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Abstract

This article studies the controllability of a pair of coupled quantum dots being
interrogated by an external electromagnetic field. It is shown that this system is con-
trollable. However, in the limit of large spatial separation between the two dots the
dynamical Lie algebra of the problem degenerates to the complex representation of
so(4) in su(4). The question of which pure and mixed states for the system are ac-
cessible from the initial condition is then studied via an ab initio approach. This is
achieved by finding an explicit conjugation, within su(4), between the complex repre-
sentation of so(4) and su(2)⊗ su(2), and then using the greater structure of the group
SU(2)⊗ SU(2).

1 Introduction

The engineering of quantum systems is a field of intense research. Motivations come from

several sources - site-specific chemistry, spectroscopy, semiconductor heterostructures and

quantum information processing. The final item on the previous list has, in particular,

triggered the systematic investigation of the engineering of innumerable quantum systems

- atoms, molecules, Bose-Einstein condensates, Rydberg atoms, quantum wells, wires and

dots etc., This article considers the control of a coupled pair of quantum dots.

Quantum dots have been suggested in [1] as vehicles of quantum computation, and there-

fore their control is of considerable interest. More details on this suggested architecture

follows in Section 2. The interest of coupled quantum dots in this manuscript is that, under

the limit of large separation between the dots, the real Lie algebra generated by the inter-

nal Hamiltonian and the external Hamiltonian degenerates into a representation of so(4)

by skew-Hermitian matrices. In their interesting work, Schirmer et al., have shown, [2],

that for four level atomic systems, with only nearest neighbour interactions (i.e., bij 6= 0

iff j = i − 1, i + 1, where bij are the entries of the matrix representation of the interaction

Hamiltonian), the control (or dynamical) Lie algebra cannot ever be so(4). Thus, this cou-

pled quantum dot system is interesting, since it is a concrete physical system, which though

controllable, has its dynamical Lie algebra degenerating into so(4).
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Thus, in the limit of large separation, the system is effectively uncontrollable. Therefore,

the question of determining the reachable set from the initial condition becomes interesting.

It is shown in Section 3, that this representation of so(4) via skew-Hermitian matrices is

explicitly conjugate, within su(4), to the Lie algebra su(2) ⊗ su(2). Thus, this problem

effectively is equivalent to determining the orbits of the Lie group SU(2) ⊗ SU(2) on the

unit sphere in C4 (for pure states) and on the positive semidefinite states with trace one

(for mixed states). Since the linear action of any subgroup of SU(4) on the unit sphere is

equivalent to the action of the subgroup on pure states written as density matrices, this work

will concentrate on the second action. Of course, one may embed density matrices in the

vector space of Hermitian matrices and then use invariant theory to determine the orbits. In

fact, this has been done in [5] where the same question arises in the context of determining

entanglement invariants of two qubits. Strictly speaking, this definition of entanglement

invariants is not universally accepted, since it deals with only one aspect of entanglement

(indeed, for mixed states there is no genuine consensus, on what ought to be the precise

definition of entanglement). From the perspective of this work, the usage of invariant theory

leads to criteria which do not seem to have adequate physical intuition - i.e., the invariants,

whose common level sets (more precisely their connected components) the orbits are, do

not seem (at least to me) to possess physical interpretation. Therefore, this manuscript

will use a less highbrow technique. Specifically, an analogue of the Bloch sphere for 4 × 4

density matrices will be used and elementary arguments will then be used to address orbit

determination. The drawback of this approach is that, while for pure states necessary and

sufficient conditions are thereby obtained, the results for mixed states are only necessary

conditions (pending further research). On the other hand, the criteria seem more closely

related to entanglement criteria which are more “physical”.

The remainder of this manuscript are organized as follows. Section 2 contains a brief

introduction to the physics of quantum dots and the specific model in use. Section 3 argues

that while the system is controllable, its Lie algebra degenerates into a specific representation

of so(4) in the limit of large separation between the dots. This Lie algebra is shown to be

explicitly conjugate to su(2) ⊗ su(2). Section 4 presents results on the determination of

reachable sets. Section 5 offers conclusions.

2 Quantum Dots

In semiconductor heterostructures, by imposing designed potential barries via techniques

such as electron beam lithography or molecular beam epitaxy, the motion of an electron

can be confined to a plane (quantum wells), or to a line (quantum wires) or to behave as

a stationary particle (quantum dots). Thus, to a certain extent, a quantum dot behaves

like a virtual atom. It is also possible to arrange several quantum dots in a line. For

more details about the physics of such heterostructures, the reader could do no better than

consult [3]. Furthermore, such a configuration of quantum dots can be made to interact with
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external electromagnetic fields. This interaction has been proposed in [1] as an architecture

for displaying the conditional dynamics needed for quantum computation. The following

Hamiltonian describes (under simplifying assumptions which do not consider the effects of

holes in the valence band of the semiconductors):

H = H1 + H2 + V12 − du(t) (2.1)

This takes into account only the ground and first excited states of each single electron

quantum dot. With this clarified, the various terms on the RHS of Equation (2.1) are as

follows. Hi = ~ωi, i = 1, 2 where ωi is the energy difference between the two states in the

ith dot. V12’s matrix elements are determined according to (−1)ε1+ε2~( −d1d2

4πε0R3 ). We refer the

reader to [1] for the specifics about ε1, ε2 - in brief they are the labels of the computational

basis in each dot. di, i = 1, 2 are the dipole moments in the ground and first excited states in

the ith dot and R is the separation between the two dots. Finally, dd is the dipole coupling

between the ground and first excited states and u(t) is the external optical field. Note that in

[1] the last term in the RHS of Equation (2.1) is not explicitly mentioned since the external

field there is only used in a static, adiabatic, on-off fashion. However, for more general

purposes it is useful to consider more general fields.

With this the associated control system for the unitary generator is given by

U̇ = AU + BUu(t) (2.2)

where

A = −idiag (−ω1 − ω2 −D, ω2 − ω1 + D, ω1 − ω2 + D, ω1 + ω2 −D), D =
d1d2

4πε0R3

and

B =


0 id id 0

id 0 0 id

id 0 0 id

0 id id 0


3 Controllability and Degeneration to so(4)

It can be shown that the real Lie algebra generated by A and B is su(4) under the following

conditions i) | ω1 |6=| ω2 |; and ii) D = d1d2

4πε0R3 6= 0 and iii) d 6= 0. It is conceivable that

condition some other combination of i) and ii) would still ensure this Lie algebra equalling

su(4), but this is to be investigated. Thus, under i), ii) and iii) the system is fully controllable.

An explicit calculation of this Lie algebra is omitted here, since the principal interest of this

article is the obtainment of so(4).

If D = 0, but i) and ii) hold then this Lie algebra is indeed a representation of so(4) by

imaginary matrices in su(4). Before delving into this further, we note that D could be zero
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if either i) one of the di = 0 or ii) R → ∞. While the former is theoretically possible,

such a system would never be chosen by the experimentalist because then there would be no

dipole-dipole interaction between the two single-electron dots and thus, such a system would

be of no use in quantum information processing. The latter condition too may seem artificial

- indeed, it would be if the “computer” consisted of just two qubits, since there would be

no need to place the two dots very far apart from each other. However, in a configuration

consisting of many such dots, the members of a certain pair will eventually be at a great

separation. Thus, if a local two qubit transformation involving this pair is desired, then we

are lead to a system for which R → ∞. Of course, this separation must be such that the

two dots can be addressed by the laser and the field must be such that intermediate dots are

not excited (this is a question of the profile of the field - a question which can be addressed

by imposing amplitude, pulse area and frequency content restrictions on the field, see e.g.,

[6, 7, 8]). The correct manner in which to view this large separation condition is then the

following. When the separation is large the Lie algebra generated is still su(4) and thus, the

system is theoretically controllable. But with R increasing the system gets closer to being

uncontrollable and this Lie algebra is approximated by an imaginary representation of so(4).

Specifically, when D = 0, A is approximated by Ã = −idiag (−ω1 − ω2, ω2 − ω1, ω1 −
ω2, ω1 + ω2) and B remains unchanged. The real Lie algebra generated by Ã and B is

a Lie subalgebra of su(4), denoted L0 (the zero stands for D = 0) which is conjugate to

su(2)⊗ su(2) by the following element of SU(4):

V =


0 0 i 0

0 i 0 0

0 0 0 −i

−i 0 0 0


, i.e.,

V L0V
∗ = su(2)⊗ su(2)

Thus, to check if two mixed states ρi, i = 1, 2 are reachable from one another in the limit

R → ∞ it suffices to check if the mixed states V ∗ρiV, i = 1, 2 belong to the same orbit of

the conjugate action of SU(2)⊗ SU(2) on the set of 4× 4 mixed states (it is easy to check

that this is indeed an action).

4 A “Bloch Sphere” Approach to Determining Orbits

Since mixed states are, in particular, Hermitian matrices one could as well use methods of

invariant theory to solve the problem arising at the end of the previous section. For reasons,

mentioned in the introduction, this section will develop a different technique.

The matrices, I4, σi⊗ I2, I2⊗ σi, σi⊗ σk, i, k = 1, . . . , 3 form a basis for M4(C) and a basis

for the real vector space of 4 × 4 Hermitian matrices too. Thus, every mixed state can be

written as 4ρ = αI4 +
∑3

i=1 βiσi ⊗ I2 +
∑3

i=1 γiI2 ⊗ σi +
∑

i = 13
∑3

k=1 δikσi ⊗ σk, with all
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coefficients being real. Let β = (β1, β2, β3) and similarly let γ be the vector of coefficients,

γi and finally, let ∆ be the 3× 3 real matrix with coefficient δik.

Since ρ has to have trace 1, it follows that α = 1. Furthermore, the vectors β and γ have

to belong to the convex set {x ∈ R3, || x ||≤ 1}. This follows from taking partial trace

of a mixed state ρ. This yields 1
2
(I2 +

∑3
i=1 βiσi) in one case and 1

2
(I2 +

∑3
i=1 γiσi) in the

other. Since these partial traces have to be 2 × 2 states (pure or mixed), the conclusion

follows from the usual Bloch sphere picture in two dimensions. However, it does not follow

that the pure states are given by the extremen points of this set. Both to determine when a

trace 1 Hermitian matrix is a state and which such states are pure, it is useful to compute

the square of a Hermitian, trace 1 matrix in terms of its expansion given above (since,

positive semidefinite matrices are squares of Hermitian matrices and since pure states are

projections).u The details of this simple but laborious calculation are omitted for reasons of

brevity. Only the following results will be recorded here:

Lemma 4.1. Every mixed state satsifies α = 1, β = 1
2
(kβ0 + Dγ0), γ = 1

2
(kγ0 + DT β0),

∆ = 1
2
(kD−adj (D)−β0γ

T
0 ). Here, β0, γ0 are in R3, D is a 3×3 matrix and k is a constant

which satisfy the following: || β0 ||2 + || γ0 ||2 +Tr(DT D) ≤ 4 and k2 is difference between

the RHS and the LHS of this inequality.

Every pure state can be represented by α = 1, β ∈ R3 satisfying || β ||≤ 1, γ = DT β,

where D satisfies the same relationship with beta, γ as in the paragraph above. Furthermore,

∆ = D. Hence, detT =|| β ||2 −1 ≤ 0.

The relevance of the last statement above will be obvious soon. Now let us compute the

effect of an element U⊗V ∈ SU(2)⊗SU(2) acting by conjugation on a state. This is easy and

is given by the following elegant formula: φU⊗V (S) corresponds to β → URβ; γ → VRγ; ∆ →
UR∆V T

R , where UR, VR are the SO(3) matrices corresponding to U, V respectively under the

standard homomorphism from SU(2) to SO(3).. From this simple formula a few obvious

necessary conditions for belonging to the same orbit follow: the vectors β, γ of the initial

state and the final state must have the same length. Furthermore, from the appearance

of ∆ → UR∆V T
R one is inexorably lead to the singular values of ∆ playing an important

role. Obviously the initial state’s ∆ and final state’s ∆ must have the same singular values.

For pure states one can using the characterization above do more. Before proceeding, it is

useful to note that even though the ∆’s of the initial and final states are not conjugate, they

will have equal determinants. The relevance of this is the following well known result on

canonical forms:

Lemma 4.2. Suppose, ∆ is a Hermitian matrix with det(∆) < 0. Then there exist two

SO(3) matrices, X, Y such that X∆Y T = −diag(σ1, . . . , σn), where the σi are the singular

values of ∆.

Similar statements for the cases of positive and zero determinants exits, but they are

omitted here for brevity. Obviously, by choosing U, V ∈ SU(2) satisfying Φ(U) = X, Φ(V ) =

Y (Φ : SU(2) → SO(3) being the canonical homomorphism obtained by identifying SU(2)
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with the group of unit quaternions), a canonical form for density matrices under the conjugate

action of SU(2)⊗ SU(2), is thereby obtained.

Returning to pure states and using the characterization in Lemma (4.1) yields DDT + (||
β ||2 −1)I = ββT . This yields the singular values of D to be 1,

√
1− || β ||2,

√
1− || β ||2.

From Lemma (4.1) an obvious necessary condition for the initial pure state and the final

pure state to belong to the same SU(2) ⊗ SU(2) is that their β’s have the same length.

The calculation of the singular values above reveals this to be sufficient too. Indeed, now

a canonical form for the pure state with these singular values is given by a pure state with

β = −(|| β ||, 0, . . . , 0), γ = (|| β ||, 0, . . . , 0), ∆ = −diag(1,
√

1− || β ||2),
√

1− || β ||2).
Thus, for pure states a necessary and sufficient condition for equivalence under SU(2) ⊗

SU(2), and thus for reachability under the imaginary representation of so(4), is obtained

(note pure states remain pure under the mapping ρ → V ∗ρV ). For other states one can state

a not very useful necessary and sufficient condition (in terms of a stabilizer group). Certain

states, such as those with β = γ = 0, obviously are equivalent iff their ∆’s have the same

singular values. Such states intuitively seem the very opposite of the so-called separable

states. However, note that, under one definition of separable states (convex combinations

of Kronecker product states), it is possible for a separable state to have non-zero β’s and

γ’s. Since the intention of this work is not to contribute bandwidth to the yet unsettled

definition of separability, this work will not go further into this issue. Clearly states which

have ∆ = 0 are equivalent iff their β’s and γ’s have the same norms.

Finally, note that the imaginary representation of so(4) is also conjugate, within SU(4),

to the usual representation of so(4) by real, skew-symmetric matrices. Thus, one can obtain

some necessary conditions for reachability. However, even for pure states, it is difficult to

get sufficient conditions in this fashion.

5 Conclusions

This work studied a concrete system, which though controllable, tends towards uncontrolla-

bility when a certain parameter increases. Furthermore, the limiting dynamical Lie algebra

was identified with a concrete realization of so(4). This representation was then shown to

be explicitly conjugate to su(2)⊗ su(2) within SU(4). Thus, the probelm of reachability in

the limit was reduced to determining orbits of a group action of SU(2) ⊗ SU(2) on 4 × 4

density matrices. This problem was then studied by expanding every density matrix in terms

of the basis for Hermitian matrices consisting of the identity matrix and the Pauli matrices

together with their Kronecker products with the identity and themselves. This lead to a

simple solution for pure states and some other classes of states. Further work is needed for

arbitrary mixed states.
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