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Abstract

For the Wiener class of matrix-valued functions we obtain a simple frequency domain solu-
tion for the sub-optimal Hankel norm approximation problem. The approach is via J-spectral
factorization.

1 Introduction

Let G be a transfer function bounded on the imaginary axis and assume that its corresponding
Hankel operator is compact. Let σk’s denote the Hankel singular values of G, and assume that σ

satisfies σl+1 < σ < σl. Roughly speaking, the sub-optimal Hankel norm approximation problem is
the following: Find a matrix-valued function K with at most l poles in the closed right half-plane
(none of them on the imaginary axis) such that

‖G + K‖∞ ≤ σ,

where ‖ · ‖∞ denotes the L∞-norm. The sub-optimal Hankel norm approximation problem has
been studied extensively in the literature (see for example, Adamjan et al. [1], Ball and Ran [4],
Glover [14], Ran [19], Glover et al. [15], Curtain and Ran [7], Sasane [21], Sasane and Curtain
[10]). The new contribution of this paper is to present an elementary derivation of the reduction
of the sub-optimal Hankel norm approximation problem to a J-spectral factorization problem. We
do this for the Wiener class of transfer functions. Moreover an explicit parameterization of all
solutions to the sub-optimal Hankel norm approximation problem is provided.

Although not stated explicitly in their paper, we believe that the paper by Ball and Helton [3] is
the first paper which shows the connection between the sub-optimal Hankel norm approximation
problem and a J-spectral factorization problem. Various corollaries of this abstract paper have
been derived in Ball and Ran [4] and Curtain and Ran [7], but there is a gap between the abstract
theory in [3] and the elementary looking corollaries. This motivated the search for an elementary
self-contained proof in many papers (see Curtain and Ichikawa [5], Curtain and Oostveen [6],
Curtain and Zwart [12], Sasane and Curtain [9], [10], [11] and Iftime and Zwart [17]).

The results presented in this paper refines the preceding lemmas in Curtain and Ichikawa [5],
Curtain and Zwart [12], Sasane and Curtain [9], [11] for the Wiener class of transfer functions. All
the proofs are based on frequency domain techniques.
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2 Notation and preliminaries

In this section we quote some general results and introduce our notation. We begin by defining
our class of stable transfer functions (the causal Wiener class) via their impulse responses. We say
that f ∈ A if f has the representation

f(t) =

{
fa(t) + f0δ(t), t ≥ 0,
0, t < 0,

where f0 ∈ C (the set of complex numbers),
∫∞
0 |fa(t)|dt < ∞, and δ represents the delta distribu-

tion at zero. For any f ∈ A we define f̂ , the Laplace transform of f ,

f̂(s) =
∫ ∞

0
e−stfa(t)dt + f0, (2.1)

for s ∈ C+, where C+ := {s ∈ C | Re(s) ≥ 0}. We define the causal Wiener class Â as

Â :=
{
f̂ | f ∈ A

}
.

¿From the definition of A it is easy to see that for every f ∈ A, f̂ is well-defined on C+, it is
bounded and analytic on C+ := {s ∈ C | Re(s) > 0}, continuous on C+, and it has a well-defined
limit at infinity, that is,

sup
s∈∈C+ , |s|≥ρ

∣∣∣f̂(s) − f0

∣∣∣→ 0 as ρ → ∞.

Furthermore, Â is a commutative Banach algebra with identity under pointwise addition and
multiplication (see [13], Corollary A.7.48). For a complex function f , we use the notation f∼ to
mean the following:

f∼(s) = f(−s). (2.2)

We consider the algebra

Ŵ =
{

g ∈ L∞(iR, C) | g(i·) = g1(i·) + g2(i·), with g1, g∼2 ∈ Â
}

,

where

L∞(iR, C) =
{

f : iR → C | ‖f‖L∞ := ess sup
s∈iR

|f(s)| < ∞
}

.

and we call it the Wiener class of transfer functions. Ŵ is a Banach algebra under pointwise
addition, multiplication, and scalar multiplication. The elements of Ŵ are bounded and continuous
on the imaginary axis, they have a limits at ±i∞, and these limits are equal.

By R∞ we denote the class of proper, rational functions g with complex coefficients such that g

has no poles in C+, and has a nonzero limit at infinity. By Â∞ we mean the set of all functions in
Â that have all their zeros contained in the open right half-plane and a nonzero limit at infinity.

Now we introduce notation for some matrix-valued function spaces which will be used in the
sequel.

1. By Âp×m we denote the set of complex p × m matrix-valued functions with entries in Â.

2



2. By Âp×m
l we denote the set of complex p×m matrix-valued functions K of a complex variable

with a decomposition

K = G + F,

where G is a rational matrix-valued transfer function of a system of MacMillan degree at
most equal to l, with all its poles in the open right half-plane, and F ∈ Âp×m.

3. Âp×m
[l] denotes the set of complex p × m matrix-valued functions K of a complex variable

with a decomposition K = G + F , where G is a rational matrix-valued transfer function of a
system of MacMillan degree equal to l, with all its l poles in the open right half-plane, and
F ∈ Âp×m.

4. We use the notation Ŵp×m for the class of p×m matrix-valued functions with entries in Ŵ.

We omit the size when there is no danger of confusion. We replace the indices by dots when we
leave them unspecified. For complex matrix-valued functions we define

G∼(s) := [G(−s)]∗,

where ·∗ is used to denote the transpose complex conjugate of a matrix. For scalar functions this
corresponds to (2.2). It can be seen that G∼(s) = [G(−s)]∗ = G(s)∗ for all s ∈ iR.

We will be using the following properties of the above classes of functions. These properties can
be proved in a manner analogous to the ones in Section 2.6 of Sasane [20].

P1. If f ∈ Â and g ∈ Â∞ such that g has at most l zeros (all in the open right half-plane), then
f
g ∈ Âl.

P2. If F ∈ Âk×k, F (iω) is invertible for every ω ∈ R, lims→±i∞ F (s) (= F∞) is invertible, then
F (·)−1 ∈ Âk×k• .

P3. If K ∈ Âp×m
l , then there exists a right coprime factorization of K over Â, K = NM−1, (that

is, there exist X and Y in Â•×• such that the following Bezout identity holds:

XM − Y N = I

for all s ∈ C+) where M is rational, det(M) ∈ R∞ has at most l zeros in C+ and they are
all contained in C+.

P4. If K ∈ Âp×m• , then given any ε > 0, there exists a δ > 0 such that whenever 0 ≤ ζ ≤ δ, we
have

‖K(ζ + i·)‖∞ ≤ ‖K(i·)‖∞ + ε,

where ‖ · ‖∞ denotes the L∞-norm.

P5. If K ∈ Âp×m
l , K1 ∈ Âp∗×p, and K2 ∈ Âm×m∗ , then K1KK2 ∈ Âp∗×m∗

l .
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In order to define the Hankel operator, we need the following notations:

Ln
2 =

{
f : iR → C

n | ‖f‖2
L2

=
∫ +∞

−∞
|f(iω)|2dω < ∞

}
,

Hn
2 =

{
f : C+ → C

n | f is analytic in C+ and ‖f‖2
H2

= sup
r>0

∫ +∞

−∞
‖f(ζ + jω)‖2dω < ∞

}
,

Hn,⊥
2 =

{
f : C− → C

n | f is analytic in C
−
0 and ‖f‖2

H⊥
2

= sup
r<0

∫ +∞

−∞
‖f(ζ + jω)‖2dω < ∞

}
,

where C− := {s ∈ C | Re(s) < 0}. It is well known that Ln
2 is the direct sum of Hn

2 and Hn,⊥
2

with respect to the usual inner product. The Hankel operator with symbol G ∈ L∞(iR, Cp×m), is
defined as

HG : Hm
2 → Hp,⊥

2 , HGu = Π−Gu for all u ∈ Hm
2 .

where Π− is the orthogonal projection from Lp
2 to Hp

2 . Its adjoint is

H∗
G : Hp,⊥

2 → Hm
2 , H∗

Gy = Π+G∼y for all y ∈ Hp,⊥
2 ,

where Π+ is the orthogonal projection from Lm
2 to Hm,⊥

2 . If the Hankel operator with symbol
G ∈ L∞(iR, Cp×m) is compact, then we denote the singular values of HG (that is, the nonnegative
square roots of the eigenvalues of H∗

GHG), by σ1 ≥ σ2 ≥ . . . (≥ 0). The σk’s are then referred to as
the Hankel singular values of G. If G(i·) is continuous on the imaginary axis with equal limits at
±i∞, then from Hartman’s theorem (see for example Corollary 4.10, page 46, Partington [18]), it
follows that the Hankel operator with symbol G is compact.

Let G∼ ∈ Âm×p be a given matrix-valued function and let σ be a real number such that σl+1 < σ.
Then, the sub-optimal Hankel norm approximation problem that we consider is the following: Find
K ∈ Âp×m

l such that ‖G(i·) + K(i·)‖∞ ≤ σ.
The following theorem is a consequence of a slightly more general result proved by Sasane and

Curtain in [9]. They give sufficient conditions for the sub-optimal Hankel norm approximation
problem to have a solution.

Theorem 2.1. Suppose that the following assumptions hold:

S1. The matrix-valued function G ∈ Ŵp×m (let σk’s denote the Hankel singular values of G).

S2. σl+1 < σ < σl.

S3. There exists a Λ ∈ Â(p+m)×(p+m) such that[
Ip 0

G(s)∗ Im

] [
Ip 0
0 −σ2Im

][
Ip G(s)
0 Im

]
= Λ(s)∗

[
Ip 0
0 −Im

]
Λ(s)

for all s ∈ iR.

S4 The matrix-valued function Λ is invertible as an element of Â(p+m)×(p+m), that is, there exists
a V ∈ Â(p+m)×(p+m) such that Λ(s)V (s) = Ip+m for all s ∈ C+.

S5. limω→±∞ Λ(iω) =

[
Ip 0
0 σIm

]
,
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S6. Λ11(·)−1 ∈ Âp×p
l ,

then K ∈ Âp×m
l and ‖G(i·) + K(i·)‖∞ ≤ σ iff K(·) = R1(·)R2(·)−1, where[

R1(·)
R2(·)

]
= Λ(·)−1

[
Q(·)
Im

]

for some Q ∈ Âp×m satisfying ‖Q(i·)‖∞ ≤ 1.

Remark 2.1. The conditions S3-S4 say that the matrix-valued function

W (s) :=

[
Ip 0

G(s)∗ Im

][
Ip 0
0 −σ2Im

][
Ip G(s)
0 Im

]
(2.3)

admits a J-spectral factorization (see the exact definition in the following section).

In this paper, our main result is the following:

Theorem 2.2. Let G be such that G∼ ∈ Âm×p and let σ be a strictly positive real number such
that σ 6= σk for all k ∈ N. Then there exists a Λ ∈ Â(p+m)×(p+m) such that S3, S4 and S5 hold.
Moreover, the following are equivalent:

1. σl+1 < σ < σl.

2. There exists a K ∈ Âp×m
[l] such that ‖G(i·) + K(i·)‖∞ ≤ σ.

3. The matrix-valued function Λ ∈ Â(p+m)×(p+m) which satisfies S3-S5, satisfies also Λ11(·)−1 ∈
Âp×p

[l] .

Furthermore, all solutions to the sub-optimal Hankel norm approximation problem are given by

K(·) = R1(·)R2(·)−1,

where [
R1(·)
R2(·)

]
= Λ(·)−1

[
Q(·)
Im

]

for some Q ∈ Âp×m satisfying ‖Q(i·)‖∞ ≤ 1.

Remark 2.2. The above theorem generalizes the result obtained, for σ > σ1 = ‖HG‖, by Iftime
and Zwart in [17]. In this case, the sub-optimal Hankel norm approximation problem becomes the
so called sub-optimal Nehari problem. The sub-optimal Nehari problem can also be seen as an
application of the results obtained by Ball et al. in [2], using the band method approach.

3 Existence of a J-spectral factorization

We consider the signature matrix

Jσ,p,m =

[
Ip 0
0 −σ2Im

]
,

where p and m are in N and σ is a strictly positive real number. Sometimes we simply use Jσ for
the above, and if σ is 1, we use Jp,m or simple, J .
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Definition 3.1. Let W = W∼ ∈ Ŵk×k. We say that the matrix-valued function W has a J-
spectral factorization if there exists an invertible Λ ∈ Âk×k such that Λ(·)−1 ∈ Âk×k, and the
equality

W (s) = Λ∼(s)JΛ(s)

is satisfied for all s ∈ iR. Such a matrix-valued function Λ will be called a J-spectral factor of W .

We now introduce the concept of equalizing vectors.

Definition 3.2. A vector u is an equalizing vector for the matrix-valued function W ∈ Ŵk1×k2 if
u is a nonzero element of Hk2

2 and Wu is in Hk1,⊥
2 .

The following theorem gives equivalent conditions for the existence of a J-spectral factorization for
a matrix-function W = W∼ ∈ Ŵk×k. A proof can be found in [16].

Theorem 3.1. Let W = W∼ ∈ Ŵk×k be such that det W (s) 6= 0, for all s ∈ iR ∪ {±i∞}. Then
the following statements are equivalent

1. The matrix-valued function W admits a J-spectral factorization;

2. The matrix-valued function W has no equalizing vectors.

Theorem 3.2. Let G be a matrix-valued function of a complex variable such that G∼ ∈ Âm×p and
σ a positive real number such that σ 6= σk for all k ∈ N. Then there exists a (p + m) × (p + m)
matrix-valued function of a complex variable Λ ∈ Â such that W , defined by

W (s) =

[
Ip G(s)
0 Im

]∼
Jσ,p,m

[
Ip G(s)
0 Im

]
, (3.4)

has a Jp,m-spectral factorization
W (s) = Λ(s)∼Jp,mΛ(s). (3.5)

Moreover, if G is strictly proper, then Λ can be chosen such that

lim
ω→±∞Λ(iω) =

[
Ip 0
0 σIm

]
. (3.6)

Proof. It is easy to see that W (s) = W∼(s) and det(W (s)) 6= 0 for all s ∈ R ∪ {±i∞}. In order
to prove that the matrix-valued function W (s) has a J-spectral factorization, it is enough to show
that W (s) has no equalizing vectors (see Theorem 3.1).

Let u be an equalizing vector for the matrix-valued function W , that is,

u =

[
u1

u2

]
∈ H2, , u 6= 0, Wu =

[
v1

v2

]
∈ H⊥

2 . (3.7)

So we have that[
v1

v2

]
=Wu=

[
Ip 0
G∼ Im

][
Ip 0
0 −σ2Im

][
Ip G

0 Im

][
u1

u2

]
=

[
Ip G

G∼ G∼G − σ2Im

][
u1

u2

]
,
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which is equivalent to

v1 = u1 + Gu2 = v1 and v2 = G∼u1 + G∼Gu2 − σ2u2.

In the first equality we split Gu2 using the projections Π− and Π+. We obtain that

u1 + Π+Gu2 = v1 − Π−Gu2 and G∼ (u1 + Gu2) − σ2u2 = v2.

From (3.7) and the definition of the projection operators we have that the left-hand side of the first
equality u1 + Π+Gu2 ∈ H2 and the right-hand side v1 − Π−Gu2 ∈ H⊥

2 . This implies that

u1 + Π+Gu2 = 0 and v1 − Π−Gu2 = 0. (3.8)

Now we replace u1 in the second equality and split the term G∼Π−Gu2 using the projections. We
have that

G∼Π−Gu2 − σ2u2 = v2

⇔ Π−G∼Π−Gu2 + Π+G∼Π−Gu2 − σ2u2 = v2

⇔ Π+G∼Π−Gu2 − σ2u2 = v2 − Π−G∼Π−Gu2.

Using similar arguments as before we have that

Π+G∼Π−Gu2 − σ2u2 = 0,

which is equivalent to
(
H∗

GHG − σ2Im

)
u2 = 0. Since σ is not a singular value of the Hankel

operator, we obtain that u2 must be zero. From (3.8) we see that also u1 must be zero, so u = 0.
We conclude that the matrix-valued function W has no equalizing vectors, which implies that W

has a J-spectral factorization (3.5).
If G is a strictly proper matrix-valued function we see that the limit of W at ±i∞ is the identity

matrix. Consequently, it is easy to check that if there exists a J-spectral factor Λ0 which has the
limit say Λ∞ at ±∞, then Λ defined by

Λ(s) =

[
Ip 0
0 σIm

]
Λ−1
∞ Λ0(s)

is clearly a J-spectral factor with the limit

[
Ip 0
0 σIm

]
at ±i∞.

4 Proof of Theorem 2.2

In this section we prove the main result of this paper. We consider a matrix-valued function of a
complex variable G such that G∼ ∈ Âm×p. Let σk denote the Hankel singular values of G, and let
σ be a positive real number such that σ 6= σk for all k ∈ N. Theorem 3.2 shows that conditions S3,
S4 and S5 are satisfied. The equivalence between the first and the second items of Theorem 2.2.

1. σl+1 < σ < σl.
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2. There exists a K ∈ Âp×m
[l] such that ‖G(i·) + K(i·)‖∞ ≤ σ.

is a consequence of the fact that

inf
K∈Âl

‖G(i·) + K(i·)‖∞ = σl+1. (4.9)

This can be proved as in Sasane [22].
In the following two lemmas we prove the equivalence between the last two items of Theorem

2.2. We start with the implication “3. ⇒ 2.”.

Lemma 4.1. Let Λ ∈ Â(p+m)×(p+m) be a matrix-valued function which satisfies S3-S5, and Λ11(·)−1 ∈
Âp×p

[l] . Then there exists K0 ∈ Âp×m
[l] such that ‖G(i·) + K0(i·)‖∞ ≤ σ.

Proof. Define
K0(s) := V12(s)V22(s)−1,

where V is the inverse of Λ. The rest of the proof follows as in Sasane [20] (Chapter 4, Theorem
4.2.5 and Corollary 4.2.6).

The following lemma proves the implication “2. ⇒ 3.”. The proof is the same as in Curtain and
Sasane [8] and in Sasane [22], but here we consider a different transfer function algebra.

Lemma 4.2. Suppose that there exists a K∗ ∈ Âp×m
[l] such that ‖G(i·) + K∗(i·)‖∞ ≤ σ. Let

Λ ∈ Â(p+m)×(p+m) be a matrix-valued function which satisfies S3-S5. Then Λ11(·)−1 ∈ Âp×p
[l] .

Proof. We will split the proof in 6 steps. In the first two steps we prove some properties of V , the
inverse of Λ. In the third step we prove that V22(·)−1 ∈ Âm×m

[l∗] for some l∗ ∈ N. In the fourth step
we define [

U1

U2

]
:= Λ

[
N

M

]

where K = NM−1 is a right-coprime factorization of K over Â, and prove that U2 is invertible over
the imaginary axis and ‖U1U

−1
2 ‖∞ ≤ 0. Using the Nyquist index, in Step 5 we show that l∗ ≤ l.

Finally, we obtain in the last step that Λ11(·)−1 ∈ Âp×p
[l] .

Step 1. From S5,

V (s) −
[

Ip 0
0 1

σ Im

]
= V (s)

([
Ip 0
0 σIm

]
− Λ(s)

)[
Ip 0
0 1

σ Im

]
,

and the fact that V (·) ∈ Â, it follows that

lim
|s|→∞
s∈C+

V (s) =

[
Ip 0
0 1

σ Im

]
. (4.11)

Step 2. The matrix-valued function Λ satisfies S3, and so, taking inverses, we obtain

V (iω)

[
Ip 0
0 −Im

]
V (iω)∗ =

[
Ip G(iω)
0 −Im

]−1 [
Ip 0
0 − 1

σ2 Im

][
Ip 0

G(iω)∗ −Im

]−1

. (4.12)
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for all ω ∈ R. Considering the (2, 2)-block of the above yields

V21(iω)V21(iω)∗ − V22(iω)V22(iω)∗ = − 1
σ2

Im, where ω ∈ R. (4.13)

Thus for u ∈ C
m we have

‖V22(iω)∗u‖2 = ‖V21(iω)∗u‖2 +
1
σ2

‖u‖2.

So, if V22(iω)∗u = 0 for all ω ∈ R, then u = 0. Hence it follows that V22(iω)∗ is invertible for all
ω ∈ R, or equivalently, V22(iω) is invertible for all ω ∈ R.

From (4.13), we have
∥∥V22(iω)−1V21(iω)u

∥∥2 − ‖u‖2 = − 1
σ2

∥∥V22(iω)−1u
∥∥2. Let M > 0 be

such that ‖V22(iω)‖ ≤ M for all ω ∈ R. We obtain ‖u‖2 ≤ ‖V22(iω)‖2
∥∥V22(iω)−1u

∥∥2 ≤
M2

∥∥V22(iω)−1u
∥∥2. Thus

∥∥V22(iω)−1V21(iω)
∥∥2 ≤ 1 − 1

σ2M2
< 1 for all ω ∈ R,

and so we have
∥∥V22(i·)−1V21(i·)

∥∥
∞ < 1.

Step 3. From (4.11), we know that

lim
|s|→∞
s∈C+

V22(s) =
1
σ

Im.

Thus applying property P2 to V22(·), we obtain that V22(·)−1 ∈ Âm×m
[l∗] ) for some l∗ ∈ N.

Step 4. Let K∗(·) ∈ Âp×m
[l] satisfy ‖G(i·) + K∗(i·)‖∞ ≤ σ and suppose it has the coprime factor-

ization K∗ = NM−1 over Â, where N and M are in Â, M is rational, and det(M) ∈ R∞ has l

zeros in C+ and none on the imaginary axis. Define[
U1

U2

]
:=

[
Λ11N + Λ12M

Λ21N + Λ22M

]
= Λ

[
N

M

]
= Λ

[
K∗
Im

]
M. (4.14)

We prove that U2 is invertible over the imaginary axis and ‖U1U
−1
2 ‖∞ < 1. First we prove that

ker(U2(iω)) = 0 for all ω ∈ R. From (4.14) we have that[
U1(iω)
U2(iω)

]
= Λ(iω)

[
Ip G(iω)
0 Im

]−1 [
G(iω) + K∗(iω)

Im

]
M(iω),

for all ω ∈ R. Note that the following equality holds

U1(iω)∗U1(iω) − U2(iω)∗U2(iω) =

[
U1(iω)
U2(iω)

]∗ [
Ip 0
0 −Im

][
U1(iω)
U2(iω)

]
,

for all ω ∈ R. Multiplying the equality (3.5) to the left and to the right with appropriate matrices,
we have that[

Ip 0
G(iω)∗ Im

]−1

Λ(iω)∗
[

Ip 0
0 −Im

]
Λ(iω)

[
Ip G(iω)
0 Im

]−1

=

[
Ip 0
0 −σ2Im

]
.
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Thus

U∗
1 U1 − U∗

2 U2 = M∗
[

G + K∗
Im

]∗ [
Ip 0
0 −σ2Im

][
G + K∗

Im

]
M (4.15)

on the imaginary axis. Hence for all u ∈ C
m and all ω ∈ R, we have from equation (4.15) that

‖U1(iω)u‖2 − ‖U2(iω)u‖2 = ‖(G(iω) + K∗(iω))M(iω)u‖2 − σ2‖M(iω)u‖2 ≤ 0. (4.16)

Since ‖G(i·) + K∗(i·)‖∞ ≤ σ, and M(iω) is invertible on the imaginary axis, we conclude that U1

and U2 satisfy the following inequality:

‖U1(iω)u‖ ≤ ‖U2(iω)u‖. (4.17)

Multiplying to the left the equality (4.14) with V , the inverse of Λ, we obtain that

V

[
U1

U2

]
=

[
K∗
Im

]
M, (4.18)

and so
V21U1 + V22U2 = M. (4.19)

We claim that ker(U2(iω)) = {0} for all ω ∈ R. Suppose on the contrary that there exists 0 6= u0 ∈
C

m and a ω0 ∈ R such that U2(iω0)u0 = 0. Then from (4.17) and (4.19), we obtain M(iω0)u0 = 0,
which implies that u0 = 0, a contradiction.
From (4.16), we deduce that

∥∥U1(iω)U2(iω)−1y
∥∥2 ≤ ‖y‖2 for all ω ∈ R,

and so U1(i·)U2(i·)−1 ∈ L∞(R, Cp×m) satisfies
∥∥U1(i·)U2(i·)−1

∥∥
∞ ≤ 1.

Step 5. We prove, using the Nyquist index, that l∗ < l, where l∗ ∈ N is the one from Step 3.
Consider U1 and U2 as defined in (4.14). We know that Λ21 is strictly proper and both Λ22 and M

are proper with invertible limits at infinity in C+. Thus from (4.14) we see that

lim
|s|→∞
s∈C+

U2(s) exists and is invertible. (4.20)

Thus it follows that s 7→ det(U2(s)) has only finitely many zeros in C+, and they are all contained
in C+.

The zeros of det(V22), det(M) and det (U2) are contained in some half-plane Cε,+, where ε > 0.
Since

∥∥V22(i·)−1V21(i·)
∥∥
∞ < 1, there exists a 0 < r < 1 such that

∥∥V22(i·)−1V21(i·)
∥∥
∞ = 1 − r. It

follows from P4 that there exists a δ1 > 0 such that δ1 < ε and for any ζ satisfying 0 < ζ < δ1,∥∥V22(ζ + i·)−1V21(ζ + i·)∥∥∞ ≤ 1− r
2 . Similarly it follows from Lemma P4 that there exists a δ2 > 0

such that δ2 < ε and for any ζ satisfying 0 < ζ < δ2,

‖U1(ζ + i·)U2(ζ + i·)‖∞ ≤ 1 +
r
4

1 − r
4

=
1

1 − r
4

.
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Let δ := min {δ1, δ2}, and fix a ζ satisfying 0 < ζ < δ. Define

φ(α, s) = det (αV21(ζ + s)U1(ζ + s) + V22(ζ + s)U2(ζ + s)) ,

where α ∈ [0, 1].
a. We know that

φ(0, ·) = det (V22(ζ + ·)U2(ζ + ·)) and

φ(1, ·) = det (V21(ζ + ·)U1(ζ + ·) + V22(ζ + ·)U2(ζ + ·))
are meromorphic (in fact analytic!) in C−ζ/2,+.
b. φ(0, ·) has a nonzero limit at infinity in C+ : det(V22) has a nonzero limit at infinity in C+ and
det (U2) has a nonzero limit at infinity in C+ (see (4.20)).
φ(1, ·) has a nonzero limit at infinity in C+, since V21 is strictly proper, U1 is proper in C+, and
the above.
c. (α, s) 7→ φ(α, s) : [0, 1] × iR → C is a continuous function, and

φ(0, iω) = det (V22(ζ + iω)U2(ζ + iω))

= det(V22(ζ + iω)) det (U2(ζ + iω)) , and

φ(1, iω) = det (V21(ζ + iω)U1(ζ + iω) + V22(ζ + iω)U2(ζ + iω)) .

d. We have

φ(α, iω) = det(V22(ζ + iω)) det (U2(ζ + iω))

det
(
I + αV22(ζ + iω)−1V21(ζ + iω)U1(ζ + iω)U2(ζ + iω)−1

)
6= 0,

since ∥∥αV22(ζ + i·)−1V21(ζ + i·)U1(ζ + i·)U2(ζ + i·)−1
∥∥
∞

≤ 1
∥∥V22(ζ + i·)−1V21(ζ + i·)∥∥∞ ∥∥U1(ζ + i·)U2(ζ + i·)−1

∥∥
∞

≤
[
1 − r

2

] 1
1 − r

4

< 1,

det(V22(ζ + iω)) 6= 0 and det (U2(ζ + iω)) 6= 0.
e. φ(α,∞) 6= 0, since V21 is strictly proper, U1 is proper in C+, and det(V22) det (U2) has a nonzero
limit at infinity in C+.
Thus the assumptions in Lemma A.1.18 (Curtain and Zwart [13], page 570) are satisfied by φ,
and hence it follows that the Nyquist indices of φ(0, ·) and φ(1, ·) are the same. Consequently, the
number of zeros are the same (the number of poles is zero, as φ(0, ·), φ(1, ·) are analytic in C− δ

2
,+)

and so the sum of the number of zeros of s 7→ det(V22(ζ +s)) in C
+
0 plus the number of zeros of s 7→

det (U2(ζ + s)) in C+ equals the number of zeros of s 7→ det (V21(ζ + s)U1(ζ + s) + V22(ζ + s)U2(ζ + s))
(= det(M(ζ + s), using (4.19)) in C+.

In particular, we obtain that the number of zeros of s 7→ det (V22(ζ + s)) in C+ is less than or
equal to l. But since the choice of ζ can be made arbitrarily small, it follows that s 7→ det (V22)
has at most l zeros in C+. Thus V22(·) ∈ Âm×m

[l∗] where l∗ ≤ l.

11



Step 6. Finally it can be checked easily that Λ−1
11 = V11−V12V

−1
22 V21 and V −1

22 = Λ22−Λ21Λ−1
11 Λ12.

It follows from P5 that Λ11(·)−1 ∈ Âp×p
l∗ . If Λ11(·)−1 ∈ Â[k] with k < l∗, using once more P5 we

obtain that V22(·)−1 ∈ Âk, which is a contradiction. Using (4.9) and Lemma 4.1, we obtain that
Λ11(·)−1 ∈ Âp×p

[l] .

Remark 4.1. Finally we remark that under the assumptions of Theorem 2.2, if σl < σ < σl+1,
then all solutions to the sub-optimal Hankel norm approximation problem are given by

K(·) = R1(·)R2(·)−1,

where [
R1(·)
R2(·)

]
= Λ(·)−1

[
Q(·)
Im

]

for some Q ∈ Âp×m satisfying ‖Q(i·)‖∞ ≤ 1. This follows as in the proof of Theorem 2.1.
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