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Abstract

In this paper, a rationale is presented for balancing a nonlinear discrete time system.

However, it is shown that even with a set of very reasonable assumptions, it is not

possible to construct a globally balanced realization. The obstruction comes from

certain integrability conditions which are generically not satisfied. One way around

this is to relax the requirements of global balancing by restricting the balancedness

conditions to a discrete set of points in the state space.

1 Introduction

A reasonable definition for a global balanced realization for a nonlinear discrete time sys-

tem seems to involve the requirement that the linearized system along a nominal solution

is balanced in the usual linear time-varying sense. This implies that a global nonlinear

balanced system for an arbitrary realization should be defined as the one that closes the

commutative diagram between linearization and balancing. Unfortunately, it was shown

that such a global balanced realization may not exist in dimensions larger than one (or, if

one relaxes the notion of balancedness to uncorrelatedness, in dimensions larger than two.)

See [8] for the continuous, and [7] for the discrete case. In this paper, it is shown that by

limiting exactness to some specific points in the state space, e.g. a periodic orbit [9, 11], or

fixed nominal trajectory, balancedness or uncorrelatedness can be obtained via interpolation.

Consider thus the smooth discrete time nonlinear system

xk+1 = f(xk, uk), (1.1)

yk = h(xk, uk). (1.2)

The rationale of our balancing philosophy is that the balancing should not make reference

to just one solution of the system (the equilibrium solution), but should be defined for all

nominal solutions (iterated maps), thus for all initial conditions. We shall speak of the

nominal orbit. In addition, it will be assumed that the input consists of a nominal feedback

and a (small) perturbation: uk = K(xk) + ũk. A special case is the constant input. This

gives

xk+1 = f(xk, K(xk) + ũk)
def
= F (xk, ũk), (1.3)

yk = h(xk, K(xk) + ũk)
def
= H(xk, ũk) (1.4)
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The nominal solution, represented by the sequence {xk}, is governed by the map

xk+1 = F (xk, 0) (1.5)

The associated perturbation model follows from the controlled map

xk+1 = F (xk + x̃k, ũk) (1.6)

where x̃k in addition to ũk is also assumed small. Thus:

x̃k+1 = dF
∣

∣

k
x̃k + G

∣

∣

k
ũk (1.7)

where

[dF k]i
def
=

[

∂Fi

∂x1

, · · · ,
∂Fi

∂xn

]

evaluated at (x(k), 0),

and

G
∣

∣

k

def
=

∂F

∂u

∣

∣

∣

∣

k

also evaluated at (x(k), 0).

Likewise the output perturbation equation is

yk − yk = H(xk + x̃k, ũk)−H(xk, 0)

= dH
∣

∣

k
x̃k +

[

∂H

∂u

]

k

ũk, (1.8)

where again dH indicates that the differential is evaluated at the nominal solution, (x(k), 0).

Hence the perturbation system about the nominal feedback law, u = K(x), is given by

the triple (dF , G, dH). The perturbation model (1.7-1.8) is time variant in general. The

paper is organized as follows: in Section 2, local realization properties, i.e., reachability and

observability of discrete time nonlinear systems are reviewed. More details may be found in

[7]. In section 3, the balanced realization for a class of nonlinear systems is given. Section 4

discusses a specific interpolation for orbits of planary systems. Examples are given in Section

5.

2 Local Reachability and Observability

Let us start from the perturbation-model for (1.2), assuming a particular nominal solution

sequence, x0, x1, . . . , xN−1, . . . and small excursions. Introduce the k-step iterated symbol

(analogous to the “Ad”-operator in continuous time), defined as

(

itk−1
F G

)

`−1

def
= dF |`−1 · · ·dF |`−k+1 G|`−k, (2.9)

and satisfying the recursion

(

itk
F G

)

`−1
= dF |`−1

(

itk−1
F G

)

`−2
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with
(

it0
F G

)

`−1
= G|`−1. Note that this definition is somewhat different from the one

proposed in [7], but seems more natural, since (itk−1
F G)`−1 gives the effect of the input, u`−k,

k steps away, on the state at time `. Indeed, the local `-step reachability map for a sequence

of small inputs, ũ0, . . . , ũ`−1, starting at k = 0, with the slightly perturbed state x0 + x̃0 is

given by (“h.o.t.” are higher order terms)

x` = F ◦`(x0) + (dF |`−1 · · ·dF |0) x̃0 + (dF |`−1 · · ·dF |1G|0) ũ0 + · · ·
· · ·+ G|`−1ũ`−1 + h.o.t.

Since this is also, x` + x̃`, we get the compact form, ((it`−1
F dF )`−1 x̃0 = (it`

F x̃0)`−1),

x̃` = R
(`)
loc(x`)U` + (it`−1

F dF )`−1 x̃0 + h.o.t. (2.10)

Here, the matrix

R
(`)
loc(x`)

def
=

[

G|`−1, (it1
F G)`−1 · · · (it`−1

F G)`−1

]

, (2.11)

is the local (`-step) reachability matrix (for reaching x̃`), and U`
def
= [u`−1, . . . , u0]

′. Hence

if R
(`)
loc(x`) is nonsingular, the sequence U` = [R

(`)
loc(x`)]

−1x̃f will steer the event (x0, 0) to a

neighborhood of F ◦`(x0) + x̃f at time `. More precisely, x̃f will be the deviation, up to first

order, from the nominal state x` in ` steps. It is obvious that for a system of order n, not all

perturbations in the neighborhood of xk will be reachable unless the number of steps, k ≥ n,

and a reachability condition holds: rank R
(k)
loc(·) = n.

Likewise, the output perturbation (deviation from the nominal output), in the absence of

input perturbations, but with nonzero x̃0, is found as

ỹk = dH|k
(

itk
F x̃0

)

k−1
= dH|k dF |k−1 · · · dF |0 x̃0 (2.12)

thus generating an output perturbation sequence, satisfying Y` = [ỹ0, . . . , ỹ`−1]
′,

Y` = O
(`)
loc(x̃0). (2.13)

The matrix

O
(`)
loc(x0) =











dH|0
dH|1dF |0

...

dH|`−1dF |`−2 · · ·dF |0











(2.14)

is the local ` -step observability matrix (observing the perturbation x̃0.

Define for an n-th order system the local gramians at x0 as the n-step (n is the order of the

system) gramians gramians relative to the nominal model at x0. It is also shown in [7] that

the time symmetry with respect to the event (x0, 0) requires that we shift the reachability

problem to the past, and consider the local reachability matrix R(`)(x0), associated with the
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reachability of a neighborhood of x0 at step 0. Define now the local reachability Gramian at

x0 as

R(x0) = R
(n)
loc (x0)R

(n)′

loc (x0). (2.15)

Note that it actually depends on x−n = F ◦(−n)(x0) where n is the system order. F−1 is the

backwards map. See [7] for details. Likewise, the local observability Gramian is

O(x0) =
[

O
(n)′

loc (x0)O
(n)
loc (x0)

]

. (2.16)

The Gramians play a fundamental role as weighting matrices for the input and output

perturbation energies. Observe that the gramians are necessarily singular if fewer than n

steps would be considered. Hence these are truly the minimum time gramians.

3 Nonlinear Balanced Realizations

3.1 Local balancing

The linear variational system along the nominal trajectory is time-varying, and finite time

balancing for such systems is described in [10]. Now extend:

Definition 3.1. The discrete system (F, G) is said to be locally (at x0) balanced for the

nominal input u = K(x), if the minimum time gramians satisfy R (x0) = O(x0) = Λ(x0),

where Λ(x0) is a diagonal matrix with nonnegative elements on its diagonal.

If the diagonal elements λi(x0) are all distinct at x0, then a canonical gramian at x0

may be defined as the gramian Λ for which the values on the diagonal are ordered i.e.,

λ1 > λ2 > · · · > λn.

Local balancing at x0 is performed by simultaneous diagonalization of the local reachability

and observability gramians. It was shown in [7] that if the local Hankel matrix H(x0) is

defined by

Hloc = O
(n)
loc R

(n)
loc

and has a singular value decomposition Hloc = UΛ2V ′, then the local balancing transforma-

tion is given by Tbal = [ΛV ′] R
(n)
loc or equivalently by T−1

bal =
(

O
(n)
loc

)−1

[UΛ].

3.2 Global Balancing

The rationale behind our approach to balancing in the continuous time case was the idea

that balancing and linearization should commute. Adopting the same in the discrete case,
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we desire the following commutative diagram

(F, G, H)
linearization−→ (AP , bP , cP )

global balancing ↓ local balancing ↓

(F̂ , Ĝ, Ĥ)
linearization−→ (ÂP , b̂P , ĉP )

Thus the problem is to extend the local (at x) balancing transformations T (x) to a trans-

formation on at least some open subset of the state space. To this effect, the equation

∂ξ

∂x
= T (x) (3.17)

needs to be solved. This is a set of n partial differential equations of first order in n variables.

It is a special case of a Mayer-Lie system. It is known that such a system of equations is

not generically solvable. The necessary and sufficient conditions for solvability are
∂Tij(x)

∂xk
−

∂Tik(x)
∂xj

= 0, for all i, j, k = 1, . . . , n. This problem led us to define a more relaxed notion of

uncorrelated realization [7, 11].

Definition 3.2. A realization for which the reachability and observability gramians are both

diagonal is called an uncorrelated realization.

Theorem 3.1. i) A first order minimal system can be balanced.

ii) A second order minimal system can be brought to uncorrelated form.

iii) A higher order system can be uncorrelated if and only if integrating factors exist for which

ST is integrable.

4 Pseudo-balancing and Mayer-Lie Interpolation

The above theorem shows the severe obstructions towards balancing. However, consider a

nominal trajectory of interest, (e.g., a periodic one), x0, x1, . . . , xN−1, where N is assumed

to exceed the system order. In this case one should only be concerned about the behavior

of the system at the N discrete points x0, x1, . . . , xN−1. This constitutes an interpolation

problem: Find a diffeomorphism ξ such that

∂ξ

∂x

∣

∣

∣

∣

xi

= T (xi) = T (i) ; i = 0, . . . , N − 1.

4.1 Mayer-Lie Interpolation for Planar Systems

We study the planar systems n = 2. The original coordinates are denoted as x and y, the

new coordinates are ξ and η. We will show that for N odd, an interesting choice is given by
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the homogeneous forms

ξ(x, y) = c
(1)
1 x2N−1 + c

(1)
2 x2N−2y + · · ·+ c

(1)
2Ny2N−1

η(x, y) = c
(2)
1 x2N−1 + c

(2)
2 x2N−2y + · · ·+ c

(2)
2Ny2N−1

The coefficients c
(i)
j are determined by matching the Jacobian ∂(ξ,η)

∂(x,y)

T
at the N interpolation

points. It leads to a solvable set if no two interpolation states are colinear with the origin.

This result was stated in [11], but a detailed proof was not included. It is presented in the

next section.

What makes the given choice interesting is the fact (due to the homogeneity) that the

straight lines αx+βy = 0 are mapped into straight lines γξ + δη = 0 for some (γ, δ). In fact

if the slope of the first is tan t = y/x, then the slope of the transformed line will be

tan θ(t) =
η(cos t, sin t)

ξ(cos t, sin t)
.

Hence the map of the unit circle, i.e., the parametrized form, [ξ = ξ(cos t, sin t), η =

η(cos t, sin t)], essentially determines the new frame. The real roots of the polynomial

ξ(1, t) = 0 determine the angles of the asymptotes (if any) for the plots of ξ = c where

c is any nonzero constant, and likewise for η. The mapping (x, y) → (ξ, η) is not necessarily

a homeomorphism (and thus also not a diffeomorphism) of the full state space. However,

the state space can be partitioned into wedges where the mapping (x, y) → (ξ, η) is one to

one. The boundaries of the wedges are determined by the angles for which dθ(t)
dt

= 0. The

latter condition determines ‘turning points’ on the map of the unit circle. Hence, a maximal

injective restriction is given by the subintervals of t where

[ξ, η]x sin t− [ξ, η]y cos t 6= 0,

where [ξ, η]x is the Lie bracket with respect to the variable x. Both Lie brackets are evaluated

at x = cos t, y = sin t. Finally, remark that the map, ξ = x2 + y2, η = xy, presents a fine

example, illustrating turning points for x = ±y, or tan t = ±1, i.e., the ±45o lines.

4.2 Interpolation Condition

Theorem 4.1. If no two interpolation points are collinear with the origin, then the proposed

Mayer-Lie interpolation is solvable.

Proof: Matching the Jacobian with the local balancing transformation at a point (x, y)
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yields the condition

∂(ξ, η)

∂(x, y)

T

=

[

(2N − 1)x2N−2 (2N − 2)x2N−3y · · · y2N−2 0

0 x2N−2 · · · (2N − 2)xy2N−3 (2N − 1)y2N−2

]







c
(1)
1 c

(2)
1

...
...

c
(1)
2N c

(2)
2N







= Z(x, y) C

Since it must hold at the N chosen points, the solvability of the coefficients is equivalent to

the nonsingularity of the coefficient matrix. Thus, let ρi 6= 0; i = 1, . . . N . In this section,

we compute the determinant of the 2N × 2N matrix





















(2N − 1)ρ2N−2
1 (2N − 2)ρ2N−3

1 · · · 1 0
...

...
...

...

(2N − 1)ρ2N−2
N (2N − 2)ρ2N−3

N · · · 1 0

0 1 · · · (2N − 2)/ρ2N−3
1 (2N − 1)/ρ2N−2

1
...

...
...

...

0 1 · · · (2N − 2)/ρ2N−3
N (2N − 1)/ρ2N−2

N





















Denote this determinant by D(ρ1, . . . , ρN) = D(ρ). First note that

D(ρ) =
∂N

∂ρ1 · · ·∂ρN
det





















ρ2N−1
1 ρ2N−2

1 · · · ρ1 1
...

...
...

...

ρ2N−1
N ρ2N−2

N · · · ρ2 1

0 1 · · · (2N − 2)λ2N−3
1 (2N − 1)λ2N−2

1
...

...
...

...

0 1 · · · (2N − 2)λ2N−3
N (2N − 1)λ2N−2

N





















λ=1/ρ

where λ = 1/ρ indicates the evaluation of the partial derivatives for λ1 = 1/ρ1; i = 1 . . .N .

Hence, also

D(ρ) =
∂N

∂ρ1 · · ·∂ρN

∂N

∂λ1 · · ·∂λN

det





















ρ2N−1
1 ρ2N−2

1 · · · ρ1 1
...

...
...

...

ρ2N−1
N ρ2N−2

N · · · ρ2 1

1 λ1 · · · λ2N−2
1 λ2N−1

1
...

...
...

...

1 λN · · · λ2N−2
N λ2N−1

N





















λ=1/ρ
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or,

D(ρ) =
∂N

∂ρ1 · · ·∂ρN

∂N

∂λ1 · · ·∂λN






































(λ1 . . . λN )N det





















ρ2N−1
1 ρ2N−2

1 · · · ρ1 1
...

...
...

...

ρ2N−1
N ρ2N−2

N · · · ρ2 1

1/λ2N−1
1 1/λ2N−2

1 · · · 1/λ1 1
...

...
...

...

1/λ2N−1
N 1/λ2N−2

N · · · 1/λN 1



























































λ=1/ρ

=
∂N

∂ρ1 · · ·∂ρN

∂N

∂λ1 · · ·∂λN

{

(λ1 . . . λN)N det V (ρ, 1/λ)
∣

∣

}

λ=1/ρ
.

where V (ρ, 1/λ) denotes the Vandermonde matrix V (ρ1, . . . , ρN , 1/λ1, . . . , 1/λN). This re-

duces further to

D(ρ) = (λ1 · · ·λN)2N−2 ∂N

∂ρ1 · · ·∂ρN
[

(2N − 1)N + (2N − 1)N−1

(

λ1
∂

∂λ1
+ · · · + λN

∂

∂λN

)

+ · · ·

+(2N − 1)

(

λ2
∂

∂λ2

· · ·λN
∂

∂λN

+ · · ·+ λ1
∂

∂λ1

· · ·λN−1
∂

∂λN−1

)

+

+

(

λ1
∂

∂λ1
· · ·λN

∂

∂λN

)]

det V (ρ, 1/λ)

∣

∣

∣

∣

λ=1/ρ

Upon setting θi = 1/λi for i = 1, . . . , N and noting that

λi
∂

∂λi
= −θi

∂

∂θi

one gets

D(ρ) =
1

(ρ1 · · · ρN)2N−2

∂N

∂ρ1 · · ·∂ρN
[

(2N − 1)N − (2N − 2)N−1T1 + · · ·
· · ·
(−1)N−1(2N − 1)TN−1 + (−1)NTN

]

det V (ρ, θ)
∣

∣

θ=ρ
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where the differential operators Ti; i = 1, . . . , N are defined by

T1 =
N

∑

i=1

θi
∂

∂θi

T2 =
∑ ∏

2 factors

(

θi
∂

∂θi

)

...

TN−1 =
∑ ∏

(N−1) factors

(

θi
∂

∂θi

)

TN =
N
∏

i=1

(

θi
∂

∂θi

)

,

the products are taken over nonrepeating indices, and the sums include all such possibilities.

Consider now the term

R1(ρ) =
∂N

∂ρ1 · · ·∂ρN
V (ρ, θ)

∣

∣

∣

∣

θ=ρ

Expressing the Vandermonde determinant as

det V (ρ, θ) = (ρ1 − θ1) · · · (ρN − θN)F

where F collects all other factors

F =
∏

i<j

(ρi − ρj)
∏

k<l

(θk − θl)
∏

m6=n

(ρm − θn)

one readily finds

R1(ρ) =
∂N−1

∂ρ2 · · ·∂ρN

{[F + (ρ1 − θ1)Fρ1 ] [(ρ2 − θ2) · · · (ρN − θN )]}
∣

∣

∣

∣

θ=ρ

=
∂N−1

∂ρ2 · · ·∂ρN

V (ρ, θ)

ρ1 − θ1

∣

∣

∣

∣

θ=ρ

+

+(ρ1 − θ1)
∂N−1

∂ρ2 · · ·∂ρN
((ρ2 − θ2) · · · (ρN − θN)Fρ1)

∣

∣

∣

∣

θ=ρ

=
∂N−1

∂ρ2 · · ·∂ρN

V (ρ, θ)

ρ1 − θ1

∣

∣

∣

∣

θ=ρ

=
∂N−1

∂ρ2 · · ·∂ρN
[(ρ2 − θ2) · · · (ρN − θN )F ]

∣

∣

∣

∣

θ=ρ

since the last term vanishes due to ρ1 = θ1. Now perform the partial derivation with respect

to ρ2 likewise to obtain

R1(ρ) =
∂N−2

∂ρ3 · · ·∂ρN

[(ρ3 − θ3) · · · (ρN − θN )F ]

∣

∣

∣

∣

θ=ρ
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Keep turning the crank, until

R1(ρ) =
det V (ρ, θ)

(ρ1 − θ1) · · · (ρN − θN )

∣

∣

∣

∣

θ=ρ

=
∏

i<j

(ρi − ρj)
∏

k<l

(θk − θl)
∏

m6=n

(ρm − θn)

∣

∣

∣

∣

∣

θ=ρ

= (−1)N(N−1)/2
∏

i<j

(ρi − ρj)
4.

Consider also the general term involved in Tk of the form

Rk(σ; ρ) =
∂N−k

∂ρσ(k+1) · · ·∂ρσ(N)

∂2

∂ρσ(1)∂θσ(1)
· · · ∂2

∂ρσ(k)∂θσ(k)
det V (ρ, θ)

∣

∣

∣

∣

θ=ρ

,

where σ is an arbitrary permutation. Denote for brevity the partial differential operator by

Dσ(1...,k;k+1,...,N). Then:

Rk(σ; ρ) = D
{

det V (ρ, θ)

(ρσ(1) − θσ(1)) · · · (ρσ(k) − θσ(k))
(ρσ(1) − θσ(1)) · · · (ρσ(k) − θσ(k)).

}

θ=ρ

,

Setting

F =
det V (ρ, θ)

(ρσ(1) − θσ(1)) · · · (ρσ(k) − θσ(k))
,

then

Rk(σ; ρ) = D
{(

−Fρσ(k)
+ Fθσ(k)

)

(ρσ(1) − θσ(1)) · · · (ρσ(k−1) − θσ(k−1))+

+(ρσ(1) − θσ(1)) · · · (ρσ(k) − θσ(k))Fθσ(k)ρσ(k)

}

θ=ρ

Now, by successively “peeling off” the second order partials with respect to ρσ(i) and θσ(i),

we find

Rk(σ; ρ) =

Dσ(1),...,σ(k−2);σ(k+1),...,σ(n)

{[(

− ∂

∂ρσ(k)

+
∂

∂θσ(k)

) (

− ∂

∂ρσ(k)

+
∂

∂θσ(k)

)

F

]

·

·
(

ρσ(1) − θσ(1)

)

· · ·
(

ρσ(k−2) − θσ(k−2)

)}

ρ=θ

= · · ·
=

∂n−k

∂ρσ(k+1) · · · ρσ(n)

[(

− ∂

∂ρσ(1)
+

∂

∂θσ(1)

) (

− ∂

∂ρσ(k)
+

∂

∂θσ(k)

)

F

]

ρ=θ

.

Clearly, all these terms are zero. Hence,

D =
1

(θ1 · · · θN ); 2N − 2

∂N

∂ρ1 · · · ρN
(2N − 1)N det V (ρ, θ)

∣

∣

∣

∣

θ=ρ

=
(2N − 1)N

(ρ1 · · · ρN )2N−2

det V (ρ, θ)

(ρ1 − θ1) · · · (ρN − θN)

∣

∣

∣

∣

θ=ρ
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Finally, with
det V (ρ, θ)
∏N

i=1 ρi − θi

∣

∣

∣

∣

∣

θ=ρ

= (−1)N(N−1)/2
∏

i<j

(ρi − ρj)
4

we get

DN = (−1)N(N−1)/2(2N − 1)N

∏

i<j(ρi − ρj)
4

(ρ1 · · · ρN )2N−2

and thus proved the assertion, since DN is nonzero if all ρi = yi/xi are disjoint.

5 Examples

First we give the exact balanced form for a scalar system, and apply the result to the logistic

equation. We correct a (minor) error in [7]. The second example involves the delayed logistic

equation, and a third one is a discrete model for enzyme kinetics [3].

5.1 Scalar case

The affine scalar system

xk+1 = f(xk) + g(xk)uk

yk = h(xk)

for small inputs uk, nominally identically equal to 0, yields for the gramians

Rloc(x) = g2(f (−1)(x))

Oloc(x) = [h′(x)′]2

from which the canonical gramian and the local balancing transformation are respectively

Λ(x) = |h′(x) g(f (−1)(x))| and T (x) =
∣

∣

∣

h′(x)

g(f(−1)(x))

∣

∣

∣
. The global balancing transformation

exists, and follows by integrating

dξ

dx
=

∣

∣

∣

∣

h′(x)

g(f (−1)(x))

∣

∣

∣

∣

Consider the well studied logistic equation xk+1 = µxk(1− xk), on which we shall assume

that the perturbation input consists in a variation of the parameter µ, and x is directly

observed. The reachability matrix is simply g(x) = x−1(1 − x−1), where x−1 is the inverse

image of x under the nominal map. But this gives Rloc(x) = g(x) = x/µ. Since h(x) = x the

observability matrix, Oloc(x) = 1 and the local balancing transformation is T (x) =
√

µ/|x|.
The resulting global balancing transformation follows from

dξ

dx
=

√

µ

x
.
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which gives ξ(x) = 2
√

µx. Finally, the globally balanced realization is

ξk+1 =
√

µ ξk

√

1− ξ2
k

4

y =
ξ2

4µ
.

The corresponding minimum time canonical gramian is Λ(ξ) = ξ2

4µ2 .

5.2 Delayed Logistic Equation

Consider here the planar system, with observation of x, used by Spencer in the prediction

of the influenza outbreak in England and Wales [1].

xk+1 = µxk(1− yk)

yk+1 = xk.

For µ = 2.1, the system exhibits an attracting limit cycle enclosed in [0, 1]2. (Starting at

a point on the limit cycle, the seventh iterate overtakes it). The local reachability gramian

and observability gramian are respectively

R(x, y) =

[

2x2

µ2
xy
µ2

xy
µ2

y2

u2

]

; O(x, y) =

[

1 + µ2(1− y)2 −µ2(1− y)x

−µ2(1− y)x µ2x2

]

.

The dominant value λ1(x, y) of the canonical gramain is displayed in Figure 2. The height of

iterates

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Figure 1: Limit cycle for delayed logistic equation

the plot indicates the value, the shading is modulated by the angle of the dominant direction

(mapped back to the original (x, y) coordinates). If Tloc is the local balancing transformation,

this is the direction of the first column of T−1
loc , i.e., the ’jointly most observable and reachable’

direction. With three interpolation points: {(0.2, 0.2), (0.5, 0.2), (0.2, 0.5)}, we obtained the

12
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Figure 2: Dominant λ and corresponding direction

pseudo-balancing transformation

ξ(x, y) = 2115x5 − 13823x4y + 31269x3y2 +

−29100x2y3 + 11596xy4 − 1649y5

η(x, y) = 1048x5 − 7187x4y + 17472x3y2 +

−18101x2y3 + 7821xy4 − 1180y5.

As expected, along the limit cycle, the dynamics is almost one dimensional (a rough approx-

imation being η + 1.077ξ = 0).

5.3 Enzyme Kinetics

We condider the Briggs Haldane [3] model for the enzyme reactions

dσ

dt
= −σ + x(σ + α)

ε
dx

dt
= σ − x(σ + κ)

Simple discretization yields

σk+1 = (1− τ)σk + ταxk + τxkσk

xk+1 =
(

1− κτ

ε

)

xk +
τ

ε
σk −

τ

ε
xkσk

The quasi steady state approximation [3] restricts the dynamics to the manifold σ−xσ−κx =

0. To set the ideas we choose the numerical values so that the dynamical equations are

σk+1 = 0.5σk + 0.9xk + 0.5xkσk

xk+1 = xk + u(σk − xk(σk + 2))

where the nominal parameter u (considered as the input) is 0.5. Some iterates of this map

are shown in Figure 3. The initial point was [0.9,0.9]. The initial fluctuations (switching

13



iterates

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.2 0.4 0.6 0.8 1 1.2 1.4

Figure 3: Iterates for Enzyme Dynamics

between the two ‘branches’) dampen quickly, clearly displaying the (attracting) manifold.

The canonical gramian and local balancing transformation were numerically computed. A

fieldplot indicating the magnitude and principal directions, transformed back to the original

coordinate system is shown in Figure 4. The presence of the attracting manifold is clearly

0

0.1

0.2

0.3

0.4

0.5

x

0.5 0.6 0.7 0.8 0.9 1
s

Figure 4: Fieldplot of Canonical Gramian and Principal Directions

visible as states from which perturbations are hard to detect and hard to reach.
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