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Abstract

The standard way to obtain explicit formulas for spectral factorization problems for
rational transfer functions is to use a minimal realization and then obtain formulae in
terms of the generators A, B, C and D. For well-posed linear systems with unbounded
generators these formulae will not always be well-defined. Instead, we suggest another
approach for the class of well-posed linear systems for which zero is in the resolvent set
of A. Such a system is related to a reciprocal system having bounded generating oper-
ators depending on B, C, D and the inverse of A. There are nice connections between
well-posed linear systems and their reciprocal systems which allow us to translate a
factorization problem for the well-posed linear system into one for its reciprocal system,
the latter having bounded generating operators. We illustrate this general approach by
giving explicit solutions to the sub-optimal Nehari problem.

1 Introduction

The standard way to obtain explicit formulas for spectral factorization problems for rational

transfer functions is to use a minimal realization G(s) = D + C(sI − A)−1B and then

obtain formulae in terms of the generators A, B, C and D (see Ball and Ran [1]). These

formulas typically depend on the controllability and observability Gramians LB, LC or on

solutions of various Lyapunov equations. Such an approach has been extended to certain

classes of infinite-dimensional linear systems (see Curtain and Ran [5], Curtain and Zwart

[6], Kaashoek et al. [9]), but the limiting factor is the difficulty in manipulating with the

unbounded operators B and C. For example, in Sasane and Curtain [11] and [10], where

explicit solutions to the sub-optimal Hankel norm approximation problem for exponentially

stable smooth Pritchard-Salamon systems and exponentially stable analytic systems were

obtained via the solution to the appropriate J−spectral factorization problem using the

smoothing properties of these classes. However, it was not possible to extend this technique

to more general well-posed linear systems. In general, it is not clear that the candidate

spectral factor is even well-posed (see Staffans [13]). While an obvious approach to get

around the problems with unbounded operators would be to obtain factorizations via the
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discretized version obtained by the usual Cayley transform, this leads to horrible formulae.

Instead we suggest translating the problem to the analogous one for reciprocal systems which

we now define.

To motivate our definition we recall the definition of the transfer function of a stable

well-posed linear system from Staffans [12]:

G(s)−G(β) = (β − s)C(βI − A)−1(sI − A)−1B for all β, s ∈ C+
0 . (1.1)

If 0 ∈ ρ(A), then we can substitute β = 0 to obtain the identity

G(s) = G(0)− CA−1

(
1

s
− A−1

)−1

A−1B, (1.2)

= G−

(
1

s

)
. (1.3)

We note that G−(s) is the transfer function of the linear system with bounded generating

operators A−1, A−1B,−CA−1, G(0). We define this linear system to be the reciprocal system

of the well-posed linear system with generating operators A, B, C with A−1 bounded. In

addition to the relationship (1.3) between their transfer functions, the reciprocal system has

the same controllability and observability Gramians.

Lemma 1.1. Let A, B, C be generating operators of a well-posed linear system with transfer

function G. Suppose that 0 ∈ ρ(A) and G− is the transfer function of its reciprocal system

with generating operators A−1, A−1B, −CA−1, G(0). Then the following hold:

1. C is an infinite-time admissible observation operator for A iff −CA−1 is an infinite-

time admissible observation operator for A−1. If either C or −CA−1 is infinite-time

admissible, then the observability Gramians are identical.

2. B is an infinite-time admissible control operator for A iff −A−1B is an infinite-time

admissible observation operator for A−1. If either C or A−1B is infinite-time admissi-

ble, then the observability Gramians are identical.

3. G ∈ H∞(L(U, Y )) iff G− ∈ H∞(L(U, Y )).

Proof

1. From Hansen and Weiss [8] (see also Grabowski [7]), we know that C is an infinite-time

admissible observation operator iff the Lyapunov equation

〈Az1, LCz2〉+ 〈LCz1, Az2〉 = −〈Cz1, Cz2〉 (1.4)

for all z1 and z2 in D(A), has a nonnegative definite solution LC = L∗C ≥ 0. The

equation (1.4) is clearly equivalent to the Lyapunov equation〈
x1, LCA−1x2

〉
+

〈
LCA−1x1, x2

〉
= −

〈
CA−1x1, CA−1x2

〉
(1.5)

for all x1 and x2 in X, which establishes the equivalence. Moreover, the observability

Gramians are the smallest positive solution and so the Gramians are identical.
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2. This is dual to part 1 above.

3. This follows from (1.3).

The idea is then to translate a factorization problem for the well-posed linear system with

transfer function G into one for the system with transfer function G−, the latter having

bounded generating operators. We illustrate this general approach by giving explicit solutions

to the sub-optimal Nehari problem for the class of well-posed linear systems with B, C finite

rank, A−1 bounded which are input, output and input-output stable. This class includes

exponentially stable well-posed linear systems with finite rank B, C.

The assumption that A−1 is not essential and can be removed. As mentioned in Curtain

[2], for any iω in the resolvent set of A, it is always possible to define a reciprocal system

based on Aω = A − iωI. For then the new reciprocal system with generating operators

A−1
ω , A−1

ω B,−CA−1
ω , G(iω) and transfer function Gω

− satisfies

Gω
−

(
1

s

)
= G(s + iω),

and an analogous version of Lemma 1.1 holds.

2 The Nehari problem

We solve this problem for the well-posed linear system on a Hilbert space X with generating

operators (A, B, C) under the following assumptions:

A0. The input and output spaces are finite-dimensional, that is, U = Cm and Y = Cp.

A1. 0 ∈ ρ(A).

A2. B is an infinite-time admissible control operator for {T (t)}t≥0.

A3. C is an infinite-time admissible observation operator for {T (t)}t≥0.

A4. G(·) ∈ H∞(Cp×m).

The sub-optimal Nehari problem is the following: If σ > ‖HG‖, the Hankel norm of the

system, then find all K(−·) ∈ H∞(Cp×m) such that ‖G(i·) + K(i·)‖∞ ≤ σ. K is then called

a solution of the sub-optimal Nehari problem.
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Now

G(s) + K(s) = G−

(
1

s

)
+ K(s)

= −CA−1

(
1

s
I − A−1

)−1

A−1B + K(s) + G(0)

= −CA−1

(
1

s
I − A−1

)−1

A−1B + K−

(
1

s

)
,

where K−(s) := G(0) + K
(

1
s

)
. Clearly, G ∈ H∞(Cp×m) iff G− ∈ H∞(Cp×m) and K−(−·) ∈

H∞(Cp×m) iff K(−·) ∈ H∞(Cp×m), and in the L∞-norm

‖G + K‖∞ = ‖G− + K−‖∞.

This means that the Hankel norm of G is equal to that of G−. So instead of solving the

suboptimal Nehari problem for G, we solve the suboptimal Nehari problem for the reciprocal

system with the bounded generating operators A−1, A−1B, −CA−1. This system satisfies

all the conditions in Curtain and Oostveen [4]: its transfer function is in H∞(Cp×m) and

the operators A−1B and −CA−1 are infinite-time admissible with the same Gramians LB

and LC as the original system. So we translate the results to this system. Let Nσ =(
I − 1

σ2 LBLC

)−1 ∈ L(X). Then all solutions K− to the sub-optimal Nehari problem∥∥∥−CA−1
(
i · I − A−1

)−1
A−1B + K−(i·)

∥∥∥
∞
≤ σ

are given by

K−(−·) = R1(−·)R2(−·)−1,

where [
R1(−·)
R2(−·)

]
= Λ(−·)−1

[
Q (−·)

Im

]
,

Q(−·) ∈ H∞(Cp×m) satisfies ‖Q‖∞ ≤ 1 and

Λ(·) =

[
Ip 0

0 σIm

]
+

1

σ2

[
CA−1LB

σ (A−1B)
∗

]
N∗

σ (·I + A∗)−1 [
− (CA−1)

∗
LCA−1B

]
.

Appealing to Theorem 11.1 in Weiss and Weiss [14], we see that

Λ(−·)−
[

Ip 0

0 σIm

]
∈ H2(C(p+m)×(p+m)),

but not all components need be in H∞. Λ11(−s) is invertible for every s ∈ C+
0 and Λ11(−·)−1−

Ip ∈ H2 ∩H∞(Cp), and Λ(−s) is invertible for every s ∈ C+
0 . Furthermore, Λ(·) satisfies the

following J−spectral factorization problem[
Ip 0

G−(iω)∗ Im

] [
Ip 0

0 −σ2Im

] [
Ip G−(iω)

0 Im

]
= Λ(iω)∗

[
Ip 0

0 −Im

]
Λ(iω)
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for ω ∈ R and since G−(s) = G
(

1
s

)
, we obtain a J−spectral factorization over H2 for G:[

Ip 0

G(iω)∗ Im

] [
Ip 0

0 −σ2Im

] [
Ip G(iω)

0 Im

]
= Λ(

1

iω
)∗

[
Ip 0

0 −Im

]
Λ(

1

iω
)

for ω ∈ R. The final solution to our original suboptimal Nehari problem is

K(−s) = −G(0) + K−

(
−1

s

)
= −G(0) + R1

(
−1

s

)
R−1

2

(
−1

s

)
,

where [
R1

(
−1

s

)
R2

(
−1

s

) ]
= Λ

(
−1

s

)−1 [
Q0(−s)

Im

]
,

and Q0(−·) ∈ H∞(Cp×m) satisfies ‖Q0‖ ≤ 1. From Curtain and Oostveen [4], we have the

following formula.

Λ

(
−1

s

)−1

=

[
Ip 0

0 1
σ
Im

]
+

1

σ2

[
CA−1LB

σ (A−1B)
∗

](
1

s
I − (A−1)∗

)−1

N∗
σ

[
(−CA−1)

∗ 1
σ
LCA−1B

]
,

for all s ∈ C+
0 . While it is tempting to try to write this in terms of its reciprocal, we know

that this will not in general be well-defined (see Staffans [13]). So we leave the explicit

solution as it stands.

A similar approach to the optimal Hankel norm problem for well-posed linear systems has

been taken in Curtain and Sasane [3]. For other applications of reciprocal system see Curtain

[2].
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