomes

f(zi) = f(z̀0
i , zi)

=
∞∑

j=k

C0̀,j(zi − z0
i )

j

= (zi − z0
i )

k

∞∑
j=0

C0̀,j+k(zi − z0
i )

j (3.9)

In particular, since z0
i = h(z̀0

i ) for z0 = (z̀0
i , z

0
i ) ∈ V (g) ∩ U (z0, δ),

f(z̀0
i , zi) =

(
zi − h(z̀0

i )
)k

∞∑
j=0

C0̀,j+k

(
zi − h(z̀0

i )
)j

We now consider z̀0
i as a variable and therefore replace z̀0

i by z̀i. So,

f(z) = f(z̀i, zi)

= (zi − h(z))k
∞∑

j=0

C0̀,j+k (zi − h(z̀i))
j

= g̃k(z)Φ(z) (3.10)

where C0̀,j+k = C0̀,j+k (z̀i, h(z̀i))

Φ(z) =
∞∑

j=0

C0̀,j+k (z̀i, h(z̀i))
j

Then, f(z) = gk(z)ϕ(z) on V (g) ∩ U (z0, δ), where ϕ(z) = ψk(z)Φ(z) is holomorphic since

φ and Φ are. Now combine together all these localized ϕ’s to obtain (3.4) in a neighborhood

of z0.

We now explain the type of interpolation problem to which the model matching problem

can be converted in the 1-block case. For u = 1, . . . , η, assume that we are given distinct

irreducible (scalar) polynomials qu with zero variety V (qu) having nontrivial intersection

with D
d, holomorphic matrix functions Gu and G̃u (of compatible sizes for the interpolation

conditions to follow to make sense) and positive integers ku. For v = 1, . . . , µ assume that

similarly we are given distinct irreducible polynomials sv together with holomorphic matrix

functions Hv and H̃v (of compatible sizes) and positive integers `v. For each pair of indices

(u, v) for which qu = sv =: huv, assume that we are given an additional matrix function Ruv.

The whole aggregate

ω = {qu, Gu, G̃u, ku; sv, Hv, H̃v, `v;Ruv} (3.11)

8



we call a 1-block interpolation data set. We say that a matrix function F holomorphic on D
d

satisfies the interpolation conditions associated with ω (denoted by F ∈ I(ω)) if{
∂|i|

∂zi

Gu(z)F (z)

}∣∣∣∣
V (qu)

= {∂
|i|

∂zi

G̃u(z)}
∣∣∣∣
V (qu)

for u = 1, . . . , η and i = 0, 1, . . . , ku − 1,

(3.12){
∂|j|

∂zj

F (z))Hv(z)

}∣∣∣∣
V (sv)

=

{
∂|j|

∂zj

H̃v(z)

}∣∣∣∣
V (sv)

for v = 1, . . . , µ and j = 0, 1, . . . , `v − 1, and

(3.13){
∂|l|

∂z`

Gu(z)F (z))Hv(z)

}∣∣∣∣
V (huv)

=

{
∂|l|

∂z`

Ruv(z)

}∣∣∣∣
V (huv)

for all pairs of indices u, v

with qu = sv and for l = 0, 1, . . . , ku + `v − 1 (3.14)

Given T1, T2 and T3 as in the 1-block case of the model matching problem, we associate an in-

terpolation data set ω as follows. Consider the set of unstable entries of T−1
2 , say

{
pia,ja

qia,ja

(z)

}
for a = 1, . . . , α. Let q(z) be the least common multiple of {qi1,j1(z), . . . , qiα,jα(z)} . Also let

T−1
3 (z) =

rij

sij

(z), i, j = 1, . . . ,m be an m×m rational matrix valued function in d variables,

and consider the set of unstable entries of T−1
3 , say

{
rib,jb

sib,jb

(z)

}
for b = 1, . . . , β. Let s(z)

be the least common multiple of
{
si1,j1(z), . . . , siβ ,jβ

(z)
}
. Suppose now that q(z) and s(z)

can be factored into irreducible polynomials, say q(z) = qk1
1 (z) · · · qkη

η (z), where ki > 0 for

i = 1, . . . , η, and s(z) = s`1
1 (z) · · · s`µ

µ (z), where `i > 0 for i = 1, . . . , µ, respectively. Let

V (g) be the zero variety of g(z) =
{
z0 ∈ D

d
∣∣ g(z0) = 0

}
contained in D

d. Then for each

u ∈ {1, . . . , η}, T−1
2 (z) =

Gu

qku
u

(z), where Gu(z) is a meromorphic matrix function in D
d

evaluated along the variety V (qu), and qku
u is an unstable irreducible polynomial with mul-

tiplicity ku. In addition we set G̃u(z) = Gu(z)T1(z). Analogously, for each v ∈ {1, . . . , µ},
T−1

3 (z) =
Hv

s`v
v

(z), where Hv(z) is a meromorphic matrix function in D
d along the variety

V (sv). Set H̃v(z) = T1(z)Hv(z). In addition, if q and s have some common factors, say

qu = sv for some pair of indices u and v, set huv = qu = sv and Ruv(z) = Gu(z)T1(z)Hv(z).

In this way we have formed an interpolation data set ω as in (3.11). When ω is formed in

this way from T1, T2, T3, let us write ω = ωT1,T2,T3 .

Now we are ready to state the main theorem, which gives the connection between the

model matching and interpolation problems

Theorem 3.3. Let T1, T2, T3 be the data set for a 1-block model matching problem, and let

ωT1,T2,T3 be the associated interpolation data set as delineated in the previous paragraph.

Then a necessary condition for a given function F holomorphic on D
d to have the model

matching form F = T1 − T2QT3 for a stable Q is that F satisfy the interpolation conditions

9



(3.12), (3.13) and (3.14) associated with the data set ωT1,T2,T3 (i.e., F ∈ I(ωT1,T2,T3)). Con-

versely, if F satisfies the interpolation conditions (3.12), (3.13) and (3.14) for the data set

ωT1,T2,T3 then F has the model matching form (3.2) locally in a neighborhood of all points of

D
d with the possible exception of the singular points of some V (qu) or V (sv).

Proof. The proof is separated into four cases depending on the location of zeros of T2 and

T3.

Case 1: Both T2 and T3 do not contain any zero in the D
d. Then there are no interpola-

tion conditions since both T−1
2 and T−1

3 are stable.

Case 2: Either T2 or T3 contains at least one zero in the D
d. Without loss of generality,

suppose T3 contains unstable zeros. This implies T−1
3 becomes unstable, and hence (3.3)

becomes

(T1 − F )T−1
3 = T2Q = Q̃ (3.15)

Follow the construction as stated in the theorem yields, (T1(z) − F (z))Hv(z) = s`v
v (z)Q̃(z)

for each v ∈ {1, . . . , µ}, and then apply Theorem 3.2. In this case, (3.12) and (3.14) can be

dropped.

Case 3: Both T2 and T3 contain zeros in the D
d, and the denominators of unstable entries

of T−1
2 and T−1

3 have no common factors. We can consider the interpolation conditions for

T2 and T3 separately since they do not have any factors in common, and then apply the

theorem 3.2. This case, the interpolation conditions (3.14) can be dropped.

Case 4: Both T2 and T3 contain zeros in the D
d, and the denominators of unstable entries

of T−1
2 and T−1

3 have some common factors. First, we consider the interpolation conditions

for T2 and T3 separately to get (3.12) and (3.13). Since T−1
2 and T−1

3 contain some common

factors of unstable entries, we define an unstable polynomial h = {hku+`v
uv } for some pair of

indices u and v such that qu = sv as stated in the theorem. Then for each huv, equation

(3.3) can be rewritten as

1

qku
u

Gu(z)(T1(z) − F (z))Hv(z)
1

s`v
v

= Q(z), (3.16)

or, Gu(z)(T1(z) − F (z))Hv(z) = hku+`v
uv (z)Q(z).

Then apply theorem 3.2 to obtain the interpolation condition (3.14).

Remark 3.4. Theorem 3.3 is a multivariable analogue of Theorem 16.9.3 in [BGR90]. To

be consistent with the terminology given in [BGR90], the equations in (3.12), (3.13), and

(3.14) are called respectively the left-, right- and two-sided interpolation conditions for a

tangential interpolation problem. The proof for the single-variable case relies heavily in

the end on the existence of a local Smith-McMillan form for rational matrix functions; as
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the Smith-McMillan form is unavailable in the multivariable setting, our proof here relies

exclusively on making use of the notion of factor coprime. Theorem 16.9.3 in [BGR90] is

more precise in that the statement there asserts that one can take the interpolation data set

ω to be in canonical, minimal form. Specifically, in the 1-variable case, the data functions Gu

and HV are constructed from a canonical set of left null functions for T2 (respectively, right

null functions for T3) and one can in general reduce the number of rows of Gu (respectively,

the number of columns of Hv). To implement a similar reduction in the multivariable case,

the following weaker form of the local Smith-McMillan form would be of interest: Given a

polynomial m× n matrix function W (z) and an irreducible (scalar) polynomial q such that

span
i : |i|≤k−1

{
im

∂|i|

∂zi

W (z)|V (q)

}
= r,

then there exists m× r, r × n and n× n matrix polynomials P,Q, S so that

W (z) = P (z)Q(z) + q(z)kS(z).

Example 1. Let T3(z)
−1 =

[
1
z2
1

1
z2+2

z3

z1z2−0.5
1
z1

]
Obviously, the set of unstable entries of T−1

3

is

{
1

z2
1

,
z3

z1z2 − 0.5
,

1

z1

}
. Let q(z) = l.c.m. of {z2

1 , z1z2−0.5, z1} = z2
1 (z1z2 − 0.5). Set q1 = z1

with multiplicity 2, and q2 = z1z2 − 0.5. Then, the corresponding G1 and G2, respectively

are given by

G1(z) =

[
1

z2
1

z2+2
z2
1z3

z1z2−0.5
z1

]
,

and G2(z) =

[
z1z2−0.5

z2
1

z1z2−0.5
z2+2

z3
z1z2−0.5

z1

]
.

Consider first when q1 = z1, then G1(z) can be written as G1(z) = z2
1Q̃(z) and the zero

variety V (q1) = {(z1, z2, z3) ∈ D
3| z1 = 0}. Then the interpolation conditions are:

(T1 − F ) (z) G1(z)|V (q1) = (T1 − F ) (z)|V (q1)

[
1 0

0 0

]
= 0 (3.17)

∂

∂z1

(T1 − F ) (z) G1(z)|V (q1) =
∂

∂z1

(T1 − F ) (z)|V (q1)

[
1 0

0 0

]
+ (T1 − F ) (z)|V (q1)

[
0 0

0 1

]
= 0 (3.18)

When q2 = z1z2 − 0.5, then G2(z) can be written as G2(z) = (z1z2 − 0.5)Q̃(z) and the zero

variety V (q2) = {(z1, z2, z3) ∈ D
3| z1z2 = 0.5}. Then the interpolation condition is:

(T1 − F ) (z) G2(z)|V (q2) = (T1 − F ) (z)|V (q2)

[
0 0

z3 0

]
= 0 (3.19)
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Hence, the interpolation problem may be restated as: find F ∈ R
l×m
s (z) satisfying the inter-

polation conditions (3.17)–(3.19) so that Q = T−1
2 (T1 − F )T−1

3 is stable.

Remark 3.5. If one loosens the 1-block assumption on (T1, T2, T3), the model matching form

for F is equivalent to interpolation conditions for F on subvarieties of higher codimension,

or alternatively, to interpolations conditions on the whole of D
d. For the single-variable

case (d = 1), there are only the two possibilities of codimension equal to 1 (interpolation at

isolated points) or interpolation along the whole unit disk—see [BR92, BR94] for a thorough

treatment.

Remark 3.6. We now consider the special case where f(z) = gk(z)ϕ(z) where k = 1. Then

the interpolation conditions (3.12) – (3.14) simplify to

Gu(z)
(
T1(z) − F (z)

)∣∣
V (qu)

= 0 for u = 1, . . . , η, (3.20)(
T1(z) − F (z)

)
Hv(z)

∣∣
V (sv)

= 0 for v = 1, . . . , µ, and (3.21)

∂

∂zi

[
Gu(z)

(
T1(z) − F (z)

)
Hv(z)

]∣∣∣∣
V (huv)

= 0 for i = 1, . . . , d, and

for all pairs of indices u, v with qu = sv (3.22)

Note that all these formulations of interpolation conditions depend heavily on a particular

choice of coordinates for the various varieties V (qu) and V (sv). It is of interest to note

that conditions (3.20) and (3.21) can be expressed in a more coordinate-free form by using

the Poincaré residue map (see [GH78, page 147]). Indeed, in connection with (3.20) e.g.,

application of the Poincaré residue map to the d-form

T2(z)
−1(F (z) − T1(z)) dz1 ∧ · · · ∧ dzd =

Gu(z)

qu(z)
(F (z) − T1(z)) dz1 ∧ · · · ∧ dzd

yields the (d− 1)-form on V (qu)

(−1)i−1Gu(z)(F (z) − T1(z))
dz1 ∧ · · · ∧ d̂zi ∧ · · · ∧ dzd

∂qu/∂zi

∣∣∣∣∣
V (qu)

for any i such that ∂qu

∂zi
6= 0. Thus the interpolation condition (3.20) on F can be expressed

as the vanishing of the Poincaré residue of the d-form T2(z)
−1(F (z) − T1(z)) dz1 ∧ · · · ∧ dzd

along the variety V (qu).

Theorem 3.3 characterizes internal stability in terms of satisfaction of interpolation condi-

tions by the performance function F . In theH∞-control problem, we seek such a performance

function F which in addition has norm less than or equal to given tolerance level γ. By scal-

ing, we may assume without loss of generality that we have set γ = 1. Let us say that a

matrix-valued function F is in the d-variable Schur-class, denoted by Sd, if F is holomorphic
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on D
d with ‖F (z)‖ ≤ 1 for all points z ∈ D

d. TheH∞ problem (with tolerance level γ normal-

ized to γ = 1) then becomes: For given interpolation data I = {{qu, ku, Gu, sv, `v, Hv, T1},
find a matrix function F (of the appropriate size) in the Schur class Sd which meets the

interpolation conditions (3.12), (3.13) and (3.14).

It turns out that it is not so convenient to solve this multivariable Nevanlinna-Pick in-

terpolation problem in the Schur class but rather in a somewhat restricted class which we

call the Schur-Agler class SAd defined as follows: the matrix-valued function F is in the

d-variable Schur-Agler class SAd if F is holomorphic on D
d and ‖F (rT1, . . . , rTd)‖ ≤ 1 for

all r < 1 and for any d-tuple of commuting contraction operators (T1, . . . , Td) on a Hilbert

space H. It turns out that the SAd = Sd for d = 1, 2 but SAd ⊂
6=
S2 for d > 2.

The scalar case of this interpolation problem, with the interpolation nodal varieties taken to

have dimension zero, is simply: given interpolation nodes z1, . . . , zn ∈ D
d and interpolation

values w1, . . . , wn ∈ C, find a scalar function F ∈ SAd satisfying the interpolation conditions

F (zi) = wi for i = 1, . . . , n. (3.23)

The original result of Agler [Agl87] on this problem is: there exist a scalar function F in SAd

meeting the interpolation conditions (3.23) if and only if there exist d positive-semidefinite

n× n matrices Λ1, . . . , Λd so that

1 − wiwj =
d∑

k=1

(1 − zi
kz

j
k)Λ

k
i,j for i, j = 1, . . . , n. (3.24)

This condition now known as a Linear Matrix Inequality (LMI) is a practical solution to

the problem. This result was extended to the matrix-valued setting (with the interpolation

nodal varieties still assumed to be zero-dimensional and without consideration of two-sided

interpolation conditions) in [BT99, AMcC99]. A contour integral formulation which in-

corporated higher-order interpolation conditions but still at isolated points was solved in

[ABB00]. There now has appeared some work which applies to the case of interpolation

along higher dimensional varieties (but with the multiplicities ku and `v all taken equal to

1)—see [BB1, BB2]; to apply this work one must first obtain a parametrization of the various

varieties V (qu) and V (sv) and then the solution takes the form of an infinite LMI.

There are a number of remaining issues which must be resolved before this interpolation

approach to H∞-control for multivariable systems comes close to being as successful as the

1-variable case; two such issues are:

1. Formulation and solution of the interpolation problem in terms of state-space coordi-

nates.

2. A reliable analysis of how to approximate the solution of an infinite LMI via solving

finite LMIs.
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