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Abstract

We solve the standard (four-block) H• problem for regular well-posed linear systems (in
the sense of George Weiss). The state space H , the disturbance space W , the control space
U , the regulated output space Z, and the measurement output space Y are all Hilbert spaces of
finite or infinite dimension. Our main result is an infinite-dimensional version of the following
standard result: there exist a dynamic controller which feeds the measured output y into the
control input u, makes the closed loop system exponentially stable, and also makes the norm
of the mapping from the external disturbance w to the regulated output z less than a predefined
constant g � 0 if and only if two algebraic Riccati equations have exponentially stabilizing
solutions PX and PY , respectively, and the spectral radius of PXPY is less that g2. Another
equivalent condition which is given in terms of two nested Riccati equations is available as
well. Finally, we establish a generalized version of the standard parameterization of all sta-
bilizing solutions. The exact formulation varies depending on the regularity assumptions that
we make, but our assumptions allow for roughly twice as much unboundedness of the control
and observation operators as the Pritchard–Salamon class does, and they permit a countable
number of pure delays in the input/output responses. Analogous discrete time results are valid
as well.

1 Introduction

In this paper we study well-posed linear systems in the sense of Salamon [5] and Smuljan [6]
which are weakly regular in the sense of Weiss [12]. Roughly speaking, for sufficiently smooth
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and ‘compatible’ data the dynamics of the system is described by the system of equations������
�����

x��t� � Ax�t��B1u�t��B2w�t� in H�1�

z�t� � �C1�wx�t��D11u�t��D12w�t� in Z�

y�t� � �C2�wx�t��D21u�t��D22w�t� in Y �

x�0� � x0�

(1)

Here x0, x�t� � H, u�t� �U , w�t� �W , z�t� � Z, and y�t� � Y , where all these spaces are Hilbert
spaces of arbitrary dimensions (finite or infinite). The operator A is the generator of a C0 semigroup
� on H. We define H1 � D�A� and Hd

1 � D�A�� (with the graph norms) and let H�1 � �Hd
1 �
�

and Hd
�1 � �H1�

� (where we identify the dual of H with H itself). Then A � L�H1;H�, and
A has a natural extension to an operator in L�H;H�1� (that we still denote by the same letter
A). The operators appearing in (1) are bounded linear operators between the appropriate spaces:

B �
�
B1 B2

�
� L

��
W
U

�
;H�1

�
, C �

�
C1
C2

	
� L

�
H1;

�
H
Z

��
, and D �

�
D11 D12
D21 D22

	
� L

��
U
W

�
;
�

H
Z

��
. Fi-

nally, Cw �
�
�C1�w
�C2�w

	
:� w� lima��• a�a� A��1C is the weak Yoshida–Weiss extension of the

observation operator C. The well-posedness assumption means that, for some t � 0 (hence for
all t � 0), there is a constant K�t� such that for all sufficiently smooth and compatible data, the
solution of (1) (exists for all t � 0 and) satisfies

�x�t��2
H ��z�2

L2�0�t;Y ���y�
2
L2�0�t;Z� � K�t�

�
�x0�

2 ��u�2
L2�0�t;W ���w�

2
L2�0�t;W �

�
�

We can therefore (by continuity and by the density of the class of smooth and compatible data) ex-
tend the notion of a solution of (1) to arbitrary initial states x0 �H, disturbances w � L2

loc�R
�;W �,

and controls u � L2
loc�R

�;U�, and still get a continuous state trajectory x�t� in H, a regulated out-
put z � L2

loc�R
�;Z�, and a measurement output y � L2

loc�R
�;Y �. Weak regularity of the system

means that, for some (hence all) a � r�A�, the range of the operator �a�A��1B is contained in
the domain of the operator Cw. In this case the equations in (1) remain valid almost everywhere
for arbitrary initial states x0 �H, disturbances w � L2

loc�R
�;W �, and controls u � L2

loc�R
�;U�. See

[9], [10] or [12] for details.
Throughout this article we assume that S is a weakly regular well-posed linear system of the

type described above.

2 The standard H• problem

Let g � 0. The standard H• problem amounts to finding another (weakly regular and well-posed)
system Sc, called a (exponentially) stabilizing suboptimal controller, such that if we feed the mea-
surement output y of S into the controller, and feed the controller output into the control input u
of S, then the closed loop system becomes exponentially stable1 and the norm of the map from

1For simplicity we here restrict ourselves to the case where the closed loop system is exponentially stable. See [4]
for a number of other cases.
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w� L2�R�;W � to z� L2�R�;Z� is less that g. It turns out that in some cases this class of controllers
is not sufficiently large, and it is often more appropriate to allow the controllers to be non-well-
posed (when disconnected from the system). The ‘correct’ class of controllers was introduced by
Curtain, Weiss, and Weiss in [2], and it is known under the name controllers with an internal loop.
Unless otherwise specified, we shall allow our stabilizing suboptimal controllers to have an inter-
nal loop. Under sufficient regularity assumptions these controllers will actually be well-posed, and
a reader who is not familiar with this class of controllers may think about them as being weakly
regular and well-posed. We shall made some further comments on this point below.

As the following theorem shows, under standard coercivity assumptions and certain regularity
assumptions, the existence of a stabilizing suboptimal controller is equivalent to the two standard
algebraic Riccati equations with their standard signature and coupling conditions.

Theorem 2.1 (H•H•H• 4BP��� CAREs).

(A1) (Regularity) Assume that at least one of (I)–(V) holds, where

(I) (Parabolic case) A generates an analytic semigroup on H. We let Hb, b � R, be the
standard interpolation spaces of fractional order induced by A, and suppose that B 1 �

L�U�Hb1
�, B2 � L�W�Hb2

�, C1 � L�Hg1�Z�, C2 � L�Hg2 �Y �, D � L�
�

U
W

�
�
�

Z
Y

�
�, where

the parameters bk, gk � ��1�2�1�2� (k � 1�2) satisfy the following additional restric-
tions: g1 � max�1�4�1�2�min�b1�b2�� and b2 � min��1�4�max�g1�g2��1�2�;

(II) BBB is bounded, i.e., B � L�
�

U
W

�
�H�, and Cw� � L1

loc�R
�;L�H�

�
Z
Y

�
��;2

(III) CCC is bounded, i.e., C � L�H�
�

Z
Y

�
�, and �B � L1

loc�R
�;L�

�
U
W

�
�H��;

(IV) �B � u0
w0 � � L2

loc�R
�;H�, Cw�B � u0

w0 � � L2
loc�R

�;
�

Z
Y

�
� and Cw� � L2

loc�R
�;L�H�

�
Z
Y

�
��

for all � u0
w0 � �

�
U
W

�
;

(V) � is exponentially stable and both the function l �	 Cw�l� A��1B and its adjoint
belong to the strong version of H2 over some right half-plane C�

w � �l � C 
¬l � w�
with w � 0.

(A2) (Nonsingularity) Assume that D�

11D11 � 0, D22D�

22 � 0,3 and that for some e � 0,4

�ir�A�x0 � B1u0 �� ��C1�wx0 �D11u0�Z � e�x0�H � and

�ir�A��x0 �C�

2y0 �� ��B�2�wx0 �D�

22y0�W � e�x0�H �

for all x0 � H, u0 �U, y0 � Y , and r � R.5

2Recall that � is the semigroup generated by A.
3The notation E � 0 or E� 0 means that E is strictly positive or negative definite, i.e., E � e or E ��e for some

e� 0.
4Here B�w �

�
�B�

1�w
�B�

2�w

�
:� w� lima��• a�a�A���1B� is the weak Yoshida–Weiss extensions of B�.

5The first of the two equations above implies that x0 �D�Cw�, and the second equation implies that x0 �D�B�w�.
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Under the above assumptions (A1) and (A2), there is a suboptimal exponentially stabilizing con-
troller for S (possibly with internal loop) if and only if conditions (1.)–(3.) below hold:

(1.) (PXPXPX -CARE) D�

12D12�D�

12D11�D�

11D11�
�1D�

11D12  g2, and the algebraic Riccati equation�����
����

K�

XSXKX � A�PX �PX A�C�

1C1�

SX �
�

D�

11D11 D�

11D12

D�

12D11 D�

12D12�g2

	
�

KX ��S�1
X


�
D�

11
D�

12

	
C1 �B�wPX

�
�

(1)

has a solution triple PX � L�H;D�B�w��, SX � L�
�

U
W

�
�, and KX � L�H1�

�
U
W

�
�, with PX � 0,

such that the semigroup generated by A�BKX is exponentially stable (in particular, this
implies that S is exponentially stabilizable).6

(2.) (PYPYPY -CARE) D12D�

12�D12D�

22�D22D�

22�
�1D22D�

12  g2, and the algebraic Riccati equation�����
����

K�

Y SY KY � APY �PY A��B2B�2�

SY �
�

D22D�

22 D22D�

12
D12D�

22 D12D�

12�g2

	
�

KY ��S�1
Y


�
D22
D12

	
B�2 �CwPY

�
�

(2)

has a solution triple PY � L�H;D�Cw��, SY � L�
�

Y
Z

�
�, and KX � L�Hd

1 �
�

Y
Z

�
�, with PY � 0,

such that the semigroup generated by A��C�KY is exponentially stable (in particular, this
implies that S is exponentially detectable).

(3.) (Coupling condition) r�PXPY �� g2.

The proof of this theorem is given in [4].
Assume that (A1)–(A2) and (1.)–(3.) in Theorem 2.1 are satisfied. Then it is possible to pa-

rameterize the set of all exponentially stabilizing suboptimal controllers in the ‘standard’ way. We
first choose any invertible X � L�

�
U
W

�
� such that7 X�

�
1 0
0 �1

�
X � SX and X21 � 0, and define the

operator quadruple
�

AZ BZ
CZ DZ

	
� L

�
D�AZ�

Y
U

�
;
�

H
W
U

	�
by (here KX �

�
KX1
KX2

	
� L�H1�

�
U
W

�
�):

�
AZ BZ

CZ DZ

�
�

�
�� A��K�

X2�B
�

2�w C�

2 �K�

X2D�

22 �K�

X1

X��

22 �B�2�w X��

22 D�

22 X��

22 X�

12
0 0 1

�
��

with D�AZ� :� �x � H 
 AZx � H� � �x � D��B�2�w� 
 AZx � H�. Then the algebraic Riccati
equation �����

����
K�

ZSZKZ � A�ZPZ �PZAZ �B2X�1
22 X��

22 B�2�

SZ � D�

Z

�
1 0
0 �1

�
DZ �

KZ ��S�1
Z



D22X�1

22

X12X�1
22

�
X��

22 B�2 ��B�Z�wPZ

�
�

(3)

6All the exponentially stabilizing solutions of the different Riccati equation appearing in this article are unique.
7We denote the identity operator in any Hilbert space by 1.
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has a unique solution triple PZ �L�H�D��B�Z�w��, SZ �L�
�

Y
Z

�
� and KZ �L�D�AZ��

�
Y
U

�
� such that

PZ � 0, SZ11 � 0, SZ22� SZ21S�1
Z11SZ12  0 and AZ �BZKZ is exponentially stable. The solution

of this Riccati equation gives us a suitably normalized doubly coprime factorization of the transfer
function from the control input u to the measurement output y, and by using this factorization
in the Youla parameterization and restricting the Youla parameter to be exponentially stable and
have norm less than one we get a parameterization of the set of all the exponentially stabilizing
suboptimal controllers.

Under the standard normalizing conditions

D12 � 0� D�

11

�
C1 D11

�
�
�
0 1

�
�

condition (1.) can be written in the form

��B�1�wPX �
��B�1�wPX � g�2��B�2�wPX�

��B�2�wPX � A�PX �PX A�C�

1C1� (4)

with the added requirements that PX �L�H�D�B�w��, PX � 0, and that A��g�2B2�B�2�w�B1�B�1�w�PX

is exponentially stable. (Note that now SX � Jg :�
�

1 0
0 �g2

	
and KX �

�
��B�1�wPX

g�2�B�2�wPX

	
� L�H�

�
U
W

�
�.)

If B is bounded, then (4) takes the classical form

PX�B1B�1� g�2B2B�2�PX � A�PX �PXA�C�

1C1� (5)

Analogous remarks apply to (2.) and (4.). In this case the suboptimal controllers will even be
well-posed (i.e., no internal loops are needed). We thus observe that the classical H• algebraic
Riccati equations become special cases of (1.)–(4.).

Above we have given one necessary and sufficient condition for the existence of a stabilizing
suboptimal controller which involves the two independent algebraic Riccati equations (1) for PX

and (2) for PY , plus the spectral radius condition r�PXPY � � g2. This solution is symmetric with
respect to the original system and its dual. Another non-symmetric equivalent description is also
available. This solution is based on the two nested Riccati equations (1) for PX and (3) for PZ , and
it does not contain any further coupling conditions.

3 Extensions

The setting that we have described above is one of the most restrictive ones treated in [4]. Anal-
ogous results are true under weaker assumptions, but the weaker the assumptions become, the
more complicated the statements and the conclusions of the theorems become. One major class
of results found in [4] relaxes the exponential stabilizability assumption to other versions of sta-
bility, one of which is ‘output stability in the energy sense’ (every initial state x0 � H and input
� u
w �� L2�R�;

�
U
W

�
� of the closed loop system produces an output � z

y �� L2�R�;
�

Z
Y

�
�). Furthermore,

it is possible to allow even more unbounded control and observation operators and less smooth
transfer functions than those appearing in Theorem 2.1. One major feature which complicates the
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theory is the following: if we allow pure delays in the input/output responses (such delays appear
naturally in transmission lines and other systems with a hyperbolic behaviour), then the formu-
las for the input, output, and mixed input/output cost operators SX , SY , respectively SZ change,
and they are no longer determined exclusively by the feedthrough operator D. For example, the
formula for SX in (1) should be replaced by

SX �
�

D�

11D11 D�

11D12

D�

12D11 D�

12D12�g2

	
� lim

a��•
B�wPX�a�A��1B�

and analogous changes are needed in the formulas defining SY and SZ . In particular, the standard
normalization conditions D12 � 0 and D21 � 0 no longer simplify the theory significantly, since
these conditions no longer lead to the corresponding simplifications of SX , SY , and SZ .

The early history of the problem is explained on [3]. The theory was extended to the class of
smooth Pritchard–Salamon systems by van Keulen in [11]. The stable full information H • problem
in the well-posed linear setting has been discussed in [7] and [8]. A frequency domain solution
(under more restrictive assumptions) is given in [1].

We refer the reader to the references cited above and to [4, Chapter 12] for further details and
for discussions of the remaining literature. Analogous discrete time results are also given in [4].
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