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Abstract

We give a definition of the zeros of an infinite-dimensional system with bounded
control and observation operators B and C respectively. The zeros are defined in terms
of the spectrum of an operator on an invariant subspace. These zeros are shown to be
exactly the invariant zeros of the system. For the case of SISO systems, where also the
range of B is not in the kernel of C, we show that this subspace exists and it is the
entire kernel of C. We calculate the operator K such that the spectrum of A + BK

on ker(C) is the system zeros, and show that A + BK generates a Co-semigroup on
ker(C). If the range of B is not in the kernel of C, a number of situations may occur,
depending on the nature of B and C.

1 Introduction

The importance of the poles of a transfer function to system dynamics are well-known. The

zeros are also important in controller design. For instance, the presence of right-hand-plane

zeros restricts the achievable sensitivity reduction. The presence of right-hand-plane zeros

also makes the use of an adaptive controller impractical in most situations. Furthermore, if

a zero is close to a pole, the system is close to being non-minimal and hence uncontrollable

and/or unobservable e.g. [6, sect. 2.5]. It is also difficult to obtain robust stability for these

systems [ibid,sect. 4.6].

For linear finite-dimensional systems

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t),

where x(t) ∈ Rn and A, B and C are matrices, the zero dynamics can be defined in a number

of equivalent ways. One of the most fundamental is in terms of an invariant subspace. A

subspace V is invariant for a linear finite-dimensional system if for all initial conditions in

V there exists a control that keeps the state in V for all times. If this is the case, the

control can be a constant state feedback. e.g. [9]. The zero dynamics can be obtained by



considering the system on the largest feedback-invariant subspace Z contained in the kernel

of the observation operator. The system zeros are then analyzed by considering the spectrum

of the operator A + BK on Z where K is an operator such that Z is A + BK-invariant.

The dynamics are independent of the choice of K for which Z is A + BK-invariant. The

eigenvalues of A + BK on Z are identical to the invariant zeros.

This is not the case for infinite-dimensional systems. In fact, we do not even have a stan-

dard definition of zero dynamics valid for general infinite-dimensional systems. Generally,

the transmission zeros for infinite-dimensional systems are approximated by calculation of

the transmission zeros of a finite-dimensional approximation to the system. These calcu-

lated zeros are often very different from the exact zeros, even when the system poles are

approximated with good accuracy e.g. [3, 5]. Thus, it is useful to have a rigorous defi-

nition of the zeros of infinite-dimensional systems based on the state-space realization. A

large difficulty in studying zeros of infinite-dimensional systems however is that the largest

feedback-invariant subspace in the kernel of C might not exist in the sense mentioned above.

In this paper we will only consider single-input single-output systems with bounded control

b ∈ D(A) and bounded observation c. For control and observation b and c respectively where

〈b, c〉 6= 0, we show that a largest feedback-invariant subspace exists and it is the entire

subspace c⊥ := {x ∈ X | 〈x, c〉 = 0}. We give an explicit representation of a feedback K for

which c⊥ is A + bK-invariant. The spectrum of A + bK is identical to the invariant zeros

of the system. If 〈b, c〉 = 0, then the theory is quite different. If c⊥ is A-invariant, then the

transfer function is identically 0. In the more interesting case where the transfer function

is non-trivial, a number of situations may occur, depending on the nature of b and c. We

obtain a characterization of the largest invariant subspace in a number of cases, and show

that it is contained in a proper subset of c⊥. In other cases a largest feedback-invariant

subspace may not exist. This is illustrated by an example of a delay system.

2 Definition of Zero Dynamics

We consider single-input single-output infinite-dimensional systems with bounded control

and observation. Let X be a Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. Let A

be the infinitesimal generator of a C0-semigroup T (t) on X. Let b and c be elements of X.

Let U = Y = C and u(t) ∈ U . We consider the following single-input single-output system

(A, b, c) in X:

ẋ(t) = Ax(t) + bu(t) (2.1)

with the observation

y(t) = Cx(t) := 〈x(t), c〉. (2.2)

This paper extends the work in Byrnes et. al. [1], where zero dynamics are defined for
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(A, b, c) under the assumptions that

b ∈ D(A), c ∈ D(A∗), 〈b, c〉 6= 0. (2.3)

In this paper we will remove the restriction c ∈ D(A∗), and also examine the case where

〈b, c〉 = 0. Our standing assumptions throughout the paper are:

(A1) A is an infinitesimal generator of a C0-semigroup on the Hilbert space X.

(A2) c ∈ X.

(A3) b ∈ D(A).

The input/output map is

y(t) =<

∫ t

0

T (t− σ)bu(σ) dσ, c > . (2.4)

Defining g(t) = 〈T (t)b, c〉, the output is simply the convolution of g(t) and u(t). Taking the

Laplace transform on both sides of equation (2.4) gives

ŷ(s) = G(s)û(s), (2.5)

where G(s) = 〈(sI − A)−1b, c〉 is the system transfer function.

Definition 2.1. The transmission zeros of (2.1), (2.2) is the set of all z such that G(z) = 0.

Definition 2.2. The invariant zeros of (2.1), (2.2) are the set of all λ such that[
λI − A b

C 0

] [
x

u

]
=

[
0

0

]
has a solution for u ∈ U and non-zero x ∈ D(A).

It is not difficult to show that every transmission zero is an invariant zero. Also, any

invariant zero in ρ(A) is a transmission zero. Invariant zeros have the same relation to

transmission zeros as the system eigenvalues have to the transfer function poles.

Following are the definitions of invariance that we use here to define zero dynamics. Note

that we only consider closed invariant subspaces. Even though the input and output for this

system are bounded, for a complete theory we need to consider unbounded feedbacks. We

say that a feedback operator K is A-bounded if K ∈ B(D(A), U), where D(A) is the domain

of A. We point out here that if K is A-bounded, there is no guarantee that A + bK is the

generator of a C0-semigroup, where D(A + bK) = D(A) and (A + bK)x = Ax + b(Kx) ∈ X.

Definition 2.3. A closed subspace Z of X is feedback invariant if there exists an A-bounded

feedback K such that (A + bK)(Z ∩D(A)) ⊂ Z.

3



Theorem 2.1. [11, Thm.II.26] A closed subspace Z is feedback-invariant if and only if it is

(A, b)-invariant, that is,

A(Z ∩D(A)) ⊂ Z + span{b}.

Definition 2.4. A closed subspace Z of X is closed-loop invariant if there exists an A-

bounded feedback K such that (A + bK)(Z ∩ D(A)) ⊂ Z, and A + bK generates a C0

semigroup TK on Z.

Definition 2.5. A closed subspace Z of X is open loop invariant if for every x(0) ∈ Z, there

exists a u(·) ∈ L2([0,∞), U), such that the solution x(t) ∈ Z for all t ≥ 0.

Closed-loop invariance implies feedback invariance, but the converse statement is not al-

ways true [11]. Under certain conditions, some types of invariance are equivalent. For

instance, if the feedback is in fact bounded, then open-loop (with the control restricted

to continuous functions) and closed-loop invariance are equivalent [11, Thm. II.27], as is

feedback invariance.

We now define zero dynamics.

Definition 2.6. Suppose Z is the largest closed feedback-invariant subspace contained in c⊥,

and let K be such that Z is A + bK-invariant. If such a Z and K exist, the zero dynamics

of (A, b, c) is A + bK|Z. We write this as (Z,A + bK).

The operator K is not specified as unique in the above theorem. However, if b /∈ Z, and

there are two operators K1 and K2 that are both (A, b)-invariant on Z, then b(K1x−K2x) ∈ Z

and so K1x = K2x for all x ∈ Z.

Theorem 2.2. If Z ⊆ c⊥ is feedback-invariant and b ∈ Z then the system transfer function

is identically zero.

Proof: Since Z is feedback-invariant,

A(Z ∩D(A)) ⊂ Z +R(b) ⊂ Z.

This implies that A is Z-invariant. This fact together with b ∈ Z implies that every z ∈ Z

can be written z = (sI −A)ξ(s) where ξ(s) ∈ D(A) ∩ Z [11, Lem. II.18], and s ∈ [r,∞) for

some r ∈ R. We obtain that (sI − A)−1b ∈ Z for all s ∈ [r,∞). Since Z ⊂ c⊥, the system

transfer function G(s) is identically zero. �
Thus, we may assume that if Z is a feedback-invariant subspace in c⊥, then b /∈ Z and also

that the feedback K is unique on Z.

Theorem 2.3. The set of eigenvalues of the zero dynamics (if they exist) is the set of

invariant zeros of the system.

Proof: Indicate the largest feedback-invariant subspace in c⊥ by Z and let K be a suitable

feedback. As shown above, we may assume b /∈ Z and that K|Z is unique. Choose a
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decomposition for X = X1 ⊕X2 where Z = X1 and b ∈ X2. Let P indicate the projection

onto X2. Any x ∈ X can be written as x1+x2, where x1 = (I−P )x ∈ X1 and x2 = Px ∈ X2.

Then, A can be decomposed as

A =

[
A11 A12

A21 A22

]
, (2.6)

where

A11 = (I − P )A|X1 , A12 = (I − P )A|X2 , A21 = PA|X1 , A22 = PA|X2 . (2.7)

Since Z ⊆ c⊥, and b ∈ X2, the system can be written

d

dt

[
x1

x2

]
=

[
A11 A12

A21 A22

] [
x1

x2

]
+

[
0

b

]
u(t)

y(t) = 〈x2, c〉.

Writing K = [K1 K2],

u(t) = [K1 K2]

[
x1

x2

]
,

d

dt

[
x1

x2

]
=

[
A11 A12

A21 + bK1 A22 + bK1

] [
x1

x2

]
.

Since X1 is A + bK-invariant,

A21x1 = −bK1x1 (2.8)

for all x1 ∈ X1. Since K2 does not affect the action of A + bK on Z, we set K2 = 0. Note

that A11 = (A + bK)|Z .

Suppose that λ is an eigenvalue of (A + bK)|Z = A11 with eigenvector x1 ∈ D(A) ∩ Z.

Setting x = x1, u = −Kx1 we see that λ is also an invariant zero.

We now show that every invariant zero is an eigenvalue of (A + bK)|Z = A11. Write[
λI − A b

c 0

]
=

[
λI − A− bK b

c 0

] [
I 0

K I

]
. (2.9)

Thus, if λ is an invariant zero of (A, b, c) then it is an invariant zero of (A + bK, b, c). Using

the decomposition X = X1 ⊕X2, with this choice of K[
λI − A− bK b

c 0

] [
x

u

]
= 0 (2.10)

becomes  λI − A11 −A12 0

0 λI − A22 b

0 c 0

 xo1

xo2

uo

 =

 0

0

0

 (2.11)
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where not both of xo1, xo2 are zero. Thus, xo2 ∈ c⊥ and

A

[
xo1

xo2

]
= λ

[
xo1

xo2

]
+

[
0

b

]
(−Kxo + uo).

This implies that span[xo1, xo2] is in an (A, b)-invariant subspace. Since Z is the largest (A, b)

subspace in c⊥, xo2 = 0, and so xo1 6= 0. This implies that xo1 is an eigenvalue of A11 with

eigenvector λ. �

3 The case 〈b, c〉 6= 0

As in [1], for x ∈ X we define the projection

Px =
〈x, c〉
〈b, c〉

b. (3.1)

Theorem 3.1. If 〈b, c〉 6= 0 then the zero dynamics for (A, b, c) exist, and is (c⊥, A + bK),

where

Kx = −〈A(I − P )x, c〉
〈b, c〉

.

Furthermore, A + bK generates a Co-semigroup on c⊥ and so c⊥ is closed-loop invariant.

Proof: Let X1 = c⊥ and X2 = span{b}. Any x ∈ X can be written as x1 ⊕ x2, where

x1 = (I − P )x ∈ X1 and x2 = Px ∈ X2. Writing X as X1 ⊕X2, A can be decomposed as

(2.6, 2.7).

In this decomposition b = [0, b]T . Letting K1 = K(I − P ) and K2 = KP ,

A + bK =

[
A11 A12

A21 + bK1 A22 + bK2

]
.

Noting that

A21x1 = b
〈Ax1, c〉
〈b, c〉

,

we choose

Kx1 = K1x1 = −〈Ax1, c〉
〈b, c〉

= −〈A(I − P )x, c〉
〈b, c〉

with domain D(K) = D(A). The choice of K2 is arbitrary, so we let K2 = 0. Then

A + bK =

[
A11 A12

0 A22

]
, (3.2)

and it is clear that (A + bK)(X1 ∩D(A)) ⊂ X1. Also, for x1 ∈ X1, (A + bK)x1 = A11x1. It

remains to show that (A + bK) generates a C0 semigroup on X1.
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Since b ∈ D(A) and K is rank one and A-bounded A + bK generates a C0 semigroup on

X [8, Thm. 1(c)], S(t).

We need to show that X1 is invariant under S(t). This does not follow immediately from

the invariance of X1 under A + bK. If we can show that for any λ ∈ ρ(A + bK) the image of

X1 under (λ − (A + bK)) is all of X1, then X1 is e(A+bK)t invariant [11, Lem. I.4]. We can

write (λ− (A + bK))x as [
(λ− A11)x1 − A12x2

(λ− A22)x2

]
.

Since the image of X2 under A12 is span{(I − P )Ab}, and the range of (λ− (A + bK)) is all

of X, we see that the image of X1 under λ− (A + bK) contains X1 	 span{(I − P )Ab}. To

show that the image of X1 under λ − (A + bK) also contains span{(I − P )Ab}, note that

there must be x1 and x2 which solve[
(λ− A11)x1 − A12x2

(λ− A22)x2

]
=

[
0(

λ− 〈Ab,c〉
〈b,c〉

)
b

]

Writing x2 as αb for some scalar α, we see that the bottom row of this matrix equation is

α

[
λ− 〈Ab, c〉

〈b, c〉

]
b =

[
λ− 〈Ab, c〉

〈b, c〉

]
b,

which implies that x2 = b. Plugging this into the first row of the matrix equation, we obtain

that

(λ− A11)x1 − (I − P )Ab = 0.

This shows that the image of X1 under λ− (A+ bK) contains span{(I−P )Ab}. Hence, S(t)

is a C0 semigroup on X1. �

4 The case 〈b, c〉 = 0

In addition to 〈b, c〉 = 0, we assume that c ∈ D(A∗) and 〈b, A∗c〉 6= 0. If A∗c ∈ span{c} then

A is c⊥-invariant. Since b ∈ c⊥, the same argument in the proof of Theorem 2.2 implies that

the transfer function is identically zero. We therefore also assume that A∗c /∈ span{c}.

Theorem 4.1. Suppose that 〈b, c〉 = 0, c ∈ D(A∗), A∗c 6∈ span{c} and 〈b, A∗c〉 6= 0. Then

the zero dynamics for (A, b, c) exist. The zero dynamics are ((c)⊥ ∩ (A∗c)⊥, A + bK) with

Kx = −〈A(I −Q)(I − P )x, (I − P )A∗c〉
〈b, A∗c〉

,

where for x ∈ X and x1 ∈ (c)⊥,

Px =
〈x, c〉
‖c‖2

c
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and

Qx1 =
〈x1, (I − P )A∗c〉

〈b, A∗c〉
b.

Proof: Let X1 = c⊥ and X2 = span{c}. Any x ∈ X can be written as x1 + x2, where

x1 = (I − P )x ∈ X1 and x2 = Px ∈ X2. Writing X as X1 ⊕X2, A can be written as (2.6,

2.7). In this decomposition b = [b, 0]T , since b ∈ X1. Letting K1 = K(I −P ) and K2 = KP ,

A + bK =

[
A11 + bK1 A12 + bK2

A21 A22

]
.

If a subspace Z ∈ X1 is to satisfy (A + bK)(Z ∩ D(A)) ⊂ Z, we see that A21z = 0 for

any z ∈ D(A) ∩ Z. This condition is equivalent to 〈Az, c〉 = 0. Since c ∈ D(A∗), any

(A+ bK)-invariant subspace Z ⊆ c⊥∩ (A∗c)⊥. For z ∈ Z ∩D(A), (A+ bK)z = (A11 + bK1)z.

Define

Z = c⊥ ∩ (A∗c)⊥ (4.1)

and decompose c⊥ into X̃1 ⊕ X̃2 where X̃1 = (I − Q)c⊥ and X̃2 = Qc⊥. In particular,

X̃1 = Z and b ∈ X̃2. Since A∗c 6∈ span{c}, we can apply Theorem 3.1 on c⊥ with c replaced

by (I − P )A∗c, A replaced by A11 and P replaced by Q. The feedback used to obtain the

zero dynamics is

Kx = −〈A11(I −Q)x1, (I − P )A∗c〉
〈b, A∗c〉

= −〈A(I −Q)(I − P )x, (I − P )A∗c〉
〈b, A∗c〉

.

The arguments in Theorem 3.1 can be used to show that the zero dynamics for (A, b, c) in

this case are (Z,A + bK). �
The following example illustrates that if 〈b, c〉 = 0 the zero dynamics as defined in Defn.

2.6 might not exist.

Example: The following example of a controlled delay equation first appeared in [7].

ẋ1(t) = x2(t)− x2(t− 1)

ẋ2(t) = u(t) (4.2)

y(t) = x1(t).

The system of equations (4.2) can be written in the standard state-space form (2.1, 2.2) as

follows. Choose the state-space

X = R2 × L2(−1, 0)× L2(−1, 0).

and define the closed operator A on X

A(r1, r2, φ1, φ2) =


φ2(0)− φ2(−1)

0

φ̇1

φ̇2
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with domain

D(A) =
{
(r1, r2, φ1, φ2), φ1(0) = r1, φ2(0) = r2, φ1 ∈ H1(−1, 0), φ2 ∈ H1(−1, 0)

}
.

Also define

b =


0

1

0

0

 , c =
[

1 0 0 0
]
.

In this example we have that < b, c >= 0, b /∈ D(A) and c /∈ D(A∗).

We will show that there does not exist a largest feedback-invariant subspace Z ⊂ c⊥.

Define the set of elements

ek =


0

1

0

exp(2πikt)

 ∈ D(A) ∩ c⊥.

The subspace span{ek} is (A, b)-invariant and hence feedback invariant. Define

Vn = span−n≤k≤nek.

Each subspace Vn is feedback invariant. Define also the union of all finite linear combinations

of ek,

V =
⋃

Vn.

The space V is not closed. If there is a largest feedback-invariant subspace Z in c⊥, then

Z ⊃ V̄ . The important point now is that although b /∈ V , b ∈ V̄ .

Since b cannot be contained in any feedback invariant subspace (Thm. 2.2), V̄ is not

feedback-invariant. Hence no largest feedback-invariant subspace exists.
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