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Abstract
For the unitary operator, solution of the Schrödinger equation corresponding to a

time-varying Hamiltonian, the relation between the Magnus and the product of ex-
ponentials expansions can be expressed in terms of a system of first order differential
equations in the parameters of the two expansions, often referred to as Wei-Norman
formula. It is shown how to use Wei-Norman formulæ for the purposes of quantum
computing.

1 Introduction

For time-varying finite dimensional closed quantum systems, the time evolution of the

quantum state |ψ〉 can be written as |ψ(t)〉 = U(t)|ψ(0)〉, with the unitary propagator

U(t) ∈ SU(n) expressed locally as a formal exponential of the Hamiltonian H(t). Alterna-

tively, if A1, . . . , An, n = N2 − 1, is a basis of su(N), it is possible to write U(t) in terms of

some Euler-like parameterization of SU(N). These parameterizations are essentially ordered

products of exponentials on SU(N) and for a Lie group there are as many such products as

there are Lie group decompositions. See [8, 13, 9] for a few examples of explicit choices on

SU(N). Such decompositions are very useful for example in the generation of elementary

gates in quantum computing or more generally in the control of driven dynamics [12, 15],

but also in quantum state disentanglement [11], in the study of coherent states [7, 9], in

the solution of the Liouville-von Neumann equation and in the design of schemes for the

numerical integration of differential equations on Lie groups [5]. The two expressions for the

U(t) go under the names of Magnus expansion [6] and product of exponentials expansion

[17]. We are interested here in studying how the two expansions relate, in particular how

the parameters of the one series can be expressed as functions of the parameters of the other

one. In nuce, such a transformation is already in the original papers of Wei-Norman, but its

importance is made clear in [18]. In practice, it consists in studying a system of nonlinear

differential equations having as variables the two sets of parameters contained in the two

expansions. Such a system of differential equations is called the Wei-Norman formula and

it corresponds to the Jacobian of the change of coordinates i.e. of the transformation from

single exponential to product of exponentials.

The Wei-Norman formula appears in several different contexts in the literature, see [2,

3, 4, 14] just to mention a few. In [1] we propose a method to compute it explicitly and
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systematically for any dimension, based only on the structure constants of the Lie algebra.

Such method seems to be new. The rationale behind it is a technique to compute in closed

form one parameter groups of automorphisms i.e. exponentials of the matrices of the adjoint

representation of any linear Lie algebra. As an example, here we compute two Wei-Norman

formulæ for su(2) for the same basis obtained from the Pauli matrices but for different

ordering of the basis elements (i.e. different choices of Euler angles), and then propose a

potential application in the context of quantum computing.

2 Magnus expansion versus product of exponentials

expansion

Assume the HamiltonianH(t) is skew-Hermitian and belongs for all t to the finite dimensional

Lie algebra su(N). If we choose a basis of skew-symmetric matrices A1, . . . An for su(N),

then [Ai, Aj] =
∑n

µ=1 c
µ
ijAµ where ckij are the structure constants of su(N). Since A1, . . . , An

are time independent operators in su(N), H(t) =
∑n

µ=1 u
µ(t)Aµ with ui(t) analytic functions

of time. For the Schrödinger equation:

i
∂

∂t
|ψ(t)〉 = H(t)|ψ(t)〉 |ψ(0)〉 = |ψ0〉.

Then |ψ(t)〉 = U(t)|ψ0〉, where U(t) in the Magnus expansion is given by the formal expres-

sion

U(t) = T exp

(∫ t

0

uµ(τ)Aµdτ

)
(2.1)

where T is the Dyson operator and exp, the exponential map for SU(N), is the ordinary

matrix exponential. The Wei-Norman formula relates (2.1) with the expansion as a product

of exponentials, i.e. it affirms that (2.1) can be written locally around the identity of SU(N)

as

U(t) = exp
(
γ1(t)A1

)
. . . exp (γn(t)An) (2.2)

The Wei-Norman formula consists in expressing the functions γi(t) in terms of the ui(t)

via a system of differential equations:

Ξ(γ1, . . . , γn)

γ̇
1

...

γ̇n

 =

u
1

...

un

 γi(0) = 0 (2.3)

with the n × n matrix Ξ analytic in the variables γi. The matrix Ξ of elements (Ξ)ki = ξki
is defined in terms of the γi and of the structure constants as:

m∏
j=1

eγ
jadAjAi =

n∑
µ=1

ξµi Aµ m = 1, . . . , n (2.4)
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When the Ai form a basis of su(N), the matrix Ξ assumes also the meaning of map between

canonical coordinates of the first kind (2.1) and canonical coordinates of the second kind

(2.2), see [16]. In this case, since γi(0) = 0, Ξ(0) = I and thus Ξ is locally invertible.

However, because of the semisimplicity of SU(N), all parameterizations lead to a Wei-

Norman formula that is subject to singularities and as such Ξ−1 has only a local validity.

By inverting Ξ, equation (2.3) assumes the more traditional aspect of a system of first order

differential equations in the γi variables:γ̇
1

...

γ̇n

 = Ξ(γ1, . . . , γn)−1

u
1

...

un

 γi(0) = 0 (2.5)

If the time evolution of one of the two vectors of coordinates γi or ui is known, the formulæ

(2.3) or (2.5) can be used to obtain the other one. While (2.3) is global, (2.5) is valid only

as long as det(Ξ) 6= 0 and thus the nonsingularity of Ξ needs to be checked at the point of

application. Another weak point of the Wei-Norman formula is that the system of differential

equations is nonlinear in the γi.

3 Example: su(2)

A skew-symmetric basis for su(2) is obtained from the Pauli matrices

σ1 =

[
0 1

1 0

]
σ2 =

[
0 −i
i 0

]
σ3 =

[
1 0

0 −1

]
for example by taking Aj = i

2
σj, j = 1, 2, 3, i.e.

A1 =
1

2

[
0 i

i 0

]
A2 =

1

2

[
0 1

−1 0

]
A3 =

1

2

[
i 0

0 −i

]
(3.6)

and it corresponds to all real structure constants c3
12 = c1

23 = c2
31 = 1. The corresponding

adjoint matrices are

adA1 =

0 0 0

0 0 −1

0 1 0

 adA2 =

 0 0 1

0 0 0

−1 0 0

 adA3 =

0 −1 0

1 0 0

0 0 0


whose exponentials are:

eγ
1adA1 =

1 0 0

0 cos γ1 − sin γ1

0 sin γ1 cos γ1

 eγ
2adA2 =

 cos γ2 0 sin γ2

0 1 0

− sin γ2 0 cos γ2

 eγ
3adA3 =

cos γ3 − sin γ3 0

sin γ3 cos γ3 0

0 0 1


The Magnus expansion (2.1) is given by U(t) = T

∫ t
0
eu

1A1+u2A2+u3A3dτ (with ui = ui(t)).
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3.1 Wei-Norman formula for canonical coordinates of the second

kind

In the product of exponentials, choosing the order given by the cardinality of the index gives

the canonical coordinates of the second kind on SU(2): U(t) = eγ
1A1eγ

2A2eγ
3A3 (again with

γi = γi(t)). For this choice, the Wei-Norman formula reads as:

Ξ =

1 0 sin γ2

0 cos γ1 − cos γ2 sin γ1

0 sin γ1 cos γ1 cos γ2

 (3.7)

whose inverse can be computed explicitly:

Ξ−1 =

1 sin γ1 tan γ2 − cos γ1 tan γ2

0 cos γ1 sin γ1

0 − sec γ2 sin γ1 cos γ1 sec γ2

 (3.8)

From (3.7), the determinant of Ξ is simply

det Ξ = cos γ2

and thus the singularities of the representation are γ2 = π/2 + kπ, k ∈ Z. While (2.3) (and

(3.7)) is valid everywhere, in the singular points the formula (2.5) cannot be applied (i.e.

(3.8) is not defined).

3.2 Wei-Norman formula for the ZY Z Euler angles

When expressed in the basis (3.6), the ZYZ Euler angles correspond to the product of

exponentials U(t) = eγ
1A3eγ

2A2eγ
3A3 (compare with the expression of Section 3.1). The

Wei-Norman formula corresponds in this case to

Ξ =

0 − sin γ1 cos γ1 sin γ2

0 cos γ1 sin γ1 sin γ2

1 0 cos γ2


and its inverse

Ξ−1 =

− cos γ1 cot γ2 − sin γ1 cot γ2 1

− sin γ1 cos γ1 0

cos γ1 csc γ2 sin γ1 csc γ2 0


Since

det(Ξ) = sin γ2

the singularity has now moved to γ2 = kπ, k ∈ Z, as is well-known for such a parameter-

ization. Thus Ξ−1 can be used everywhere except in the identity U(0) = I. It is worth

emphasizing that it is a fundamental topological fact that singularities cannot be avoided in

a minimal parameterization of a semisimple Lie group. One possible way to get around the

problem is obviously to use “redundant” parameterizations like quaternions.
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4 Application to quantum computing

In quantum information [10], state manipulation is achieved via some set of elementary

gates, by performing sequences of unitary transformations. This cascades of unitary matrices

corresponds to products of exponentials. For su(2), both the product of exponentials of

Section 3.1 and Section 3.2 can provide a complete set of such unitary gates, i.e. can steer

|ψ0〉 arbitrarily to any |ψ〉 in the Hilbert space H2 respectively via

|ψ〉 = eγ
1A1eγ

2A2eγ
3A3 |ψ0〉 and |ψ〉 = eγ

1A3eγ
2A2eγ

3A3|ψ0〉

with γi computed as above. The method can be straightforwardly generalized to N -level

systems.

5 Conclusion

To be able to describe a time varying dynamics in terms of simple unitary operations is

an important issue in quantum mechanics and it is foreseen that it will be a crucial one in

quantum computation. The method we propose here relates the one parameter flow of the

Schrödinger equation with an arbitrary decomposition of SU(N) by computing the Jacobian

of the coordinate transformation. It is worth emphasizing that if the symbolic expression of

the Wei-Norman formula rapidly explodes with the dimension of the system, its numerical

integration can be easily and efficiently handled.
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