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Abstract

This paper investigates the control of fully observed, scalar jump Markov linear systems in
which feedback is transmitted at finite data rates over noiseless digital channels. In particular,
the objective is to find the infimum data rate, over all causal coding and control laws, at which
such a system may be asymptotically stabilised in mth absolute output moment. The control
problem is first shown to be equivalent to quantisation of the initial output under a mean-mth-
power-error criterion. Quantisation methods are then applied to derive the smallest stabilising
data rate in terms of the Perron-Frobenius eigenvalue of a matrix defined by the transition
probabilities, the dynamic parameters and the power m.

1 Introduction

The question of how to control dynamical systems that have feedback communication constraints
has recently begun to receive much attention. This may be traced to the fact that in many cutting
edge applications, such as mobile telephone power control, micro-electromechanical systems and
distributed tracking, communication capacity is expensive or limited by physical constraints. In
such situations it important to understand how the control objectives are affected by the limited
communication resources, particularly if the system dynamics are unstable.

In this paper, we focus on the basic set-up in which output data from a single dynamical system
are transmitted to a controller over a noiseless digital channel. In recent years significant progress
has been made with regard to this set-up, particularly for deterministic linear systems. Beginning
with [4] and continuing with [15, 1, 2, 6], a number of different coding and control schemes have
been proposed and analysed. A common feature of many of these schemes are data rate inequalities
that are sufficient for stability, in various senses, but necessary only for one-dimensional states.
Necessary and sufficient data rate lower bounds for stabilising noiseless auto-regressive moving
average (ARMA) [12] and multivariable linear systems [14, 13] were subsequently derived. In [14]
this was done via a deterministic approach for an unknown initial state with a known bound. In
[13] the initial state is governed by some probability density, with possibly infinite support, and
the asymptotic quantisation methods of [12] were extended to derive the infimum data rate for
exponential stabilisability in mth absolute output moment.

In this paper, the asymptotic quantisation approach is applied to jump Markov linear systems
(JMLS), a class of system that is often encountered in telecommunications, manufacturing and de-
fence. As in [12], the objective is to find the infimum data rate permitting asymptotic stabilisability
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in mth absolute moment. In the next section, the communication channel, coder and controller are
formulated and the control objective is shown to be equivalent to recursively quantising the initial
output so that a term resembling the mean mth power error of quantisation theory approaches zero
with time. The main result of this paper, Theorem 2.1, is stated here and expresses the smallest
achievable data rate in terms of the Perron-Frobenius eigenvalue of a matrix defined by the transi-
tion probabilities and dynamic parameters. The remainder of the paper essentially constitutes its
proof.

2 Formulation and Statement of Result

Certain conventions are followed in this paper. Sequences {aj}k
j=0 are denoted ãk, with ã−1 the

null sequence. The symbol ‖ · ‖ denotes a norm on a Euclidean space but ‖f‖θ denotes the Lθ-
norm

(∫
‖f(x)‖θdλ(x)

)1/θ of a function f with respect to Lebesgue measure λ on the domain of f .
Vectors are written in boldface, matrices in upper-case boldface, random variables in upper-case
and their realisations by the corresponding lower-case letters. All random variable are assumed to
exist in a common probability space, the probability density of a random variable X is written pX ,
P{S = s} denotes the probability of the event S = s and Es denotes conditional expectation with
respect to S = s.

Consider the fully observed jump Markov linear system

xk+1 = a(zk)xk + b(zk)uk ∈ R, ∀k ∈ W, (2.1)

where xk, uk ∈ R and zk ∈ [1, 2, . . . , z] are the output, control signal and discrete mode respectively
at time k. We assume that a(i), b(i) 6= 0, ∀i ∈ [1, . . . , z] and that {zk}k∈W is a realisation of a
control-independent Markov chain {Zk}k∈W such that

P{Zk+1 = i|Zk = j} ∆= tij , P{Z0 = i} ∆= ti ∀i, j ∈ [1, . . . , z], k ∈ W.

The z × z matrix with tij in the ith row and jth column is denoted by T. We further assume that
x0 is a realisation of a random variable X0 that is independent of Z0, Z1, . . ., possesses a density
that is non-singular with respect to λ and has a finite (m+ε)th absolute moment for some m, ε > 0.

We now formulate the coder, controller and digital channel, along the same lines as [12]. Suppose
the sensor observing the outputs and Markov modes of the plant above is connected to a distant
controller by a digital channel that can carry only one symbol sk from a coding alphabet Zµ

∆=
[0, 1, . . . , µ − 1] during each sampling interval. Clearly the discrete-valued modes and continuous-
valued outputs must then be encoded into digital symbols prior to transmission. Each of these may
generally depend on all past and present outputs and modes. As, for a given coder-controller the
output at time k is completely determined by the inital output x0 and the mode sequence z̃k−1,
the coding law may without loss of generality be written

sk = γk(x0, z̃k) ∈ Zµ, ∀k ≥ 0, (2.2)

where γk is the coder mapping at time k.
The data rate of the channel is defined as R

∆= log2 µ bits per sampling interval. Neglecting
the propagation delay and transmission errors, the finite data rate implies that each symbol takes
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one sampling interval to be completely transmitted, so that at time k the controller has received
s0, . . . , sk−1. Under the assumption that the controller is able to observe the Markov modes directly,
the control signal it generates will most generally be of the form

uk = δk(s̃k−1, z̃k) ∈ R, ∀k ≥ 0, (2.3)

where δk is the controller function at time k.
Define the coder-controller as the pair (γ, δ) ∆= ({γk}∞k=0, {δk}∞k=0). The objective is to construct

one that asymptotically stabilises the system in the sense that

E|Xk|m → 0 as k →∞, (2.4)

without using a higher data rate than necessary. Note that the expectation is over both the initial
output and the Markov modes.

We now transform the control problem into an asymptotic quantisation problem. Expanding
(2.1) out and using (2.3), it follows that ∀k ∈ N,

xk =

(
k−1∏
i=0

a(zi)

)
x0 +

k−1∑
j=0

 k−1∏
i=j+1

a(zi)

 b(zj)δj(s̃j−1, z̃j),

=

(
k−1∏
i=0

a(zi)

)x0 +
k−1∑
j=0

b(zj)δj(s̃j−1, z̃j)∏j
i=0 a(zi)

 .

Note that the right-most sum is a function of the symbol and mode sequences s̃k−2 and z̃k−1. As
s̃k−2 can only take µk−1 distinct values exhausting Zk−1

µ , it follows that for each mode sequence
z̃k−1, this sum has a maximum of µk−1 distinct values in R. Furthermore, for a given coder γ the
symbol sequence is completely determined by x0 and the mode sequence. Hence we may define

qk−1(x0, z̃k−1)
∆= −

k−1∑
j=0

b(zj)δj(s̃j−1, z̃j)∏j
i=0 a(zi)

, ∀k ∈ W,

where qk−1(·, z̃k−1) : R → R is a function with up to µk−1 distinct levels, i.e. a quantiser. By
inverting the expression above, it can be seen that for a given quantiser sequence {qk}k∈W and
coder, the controller mappings are uniquely given by

δk(s̃k−1, z̃k) =
1

b(zk)

(
k∏

i=0

a(zi)

)
(qk−1(x0, z̃k−1)− qk(x0, z̃k)) ∀k ∈ W. (2.5)

In other words, the problem of finding coder and controller mappings that achieve (2.4) is exactly
equivalent to that of finding coder and quantiser mappings such that

E

{
k−1∏
i=0

|a(Zi)|m|X0 − qk−1(X0, Z̃k−1)|m
}
→ 0 as k →∞. (2.6)

The communication-limited control problem is now in a form that bears a strong resemblance
to standard mean-mth-power-error (MmPE) asymptotic quantisation theory [7, 3, 8]. What dis-
tinguishes it are the facts that the quantisers qk, k ∈ W are recursive and that they and the
multiplying product term are dependent on the Markov chain states. Nevertheless, quantisation
arguments may still be applied to yield the following result:
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Theorem 2.1. Suppose that the initial output of the jump Markov linear system (2.1) is governed
by a probability density that is non-singular with respect to Lebesgue measure on R and has finite
(m+ε)th absolute moment for some m, ε > 0, and that the modes are governed by an irreducible z×z

transition probability matrix T. Then for a given data rate R (bits per interval), a coder-controller
that asymptotically stabilises the system in the sense (2.4) exists if and only if

R > m−1 log2 %(AmT), (2.7)

where A ∆= diag(|a(1)|, . . . , |a(z)|) and %(·) denotes the Perron-Frobenius eigenvalue of the argu-
ment.

This result specifies the infimum data rate that suffices to be able to stabilise a JMLS and the
remainder of this paper is devoted to its proof. In the next section a new quantisation lower bound
will be applied to establish the necessity of (2.7). Its sufficiency is subsequently proven by proposing
a specific coder-controller and using asymptotic quantisation theory to analyse its performance.

3 Necessity

The first step towards proving the necessity of (2.7) is to lower-bound E|Xk|m for arbitrary k, given
an asymptotically stabilising coder-controller. The basic tool used is the following new quantisation
inequality:

Lemma 3.1. Let X ∈ Rf be a random variable with non-singular density pX and cν : Rf → Rf a
quantiser with up to ν distinct points. Then

E‖X− cν(X)‖m ≥ β

νm/f
‖pX‖mr/[f(1−r)]

r , ∀r ∈ (f/[f + m], 1), ν ∈ N, (3.1)

where β is a parameter determined only by m, f and r.

Proof : See Appendix.
This explicitly bounds from below the MmPE that can be achieved with ν quantiser points and

states that it cannot decrease faster than ν−m/f if the Lr norm of the probability density is nonzero
(guaranteed if pX is non-singular with respect to Lebesgue measure). The quantity ‖pX‖

r/(1−r)
r

is known in the information theory literature as exponential entropy or Renyi differential entropy
power of order r and is a measure of the effective support volume of the probability density. The
inequality above then simply states that the MmPE is always bounded below by the effective
support volume of pX divided into ν dijoint partitions, with the ratio raised to the m/fth power
so that dimensions agree and with a density-independent constant in front.

Applying this lemma ∀k ∈ W to (2.6) with f = 1, pX = pX0|z̃k−1
, ν = µk−1 and cν = qk−1(·, z̃k−1),

E|Xk|m = E

{
k−1∏
i=0

|a(Zi)|mEZ̃k−1
|X0 − qk−1(X0, Z̃k−1)|m

}
,

≥ E


k−1∏
i=0

|a(Zi)|m
β‖pX0|Z̃k−1

‖mr/(1−r)
r

µm(k−1)

 ,

= E

{
k−1∏
i=0

|a(Zi)|m
β‖pX0‖

mr/(1−r)
r

µm(k−1)

}
= E

{
k−1∏
i=0

|a(Zi)|m
}

β‖pX0‖
mr/(1−r)
r

µm(k−1)
, (3.2)
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where we have used the fact that the initial output and modes are mutually independent. Now
the non-singularity of pX0 with respect to Lebesgue measure implies that ‖pX0‖r > 0, ∀r ∈ (0, 1].
Thus if the closed-loop system is asymptotically stable, i.e. the LHS approaches 0 with time, it is
necessary that

1
µmk

E

{
k−1∏
i=0

|a(Zi)|m
}
→ 0 as k →∞. (3.3)

We now simplify this condition using a slight adaptation of the Perron-Frobenius theorem as
given in [5]. Recalling that T is the transition probability matrix and t the column vector of initial
Markov mode probabilities,

E


k∏

j=0

|a(Zj)|m
 =

∑
z̃k

k∏
j=0

|a(zj)|mP{Z̃k = z̃k},

=
∑

1≤z0,z1,...,zk≤z

|a(z0)|mtz0

k∏
j=1

|a(zj)|mtzjzj−1 ,

=
∑

1≤z0,zk≤z

Hk
zkz0

hz0 = [1, . . . , 1]Hkh, ∀k ∈ W,

where H ∆= diag(|a(1)|, . . . , |a(z)|)mT, Hk
ij is the element in the ith row and jth column of Hk,

hi
∆= |a(i)|mti and h ∆= [h1, . . . hz]T. Observe that the irreducibility of H follows from that of T,

since |a(1)|, . . . , |a(z)| > 0. By the Perron-Frobenius theorem, H then possesses a real eigenvalue
%(H) > 0 of maximum magnitude, which furthermore has a corresponding left eigenvector eT =
(e1, . . . , ez) with strictly positive components. Let eu be the largest component of e and el the
smallest. Then

e−1
u %(H)keTh = e−1

u eTHkh ≤ [1, . . . , 1]Hkh ≤ e−1
l eTHkh = e−1

l %(H)keTh, ∀k ∈ W.

As the column vector h is nonnegative with at least one positive element, eTh > 0. Dividing the
above expression by µmk, it immediately follows that

1
µmk

E


k∏

j=0

|a(Zj)|m
 =

[1, . . . , 1]Hkh
µmk

→ 0 ⇔ %(H)k

µmk
→ 0, as k →∞, (3.4)

which is equivalent to µm > %(H) or R > m−1 log2 %(H). Thus (2.7) is necessary for any asymp-
totically mth-moment-stabilising coder-controller.

4 Sufficiency

In order to prove that (2.7) is also sufficient for asymptotic stabilisability, a coder-controller will be
explicitly constructed and its convergence properties analysed. We stress that this scheme is not
necessarily a practical control design. Its primary purpose is to demonstrate as directly as possible
that the data rate lower bound of Theorem 2.1 is achievable.
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Coder 1.
α(x) ∆= ξ(1 + |x|)−1−ε/m, c(x) ∆=

∫
y≤x

α(y)dλ(y) ∈ (0, 1), ∀x ∈ R, (4.1)

where ξ > 0 is such that α integrates to unity. Apply c to x0 and expand in base-µ digits, i.e.
c(x0) ≡

∑∞
l=0 dlµ

−l−1, where dl ∈ Zµ. At time k, transmit the symbol sk = dk.

Controller 1. At time k the controller has received the symbol sequence s̃k−1, comprising the first
k digits in the base-µ expansion of c(x0). It estimates the initial output via

qk−1(x0, z̃k−1) = q′k−1(x0)
∆= c−1Qu

µk−1c(x0) = c−1

(
1

2µk
+

k−1∑
l=0

dl

µl+1

)
, ∀k ∈ W, (4.2)

where Qu
ν is the ν-level, uniform midpoint quantiser on [0, 1]. It then calculates control signals by

using (2.5).

In the quantisation literature, the function c is called a compressor, its inverse an expander and
the composition c−1Qu

µk−1c a compander. In order to analyse the output moment behaviour of the
feedback loop with this coder controller, we use the following lemma:

Lemma 4.1 (Linder, [9]). Let X ∈ R be a random variable with probability density pX and
c : R → (0, 1) a compressor with derivative α. If

1. pX is absolutely continuous with respect to Lebesgue measure λ

2. α is continuous and positive

3. α decreases monotonically with the magnitude of sufficiently large arguments

4. E{α(X)−m} < ∞ for some m > 0

5.
∫
x<−n

[
αc−1 (0.5c(x))

]−m
pX(x)dλ(x),

∫
x>n

[
αc−1 (0.5[1− c(x)])

]−m
pX(x)dλ(x) < ∞ for some

n > 0

then
νmE|X − c−1Qu

νc(X)|m → (m + 1)2−mE{α(X)−m}, as ν →∞.

By the construction of α in this instance and the fact that E|X0|m+ε < ∞, all the prerequisites
for this result can be shown to hold here with X = X0 and ν = µk−1. Hence

E|X0 − q′k−1(X0)|m ∼ (m + 1)−12−mµ−m(k−1)E{α(X0)−m}, as k →∞. (4.3)

As X0 and the Markov modes are mutually independent, substitution of this into (2.6) then yields

E

{
k−1∏
i=0

|a(Zi)|m|X0 − q′k−1(X0)|m
}

= E

{
k−1∏
i=0

|a(Zi)|m
}

E|X0 − q′k−1(X0)|m,

∼ E{α(X0)−m}
(m + 1)2mµ(m−1)k

E

{
k−1∏
i=0

|a(Zi)|m
}

, as k →∞.(4.4)
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If (2.7) holds, then by (3.4) and (2.6) the RHS and hence (2.4) approach zero as time progresses.
This completes the proof of Theorem 2.1.

The formulation of Coder-Controller 1 as an initial state compander permits convenient analysis
by asymptotic quantisation methods, as demonstrated. However from an engineering point of view
it is far from ideal, since the symbols are determined in open-loop. A scheme which is more suitable
for feedback implementation can be easily constructed by adapting the scheme for finite bit rate
state estimation in [11]. Its stability can be verified either by the methods of ch. 3, sec. 3 in [10]
or by obtaining its α function and applying a version of the lemma above.

Finally, we remark on the dependence of the infimum stabilising data rate on the moment order
m. This is in interesting contrast to a noiseless linear time-invariant system, for which the smallest
data rate is independent of the particular notion of asymptotic stability desired, whether mean-
absolute, -square or stronger [13]. The m-dependence emerges quite explicitly when the Markov
modes are i.i.d. The necessary and sufficient limit condition (4.4) then simplifies to

E
{∏k−1

i=0 |a(Zi)|m
}

µmk
=

(E|a(Z0)|m)k

µmk
→ 0 ⇔ µ > (E|a(Z0)|m)1/m =

(
z∑

i=1

|a(i)|mti

)1/m

,

⇔ R >
1
m

log2

z∑
i=1

|a(i)|mti.

It can be seen that if the mode probabilities ti are nonzero then the infimum data rate increases
with m and approaches log2 max1≤i≤z |a(i)| as m →∞.

5 Conclusion

In this paper the problem of data-rate-limited, asymptotic stabilisation of a fully observed, scalar
jump Markov linear system with no process noise was formulated. By casting the problem as one
of moment stabilisation, the control problem was shown to be equivalent to finding a sequence of
quantisers for the initial state that yielded an asymptotic mean mth power error of zero. A new
quantiser error lower bound and asymptotic quantisation techniques were then used to derive the
smallest data rate at which the system is stabilisable, in terms of the Perron-Frobenius eigenvalue
of a matrix defined by the transition probabilities and dynamic parameters. Similar techniques
are currently being investigated for stochastic linear systems and multidimensional jump Markov
linear systems.
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Appendix. Proof of Lemma 3.1

Let V1, . . . ,Vν ⊂ Rf and t1, . . . , tν ∈ Rf be the Voronoi regions and corresponding points for the
quantiser cν . The first step is to find a lower bound for the conditional MmPE EX∈Vi‖X− ti‖m =:

8



lmi . For conciseness, let πi
∆= pX|X∈Vi

. By Holder’s inequality,∫
Rf

πi(x)rdλ(x) =
∫

Rf

(‖x− ti‖m + lmi )r

(‖x− ti‖m + lmi )r
πi(x)rdλ(x),

≤
(∫

Rf

(‖x− ti‖m + lmi )πi(x)dλ(x)
)r (∫

Rf

dλ(x)
(‖x− ti‖m + lmi )r/(1−r)

)1−r

,

= (2lmi )r

(∫
Rf

dλ(x)
(‖x− ti‖m + lmi )r/(1−r)

)1−r

,

= (2lmi )r

(∫
Rf

dλ(x)
(‖x‖m + lmi )r/(1−r)

)1−r

,

by virtue of the invariance of Lebesgue measure to translations. Now change integration variables
to w = l−1

i x. As x ∈ Rf , it then follows that dλ(w) = l−f
i dλ(x). Hence

∫
Rf

πi(x)rdλ(x) ≤ (2lmi )r

(∫
Rf

lfi dλ(w)
(‖liw‖m + lmi )r/(1−r)

)1−r

,

= 2rl
f(1−r)
i

(∫
Rf

dλ(w)
(‖w‖m + 1)r/(1−r)

)1−r

.

Observe that the integrand in the third integral is only a function of the radial distance ‖w‖ =: z.
As the f -dimensional Lebesgue measure or volume of a spherical shell of radius z and infinitesimal
thickness dλ(z) is κzf−1dλ(z), where κ depends only on f , this integral can be rewritten to yield

∫
Rf

πi(x)rdλ(x) ≤ 2rl
f(1−r)
i

(∫
z≥0

κzf−1dλ(z)
(zm + 1)r/(1−r)

)1−r

.

The integral on the RHS is non-zero and in this form can clearly be seen to be finite when mr/(1−r)
> f i.e. r > f/(f + m). Reversing the inequality above and taking the rth root, it then follows
that

l
f(1−r)/r
i ≥ θ

(∫
Rf

πi(x)rdλ(x)
)1/r

= θ

(∫
Rf

pX|X∈Vi
(x)rdλ(x)

)1/r

=
θ
(∫

Vi
pX(x)rdλ(x)

)1/r

P{X ∈ Vi}
,

where θ depends only on r, f and m. Taking expectations,

ν∑
i=1

l
f(1−r)/r
i P{X ∈ Vi} ≥ θ

ν∑
i=1

(∫
Vi

pX(x)rdλ(x)
)1/r

≡ θ

ν∑
i=1

a
1/r
i ,

where ai
∆=
∫
Vi

pX(x)rdλ(x). Observe that as r < 1 the RHS is a convex function of a1, . . . , aν ,
with the constraints ai ≥ 0 and

∑ν
i=1 ai =

∫
Rf pX(x)rdλ(x) = ‖pX‖r

r. Hence

ν∑
i=1

l
f(1−r)/r
i P{X ∈ V∗i } ≥ θν

ν∑
i=1

a
1/r
i

ν
≥ θν

(
ν∑

i=1

ai

ν

)1/r

=
θ‖pX‖r

ν1/r−1
.
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However by the definition of li and the convexity of (·)mr/[f(1−r)] (since the exponent > 1),

E‖X− cν(X)‖m = E{EX∈Vi‖X− ti‖m} =
ν∑

i=1

lmi P{X ∈ Vi},

=
ν∑

i=1

(lf(1−r)/r
i )mr/[f(1−r)]P{X ∈ Vi},

≥

(
ν∑

i=1

l
f(1−r)/r
i P{X ∈ Vi}

)mr/[f(1−r)]

.

Substituting the previous inequality into the RHS,

E‖X− cν(X)‖m ≥
(

θ‖pX‖r

ν1/r−1

)mr/[f(1−r)]

=
θmr/[f(1−r)]

νm/f
‖pX‖mr/[f(1−r)]

r , ∀ν ∈ N.

This completes the proof of the lemma.
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