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Abstract

The problem of explicit generation of unitary operators for atomic systems with
degenerate energy levels is considered. The Lie algebra structure is used to derive
constructive control schemes for the creation of arbitrary superposition states and
selective population interchanges for a transition between two three-fold degenerate
energy levels.

1 Introduction

The problem of explicit generation of arbitrary unitary operators for quantum systems using

the system’s Lie algebra structure and geometric control has been the subject of several

recent papers on quantum control [1, 2, 3, 4, 5, 6, 7, 8]. It has been studied especially for

coupled spin systems [1, 2] and generic N -level systems with non-degenerate energy levels

and transition frequencies [6]. The results have also been applied to related problems such

as state preparation and optimization of observables for quantum systems [8].

In this paper we study the problem of constructive control for atomic systems. Unlike

molecular systems, where the density of the ro-vibrational states poses a serious challenge

for geometric control, atomic systems are generally rather good candidates for this technique

since there are no ro-vibrational states to worry about, and the energy levels for electronic

transitions are sufficiently separated in most cases, to allow frequency-selective excitation

of individual transitions while neglecting the effect of the field on the other (off-resonant)

transitions.

Unfortunately, the results on constructive control of generic N -level quantum systems cited

above are often not directly applicable to electronic transitions in atomic systems since most

atomic energy levels are degenerate. Strictly speaking, the precise energy level structure of

a real atom depends on various factors such as the spin of the atomic nucleus, electron spin,

and spin–orbit interactions for the particular species of atom under consideration. For many

purposes, however, it suffices to account for the basic degeneracy of the atomic energy levels

without considering their fine or hyperfine structure. We shall therefore restrict ourselves in

the following to such models.
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Figure 1: Transition diagram for F = 1 to F ′ = 1 transition (left) and F = 1 to F ′ = 2

transition (right). Blue indicates coupling by a linearly polarized field, while green / red

indicate coupling by a left / right circularly polarized field, respectively.

2 Basic facts from atomic quantum theory

If the fine structure is neglected, the degeneracy of an atomic energy level is 2F +1, where F

is a quantum number that can take positive integer and half integer values. Since transitions

between levels with F -values differing by more than one are usually prohibited by atomic

selection rules, we only have to consider transitions with ∆F = 0 or ∆F = ±1. The sublevels

of a degenerate atomic energy level are usually distinguished by a quantum number m, which

can take values from −F to F . For integer values of F , there are 2F + 1 sublevels and m

can take integer values from −F to F . For half integer values of F there are 2F sublevels

and m can take half integer values ranging from −F to F .

The interaction of the system with an external field of the appropriate frequency depends

on the polarization of the field. A linearly polarized field generally couples only sublevels with

the same quantum number m, while a left or right circularly polarized field will only couple

transitions between sublevels with ∆m = ±1, respectively. Transitions between sublevels

with |∆m| > 1 are prohibited, as are m = 0 to m = 0 transitions if both energy levels have

the same F value (and F > 0). The coupling diagrams for a transition F = 1 to F ′ = 1 and

a transition F = 1 to F ′ = 2 are shown in figure 1.

3 Implications for control of atomic transitions

Given the basic constraints mentioned the previous section, we see immediately that the

number of transitions that are simultaneously excited by an external control field, whether

linearly, left or right circularly polarized, is one only for transitions from F = 0 to F ′ = 0 and

F = 0 to F ′ = 1. In all other cases, a control field simultaneously couples multiple sublevels.

For instance, for F = 1 to F ′ = 1 transitions we always simultaneously couple two sublevels;

for F = 1 to F ′ = 2 transitions, three sublevels are simultaneously coupled; for F = 2 to

F ′ = 2, there are four, etc. The degree of controllability of these transitions was studied in

[9], where it was shown that transitions with ∆F = ±1 are always mixed-state controllable,

while transitions with ∆F = 0 (except for transitions F = 0 to F ′ = 0) are only pure-state

controllable in general. We shall now improve these results by using the basic structure of
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the Lie algebra to derive constructive control schemes.

A transition between two F = 0 levels corresponds to the trivial case of a non-degenerate

two-level system, which has been extensively studied [3, 4]. The constructive control tech-

niques presented in [6, 8] are also directly applicable to F = 0 to F ′ = 1 transitions since,

despite the degeneracy of the F = 1 level, we can selectively address each of the three pos-

sible transitions by choosing either linearly, left or right circularly polarized fields. For all

other cases, however, the situation is quite different. Due to space constraints we shall only

consider the case F = 1 to F ′ = 1. However, although each case is slightly different, the

basic techniques apply in all cases.

Any external field driving a transition between two three-fold degenerate energy levels

will simultaneously couple two sublevels, no matter how the polarization of the field is

chosen. See figure 1. Moreover, if we assume that the transition probabilities for allowed

transitions between all sublevels are equal, for instance, then the system is not mixed-state or

operator controllable since the dynamical Lie algebra generated is sp(3) and the dynamical

Lie group of the system contains only unitary operators that satisfy ÛT Ĵ Û = Ĵ , where Ĵ is

an anti-diagonal matrix whose non-zero elements are {+1,−1,+1,−1,+1,−1}. Thus, not

every unitary operator can be dynamically generated, including especially the permutation

matrices that correspond to selective excitation of a single sublevel [9]. However, the system

is at least pure-state controllable in all cases. Thus, it is possible, for instance, to create

arbitrary superposition states from a pure initial state, and certain unitary operations for

mixed states can also be implemented. We shall now study the evolution of the control

system to derive constructive control schemes for these applications.

4 Evolution of the control system

Using a rotating frame and the rotating wave approximation, the dynamical equation for

the time evolution operator Û(t, t0) of the system subject to a control field of the form

f(t) = 2A(t) cos(ω0t+φ), which is resonant with the transition frequency ω0 = (E2−E1)/~,

is (see [8], appendix A)

U̇I(t) = A(t)iĤIÛI , (4.1)

where we have chosen the time units [t] = ω−1
0 and field units [A] = ~ω0p

−1
12 , p12 being the

dipole moment of the transition. Note that the amplitude of the field A(t) must be slowly

varying compared to ω−1
0 for this approximation to be valid. Û(t, t0) determines the time

evolution of a pure state |Ψ(t0)〉 via |Ψ(t)〉 = Û(t, t0)|Ψ(t0)〉 and the evolution of a density

matrix via ρ̂(t) = Û(t, t0)ρ̂0Û(t, t0)†.

The interaction Hamiltonian ĤI in equation (4.1) depends on the polarization of the field.

In the following, we use Ĥ1 for a linearly polarized field, and Ĥ2 / Ĥ3 for a left / right

circularly polarized field, respectively. If the sublevels are labelled as in figure 1 (left) then
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we have concretely

iĤ1 = sin(φ)d1(x̂1,2 − x̂5,6)− cos(φ)d1(ŷ1,2 − ŷ5,6)

iĤ2 = sin(φ)d2(x̂1,4 + x̂3,6)− cos(φ)d2(ŷ1,4 + ŷ3,6)

iĤ3 = − sin(φ)d2(ŷ2,3 + ŷ4,5) + cos(φ)d2(ŷ2,3 + ŷ4,5)

(4.2)

where we set x̂m,n = êm,n − ên,m, ŷm,n = i(êm,n + ên,m), and êm,n is a square matrix of

dimension N (here N = 6) whose elements are zero except for the mth row and nth column

entry, which is one. The coefficients d1 and d2 are relative transition strengths, which are

determined by the Clebsh-Gordon coefficients [10].

We shall follow convention and indicate a linearly, left circularly and right circularly po-

larized field by σ, π− and π+, respectively. If we apply a control field with one of the

polarizations above from time t = t0 to t = t1 then integrating the equation of motion for

the evolution operator ÛI leads to ÛI(t1, t0) = Û(C, φ, ∗) where φ is the initial pulse phase

and C = d∗
∫ t1
t0
A(t) dt is half the effective pulse area. Concretely, we have d∗ = d1 for linearly

polarized light, and d∗ = d2 for circularly polarized light, as well as:

ÛI(C, φ, σ) = cos(C)(ẑ1,2 + ẑ5,6) + ẑ3,4 (4.3)

−ieiφ sin(C)(ê1,2 − ê5,6)− ie−iφ sin(C)(ê2,1 − ê6,5)

ÛI(C, φ, π
+) = cos(C)(ẑ1,4 + ẑ3,6) + ẑ2,5 (4.4)

−ieiφ sin(C)(ê1,4 + ê3,6)− ie−iφ sin(C)(ê4,1 + ê6,3)

ÛI(C, φ, π
−) = cos(C)(ẑ2,3 + ẑ4,5) + ẑ1,6 (4.5)

+ieiφ sin(C)(ê2,3 + ê4,5) + ie−iφ sin(C)(ê3,2 + ê5,4)

depending on the polarization of the field. For convenience, we have set ẑm,n = êm,m + ên,n.

5 Control scheme for selective population exchanges

Choosing C = π
2
, i.e., control pulses with effective pulse area π leads to

ÛI(
π
2
, φ, σ) = ẑ34 − ieiφ(ê1,2 − ê5,6)− ie−iφ(ê2,1 − ê6,5) (5.6)

ÛI(
π
2
, φ, π+) = ẑ2,5 − ieiφ(ê1,4 + ê3,6)− ie−iφ(ê4,1 + ê6,3) (5.7)

ÛI(
π
2
, φ, π−) = ẑ1,6 + ieiφ(ê2,3 + ê4,5) + ie−iφ(ê2,3 + ê4,5) (5.8)

These operators correspond to simultaneous permutations of the populations of levels |1〉,
|2〉 and |5〉, |6〉; |1〉, |4〉 and |3〉, |6〉; and |2〉, |3〉 and |4〉, |5〉, respectively.

Assume the initial populations of the lower levels are w1, w3 and w5, respectively, and the

populations of the upper levels are zero. Although we know that selective excitation of a

sublevel is not possible, we see immediately that we can interchange the populations of any

two of the lower sublevels. Let P̂1 = ÛI(
π
2
, φ1, σ), P̂2 = ÛI(

π
2
, φ2, π

+) and P̂3 = ÛI(
π
2
, φ3, π

−).

It is easy to check that we have for any choice of the initial pulse phases φn (n = 1, 2, 3)

(P̂1P̂3P̂1)diag(w1, 0, w3, 0, w5, 0)(P̂1P̂3P̂1)† = diag(w3, 0, w1, 0, w5, 0), (5.9)
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i.e., a sequence of three effective π pulses with polarization σ, π− and σ, respectively, inter-

changes the populations of the states |1〉 and |3〉. Similary, it can be shown that a sequence

of three π pulses with polarization σ, π+ and σ, respectively, interchanges the populations

of the states |3〉 and |5〉, and a sequence of three π pulses with polarization π+, π− and π+,

respectively, interchanges the populations of the states |1〉 and |5〉.

6 Creation of arbitrary superposition states

While being able to interchange sublevel populations is interesting, we can do much better

than that. Assume that we have prepared the system initially in the pure state |1〉. Since

the system is pure-state controllable, we can prepare any superposition state starting with

|1〉. We shall now a give a general control scheme that allows us to prepare the system in

any coherent superposition of the electronic ground states |1〉, |3〉 and |5〉, i.e., the lower

sublevels. Assume that we wish to create the superposition state

|Ψ〉 = c1|1〉+ c2|3〉+ c3|5〉, |c1|2 + |c2|2 + |c3|2 = 1. (6.10)

Note that the coefficients cn are complex, i.e., cn = |cn|eiθn but we may assume θ1 = 0.

Setting

C1 = arcsin(|c1|), C2 = arcsin(|c2|/
√
|c1|2 + |c2|2), C3 =

π

2
(6.11)

leads to

Û1 = ÛI(C1, φ1, π
+) = cos(C1)(ẑ1,4 + ẑ3,6) + ẑ2,5 (6.12)

−ieiφ1 sin(C1)(ê1,4 + ê3,6)− ie−iφ1 sin(C1)(ê4,1 + ê6,3)

Û2 = ÛI(C2, φ2, σ) = cos(C2)(ẑ1,2 − ẑ5,6) + ẑ34 (6.13)

−ieiφ2 sin(C2)(ê1,2 − ê5,6)− ie−iφ2 sin(C2)(ê2,1 − ê6,5)

Û3 = ÛI(C3, φ3, π
−) = ẑ1,6 + ieiφ3(ê2,3 + ê4,5) + ie−iφ3(ê3,2 + ê5,4) (6.14)

with cos(C1) =
√
|c1|2 + |c2|2, sin(C1) = |c3|, cos(C2) = |c1|/

√
|c1|2 + |c2|2 and sin(C2) =

|c2|/
√
|c1|2 + |c2|2. Furthermore, if we choose φ1 = −θ2, φ2 = −θ1 and φ3 = 0 then we have

(Û3Û2Û1)ρ̂0(Û3Û2Û1)† = ρ̂1 (6.15)

with ρ̂0 = |1〉〈1| = diag(1, 0, 0, 0, 0, 0) and ρ̂1 = |Ψ〉〈Ψ|. Thus, by a applying a sequence of

three pulses with effective pulse areas 2C1, 2C2 and 2C3, initial phases φ1, φ2 and φ3, and

polarizations π+, σ and π−, respectively, we can create the desired superposition state.

Note that there is a slight problem with the choice of the initial pulse phases. The decom-

position above suggests that the phase of the first pulse should be −θ2. However, since we

have used a rotating frame and the phase of the coherences ρ1,4 and ρ4,1 evolves freely during

the application of the second pulse, the phase of the first pulse should really be chosen such

that φ1 + ω0∆T2 = −θ2 modulo 2π, where ∆T2 is the length of the second pulse, to ensure

that the final superposition state has the correct phase correlation.
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7 Conclusion

We have shown how the Lie algebra structure of the control system can be used to derive

constructive control schemes for atomic systems with degenerate energy levels. Concretely,

we have considered the case of a transition between two three-fold degenerate energy levels,

and presented control schemes for selective population interchanges and the creation of ar-

bitrary superposition states. Future work will address transitions with higher degeneracy,

and the derivation of constructive control schemes for other control problems of interest.
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