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Abstract

We analyze under which conditions linear time-invariant state space systems can
be stabilized by static linear state feedback such that prescribed transient bounds hold
pointwise in time for the trajectories of the closed loop system. We introduce the
concepts of (M, β)-stability and quadratic (M, β)-stability which guarantee a tran-
sient bound M along with a decay rate β < 0. Necessary and sufficient conditions for
quadratic (M, β)-stabilizability are derived which can be expressed in terms of linear
matrix inequalities. A full characterization of general (M, β)-stabilizability is still miss-
ing. However, we obtain necessary and sufficient criteria under which a given system
can be transformed by linear state feedback into a closed loop system generating a
strict contraction semigroup with respect to the spectral norm.

1 Introduction

Trajectories of asymptotically stable linear systems may move far away from the origin

before ultimately approaching it. This transient behavior has recently been studied by

several authors [2, 3, 6, 7, 8], in particular its relation to the behavior of the spectrum of

the system matrix under perturbations. There are several motivations for the analysis of the

transient behavior of linear systems. One of these concerns the relation between a nonlinear

system and its linearization at an asymptotically stable fixed point. Although by Lyapunov

theory asymptotic stability of the nonlinear system entails the asymptotic stability of the

linearization at the fixed point, the domain of attraction may be very thin so that the fixed

point becomes “practically unstable”, see [2].

This reasoning suggests that if linear design is performed as a local design for a nonlinear

system, then it might be desirable to construct feedbacks that generate small transients

for the linearization. In this paper we investigate the achievable transitory behavior using

static linear state feedback. The use of time-varying linear feedback to reduce transients has

been studied in [3, 7]. The relation of this problem to the pole placement problem has been

investigated by Izmailov, see [5] where some results are announced.

We proceed as follows. In the ensuing Section 2 we define the notion of (strict) (M,β)-

stability and derive a sufficient condition in terms of quadratic Lyapunov functions. An

example shows that this sufficient condition may be quite conservative. This motivates the
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introduction of the notion of (strict) quadratic (M,β)-stability and (M,β)-stabilizability.

In Section 3 the main results of this note are presented. We derive necessary and sufficient

conditions for strict quadratic (M,β)-stabilizability of linear systems. In Section 4 we briefly

discuss how quadratic (M,β)-stabilizability may be characterized in terms of linear matrix

inequalities. Whether this is possible for (M,β)-stabilizability in general is questionable.

2 Problem formulation

A linear system of the form ẋ = Ax is called exponentially stable with a decay rate of β < 0,

if there exists M ≥ 1 such that ‖exp(At)‖ ≤ M exp(βt) holds for all t ≥ 0. When both M

and β are prescribed this imposes not only conditions on the long-term behavior, but also

on the transient behavior of the system.

Definition 2.1. Given the constants M ≥ 1, β < 0, and a norm ‖·‖ on C
n×n, a matrix

A ∈ C
n×n is called (M,β)-stable (resp. strictly (M,β)-stable) if

‖eAt‖ ≤ Meβt, t ≥ 0, (resp. ‖eAt‖ < Meβt, t > 0). (2.1)

A matrix pair (A,B) ∈ C
n×n × C

n×m is called (strictly) (M,β)-stabilizable if there exists a

feedback matrix F ∈ C
m×n such that the closed loop matrix A−BF is (strictly) (M,β)-stable.

Clearly, (M,β)-stability implies exponential stability. The set of (M,β)-stable matrices

is closed and a subset of {A ∈ C
n×n; maxλ∈σ(A) Re λ ≤ β}. On the other hand, the set

of strictly (M,β)-stable matrices is not open. It can be proved that the interior of the

set of (M,β)-stable matrices is given by the set of strictly (M,β)-stable matrices with the

additional condition that the spectral abscissa α(A) := maxλ∈σ(A) Re λ is less than β.

In this article we want to characterize those systems that are strictly (M,β)-stable or that

may be stabilized by state feedback such that the closed loop system is strictly (M,β)-stable.

However, an easily checkable criterion that characterizes strict (M,β)-stability is currently

unknown. But there is a well-known and easily checkable sufficient condition in terms of

quadratic Lyapunov functions, which is the basis of the results in this paper. Let us first

introduce some relevant notations.

Throughout the paper 〈·, ·〉 denotes the standard Euclidean inner product on C
n, 〈x, y〉 =

x∗y, where ∗ denotes conjugate transpose. The associated vector norm on C
n and the cor-

responding operator norm on C
n×n are both denoted by ‖·‖. The notation P > 0 will mean

that P = P ∗ is positive definite with respect to the standard inner product.

Given the n × n matrix P > 0, the inner product weighted with P is defined by 〈x, y〉P :=

x∗Py, with the associated P−norm ‖x‖P := 〈x, x〉1/2
P . A matrix is then Hermitian with

respect to the inner product 〈·, ·〉P (or P -Hermitian for short) if the P -Hermitian adjoint

equals A, i.e. P−1A∗P = A. The P -Hermitian part of A ∈ C
n×n is defined by 1

2
(P−1A∗P+A) ,

and we see that the P -Hermitian part of A is negative definite with respect to 〈·, ·〉P if and

only if the familiar Lyapunov inequality HP (A) := 1
2
(A∗P + PA) < 0 holds.
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Standard Lyapunov theory tells us that for any asymptotically stable matrix A there exists

a matrix P > 0 such that HP (A) < 0. For this choice of P the map x �→ V (x) = 〈x, x〉P is

a quadratic Lyapunov function for A. The derivative of V along the solutions of ẋ = Ax is

given by

V̇ (x) =
d

dt
〈x(t), x(t)〉P = 2x∗(t)HP (A)x(t) < 0, x(0) 	= 0.

The matrix A is said to generate a P -contraction semigroup if for all t ≥ 0 we have

‖eAt‖P ≤ 1 and we speak of a strong P -contraction semigroup if there exists β < 0 such that

for all t ≥ 0 we have ‖eAt‖P ≤ eβt. Thus ẋ = Ax is asymptotically stable if and only if A

generates a strong P -contraction semigroup for some P > 0.

Remark 2.1. The matrix A generates a (resp. strong) P -contraction semigroup if the closed

unit ball B̄P = {x ∈ C
n; ‖x‖P ≤ 1} is forward invariant under the flow of ẋ = Ax (resp. eAt

maps B̄P into the open unit ball BP for t > 0).

We now present a sufficient condition for (M,β)-stability. Recall that for regular matrices

P the condition number is defined by κ(P ) := ‖P‖ ‖P−1‖. This quantity measures the

deformation introduced by changing the Euclidean norm into a P -norm.

Lemma 2.1. Let A ∈ C
n×n and M ≥ 1, β < 0. If there exists a matrix P > 0 which

satisfies κ(P ) ≤ M2 and

HP (A) ≤ βP < 0, (resp. HP (A) < βP ), (2.2)

then A is (M,β)-stable (resp. strictly (M,β)-stable).

Proof. Let P > 0 such that κ(P ) ≤ M2 and (2.2) is satisfied. Then for all x ∈ C
n and t ≥ 0

d

dt
‖eAtx‖2

P = (eAtx)∗ (PA + A∗P ) (eAtx) ≤ 2β‖eAtx‖2
P . (2.3)

By Gronwall’s Lemma we obtain

‖eAtx‖2
P ≤ e2βt‖x‖2

P , t ≥ 0. (2.4)

The Euclidean norm and the P -norm may be compared by means of the following inequalities

λmin(P )〈x, x〉 ≤ 〈x, x〉P ≤ λmax(P )〈x, x〉, x ∈ C
n (2.5)

where λmin(P ), λmax(P ) denote the minimal and maximal eigenvalue of P, respectively. Now,

for a positive definite matrix P the condition number is κ(P ) = λmax(P )
λmin(P )

. Equation (2.4) leads

to

‖eAt‖ ≤
√

κ(P )eβt for t > 0. (2.6)

This proves that A is (M,β)-stable. If HP (A) < βP the strict versions of inequalities (2.3)

and (2.4) are valid for t > 0 and x 	= 0 so that in this case A is strictly (M,β)-stable.
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Lemma 2.1 yields only a sufficient condition for (M,β)-stability. A matrix A may be

(M,β)-stable although all P > 0 with HP (A) ≤ βP have a condition number greater

than M2. This is illustrated in the following example where we make use of the fact that

HP (A − βI) = HP (A) − βP, i.e. a change of the bound for the decay rate, β, is equivalent

to a shift of A by a multiple of the identity.

Example 2.1. Consider the matrix A = ( −1 150
0 −51 ). The spectral norm of the matrix exponential

for a real 2 × 2 matrix in upper triangular form A = ( λ1 α
0 λ2

), λ1 	= λ2, is given by

‖eAt‖ =
1

2

∣∣eλ1t − eλ2t
∣∣ (√

coth(1
2
(λ1 − λ2)t)2 + ( α

λ1−λ2
)2 +

√
1 + ( α

λ1−λ2
)2

)
.

For β = −1 we get the monotone increasing function

‖e(A−βI)t‖ = 1
2
(1 − e−50t)

(√
coth(25t)2 + 9 +

√
10

)
t→∞−−−→

√
10 as lim

x→∞
coth(x) = 1.

Hence, M =
√

10 is the smallest possible bound for strict (M,β)-stability with β = −1.

Now let us examine which bound can be obtained using Lemma 2.1. The strict Lyapunov

inequality PA + AP + 2P > 0 is unsolvable, but there exist matrices P > 0 which solve

P (A − βI) + (A − βI)∗P ≤ 0 for β = −1. The matrix P = ( p1 p3
p3 p2 ) is a solution of this

inequality if and only if

150p1 − 50p3 = 0, 150p3 − 50p2 < 0.

If we fix p1 = 1 then necessarily p3 = 3 and p2 > 9. With this choice P is positive definite.

Other solutions are positive scalar multiples of solutions representable in such a manner.

The condition number for a 2 × 2 real matrix P > 0 is given by

κ(P ) =
trace P

2 det P

(
trace P +

√
(trace P )2 − 4 det P

)
− 1.

By writing p2 = 9 + α we get κ(α) = 10+α
2α

(
(10 + α) +

√
(10 + α)2 − 4α

)
− 1 which has a

minimum of 19 + 6
√

10 at α̃ = 10. Therefore the best bound obtainable by Lemma 2.1 is√
κ(α̃) = 3 +

√
10 . In this example there is a gap of 3 between the Lyapunov bound and

the minimal bound M .

Remark 2.2. By extending Lemma 2.1 to a larger class of norms the gap illustrated in

Example 2.1 may be closed. We generalize the condition number estimate for the P -norm

by defining the eccentricity of a given norm ν(·) on C
n by

ecc(ν) :=
max‖x‖=1 ν(x)

min‖x‖=1 ν(x)
, (2.7)

which yields ecc(‖·‖P ) = κ(P )
1
2 . Following Remark 2.1 we replace the quadratic Lyapunov

inequality (2.2) by the condition that A−βI generates a contraction semigroup with respect

to ν, i.e.

e(A−βI)tBν ⊂ Bν , t ≥ 0, (2.8)
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where Bν = {x ∈ C
n; ν(x) < 1} denotes the open unit ball defined by ν. Then (2.7) and

(2.8) yield

‖eAt‖ ≤ (ecc ν)ν(eAt) ≤ (ecc ν)eβt, t ≥ 0. (2.9)

It is easily verified that for β ∈ (α(A), 0) the minimal M for which A is (M,β)-stable is

given by M = ecc ν for the norm ν(x) := supt≥0 e−βt‖eAtx‖. Hence, the minimal M is

Minf := inf
{
ecc ν; ν is a norm on C

n and ∀t ≥ 0 : e(A−βI)tBν ⊂ Bν

}
.

Lemma 2.1 motivates the following definition, which leads to an easily checkable condition.

Definition 2.2. Given the constants M ≥ 1, β < 0, a matrix A ∈ C
n×n is called (strictly)

quadratically (M,β)−stable if there exists P > 0 such that

κ(P ) ≤ M2 and HP (A) ≤ βP , (resp. HP (A) < βP ) .

A pair (A,B) ∈ C
n×n × C

n×m is called (strictly) quadratically (M,β)-stabilizable if there

exists a matrix F ∈ C
m×n such that A − BF is (strictly) quadratically (M,β)−stable.

We will establish necessary and sufficient criteria for strict quadratic (M,β)−stabilizability.

3 Quadratic (M, β)-stabilizability and -stabilization

Let M ≥ 1, β < 0 be given and consider the system

ẋ = Ax + Bu, (3.1)

where A ∈ C
n×n and B ∈ C

n×m.

By Lemma 2.1 this system is strictly quadratically (M,β)-stabilizable if and only if we

can find a matrix F such that the following matrix inequality has a positive definite solution

P > 0 with κ(P ) ≤ M2

HP (A − BF ) =
1

2
(P (A − BF ) + (A − BF )∗P ) = HP (A) − HP (BF ) < βP . (3.2)

It is therefore no big surprise that the following set is crucial for our considerations of

(M,β)-stabilizability. For every P ≥ 0 let

MP (β) := {v ∈ C
n;

1

2
v∗(A∗P + PA)v ≥ βv∗Pv}. (3.3)

The set MP (β) consists of those initial values for which the solutions have an initial growth

of at least β, i. e. d
dt
‖eAtv‖P

∣∣
t=0

≥ β‖v‖P . Thus MP (β) is the subset of state space where the

dynamics of the uncontrolled system has to be modified in order to meet the control aim.
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Theorem 3.1. Consider the pair (A,B) and constants M ≥ 1, β < 0. The following state-

ments are equivalent:

(i) The system ẋ = Ax + Bu is strictly quadratically (M,β)-stabilizable.

(ii) There exist γ ∈ R and a matrix P > 0 with κ(P ) ≤ M2 such that

HP (A − γBB∗P ) < βP. (3.4)

In this case, (3.4) holds for all γ′ > γ.

(iii) There exists a matrix P > 0 with κ(P ) ≤ M2 such that

MP (β) ∩ ker B∗P = {0} . (3.5)

Note that there is no counterpart for the equivalence (i) ⇐⇒ (ii) for the case of non-strict

quadratic (M,β)-stabilizability.

Proof. (ii) ⇒ (i) is trivial (choose F = γB∗P ). If γ satisfies (3.4) so does γ′ = γ + α > γ

since PBB∗P is positive semidefinite and

HP (A − γ′BB∗P ) = HP (A − γBB∗P ) − αPBB∗P < 0.

(i) ⇒ (iii) Let F be a feedback such that A − BF is strictly quadratically (M,β)-stable.

Then there exists P > 0 with κ(P ) ≤ M2 such that HP (BF ) > HP (A)−βP holds. Therefore

for all v ∈ MP (β) we have v∗(PBF + F ∗B∗P )v > 0 and it follows that B∗Pv 	= 0.

(iii) ⇒ (ii) Let (3.5) hold for some P > 0 with κ(P ) ≤ M2. We show that for a suitable

choice of γ > 0 we have HP (A− γBB∗P ) < βP . Our first step is to simplify the expression

HP (A − γBB∗P ) =
1

2
(A∗P + PA) − γPBB∗P .

Choose a unitary matrix U such that UPBB∗PU∗ is a diagonal matrix with the entries of the

diagonal sorted in decreasing order. We then perform the change of coordinates x̃ = Ux and

continue our analysis with respect to the transformed matrices Ã = UAU∗, B̃ = UB, P̃ =

UPU∗. It is easy to see that (3.5) implies MP̃ (β) ∩ ker B̃∗P̃ = {0} and since κ(P ) = κ(P̃ )

we may assume without loss of generality that PBB∗P is of the form ( D 0
0 0 ) with D > 0

diagonal. Partitioning HP (A − βI) similarly to PBB∗P in the form

HP (A − βI) =

[
H11 H12

H∗
12 H22

]
,

we see that the closed loop ẋ = (A− γBB∗P )x is strictly quadratically (M,β)-stable if and

only if

HP (A − βI − γBB∗P ) =

[
H11 − γD H12

H∗
12 H22

]
< 0 . (3.6)
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Using the Schur complement [4] the inequality (3.6) is equivalent to

H22 < 0, (H11 − γD) − H12H
−1
22 H∗

12 < 0 . (3.7)

The kernel condition (3.5) is equivalent to the submatrix H22 < 0 as H22 represents the

restriction of HP (A − βI) to the kernel of B∗P. The second inequality in (3.7) can always

be fulfilled choosing γ large enough since D > 0.

The proof shows that for a given P > 0 there exists a state feedback matrix F such that

A− βI −BF generates a strict P -contraction semigroup if and only if the submatrix H22 of

(3.7) is negative definite.

We note two consequences of Theorem 3.1 which simplify the situation for the case that

minimizing the M is more important than guaranteeing a certain rate of decay β < 0. The

following corollary presents conditions for quadratic (M,β)-stabilization for arbitrary β < 0.

Corollary 3.1. Consider the pair (A,B), and let M ≥ 1. The following statements are

equivalent.

(i) For some β < 0 the system ẋ = Ax + Bu is strictly quadratically (M,β)-stabilizable.

(ii) There exist γ > 0 and a matrix P > 0 with κ(P ) ≤ M2 such that

HP (A − γBB∗P ) < 0. (3.8)

(iii) There exists a matrix P > 0 with κ(P ) ≤ M2 such that

{v ∈ C
n; v∗(A∗P + PA)v ≥ 0} ∩ ker B∗P = {0} . (3.9)

(iv) There exists a matrix P > 0 with κ(P ) ≤ M2 such that

x ∈ ker B∗\{0} =⇒ x∗(AP−1 + P−1A∗)x < 0. (3.10)

Proof. This is immediate from Theorem 3.1.

In the previous result condition (3.10) is remarkable as it allows for a nice geometric

interpretation of the problem. Namely, given the pair (A,B) the question is if we can

find a matrix P > 0 with κ(P ) ≤ M2 such that for all x ∈ ker B∗, x 	= 0 the condition

�〈A∗x, P−1x〉 < 0 holds. In other words, the system ẋ = A∗x is dissipative in the weighted

inner product 〈·, ·〉P−1 on the subspace ker B∗. A case of particular interest is that of feedback

matrices F such that the closed loop system matrix A − BF generates a strict contraction

semigroup for the spectral norm, that is, if we specialize to the case M = 1 with β < 0

arbitrary. Then we obtain

Corollary 3.2. Consider the pair (A,B). The following statements are equivalent.
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(i) there exists a feedback matrix F such that (A − BF ) generates a strong contraction

semigroup with respect to the spectral norm,

(ii) there exists γ > 0 such that (A−γBB∗) generates a strong contraction semigroup with

respect to the spectral norm,

(iii) it holds that

x ∈ ker B∗\{0} =⇒ x∗(A + A∗)x < 0. (3.11)

Proof. In fact, A−BF generates a strong contraction semigroup with respect to the spectral

norm, if there exists β < 0 such that for all t ≥ 0

‖e(A−BF )t‖ ≤ eβt.

Therefore Corollary 3.1 is applicable with M = 1. In this case, the positive definite matrices

P > 0 with κ(P ) ≤ M2 = 1 occurring in the statements of Corollary 3.1 are necessarily

multiples of the identity.

4 Quadratic (M, β)-stabilization and LMIs

In this section we briefly discuss how the geometric characterizations for strict quadratic

(M,β)-stabilizability obtained in Section 3 can be reformulated in terms of linear matrix

inequalities (LMIs). We refer to [1] for an overview of applications of LMIs in control.

By Theorem 3.1 the system ẋ = Ax + Bu is strictly quadratically (M,β)-stabilizable if

and only if the following set is nonempty

N := {P ∈ C
n×n | P > 0, κ(P ) ≤ M2 and MP (β) ∩ ker B∗P = {0}} .

It is easy to see that N is a cone, so that if N is nonempty, then there is a P ∈ N with

σ(P ) ⊂ [M−2, 1] which implies ‖P‖ ≤ 1.

Furthermore, the set N is nonempty if and only if there are P > 0, κ(P ) ≤ M2 and F ∈
C

m×n such that (3.2) is satisfied. This inequality has the disadvantage that the unknowns

P and F do not appear linearly, but by setting Q = P−1 and F = XP we obtain an LMI

from (3.2) by pre- and post-multiplying Q. So all our conditions can be summarized by the

LMI

I ≤ Q ≤ M2I,

AQ + QA∗ − (BX + X∗B∗) < 2βQ.
(4.1)

where the first inequality ensures that the eigenvalues of Q are contained in the interval

[1,M2] which implies that κ(Q) = κ(P ) ≤ M2. By this simple reformulation we obtain

another condition for quadratic (M,β)-stabilizability as an immediate corollary to Theo-

rem 3.1.
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Corollary 4.1. Consider the pair (A,B) and constants M ≥ 1, β < 0. The following state-

ments are equivalent:

(i) The system ẋ = Ax + Bu is strictly quadratically (M,β)-stabilizable.

(ii) The LMI (4.1) is feasible, that is, there exists a solution (Q,X) ∈ C
n×n× C

m×n of

(4.1).

(iii) There exists a solution (Q, �) ∈ C
n×n× R of the LMI

I ≤ Q ≤ M2I,

AQ + QA∗ − 2�BB∗ < 2βQ.
(4.2)

Proof. The equivalence of (i) and (ii) was shown in the derivation of (4.1). For the equiva-

lence (ii)⇔(iii) note first that (Q, �) solves (4.2) if and only if (Q, �B∗) solves (4.1), so that

(iii)⇒(ii). Furthermore, by Theorem 3.1 strict quadratic (M,β)-stabilizability is equivalent

to the existence of a stabilizing feedback of the form F = �B∗P . In this case (Q, �B∗) solves

(4.1), which implies (iii).

The advantage of (iii) compared to (ii) in Corollary 4.1 is that the dimension of the

parameter space is significantly reduced, depending on the dimension of B.

Remark 4.1. Using Corollary 4.1 we can add further design objectives depending on the

specific problem since quadratic optimization problems may be solved on solution sets of

LMIs. For example, if a feedback F of small norm is desirable, then it is advantageous to

minimize γ ≥ 0 under the constraints (4.1) and

(
γI X

X∗ γI

)
≥ 0. (4.3)

Using the Schur complement it may be seen that (4.3) is equivalent to γ2I − XX∗ ≥ 0,

i.e. γ ≥ ‖X‖. As the solution set of (4.1) is not necessarily closed, there may not be an

optimal solution, but at least the optimization problem yields matrices X with norm close

to optimal and for the corresponding stabilizing feedback F we have ‖F‖ ≤ ‖X‖‖P‖ ≤ ‖X‖.
Similarly, (4.2) may be used to minimize ρ.
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