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Abstract

We present in this paper a class of feedback strategies that solve the steering prob-
lem for finite dimensional quantum systems. The control is designed to let a suitable
distance between the state and the target decrease. Sufficient conditions are given to
ensure convergence of this process.

1 Introduction

Recent theoretical and technical advances in the field of laser technology and microelec-

tronic devices have further motivated the study of coherent control of quantum-mechanical

systems [4, 9, 6]. In particular, the field of quantum computation [11] is very attracting from

a control theoretic point of view. Actually, the information (encoded in the so-called qubits)

is carried by the finite-dimensional complex state of the system and any logic operation is

performed by steering the state of the system to a specific target.

The difficulty of this task lies mainly in three facts. First of all, the mathematical theory

which is involved is not simple. Indeed, the model of the system, based on the well-known

Schrödinger equation, is nonlinear in the control. Moreover, the physical state of the system

does not live in an ordinary euclidean but in a projective complex space. States are equiv-

alence classes: we will deal with vectors which represents the state but not in a canonical

way, since they are not uniquely determined. More details about these facts are given in the

following section.

Second, classical control theory cannot be employed in the usual way because of the ‘col-

lapse of the wave function’ that occurs in the measurement process. Every measurable quan-

tity of a quantum system, called observable, is associated with an operator whose eigenvalues

are the possible outcomes of the measure. The state, that evolves continuously following the

Schrödinger equation, contains only information on the a priori probability on the possible

outcomes of every measurement. According to the orthodox interpretation of quantum me-

chanics, when the value of some measure is known, the state of the system becomes equal to

the eigenvector corresponding to the measured eigenvalue (it ‘collapses’ on the eigenspace).

Therefore the role of feedback, which is fundamental for control purposes, has to be con-
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sidered with much more attention, since the observation process modifies the state of the

system.

In the end, every quantum object tends to interact with its surroundings. This phenomenon

is called ‘entanglement’ and is the basis of many quantum computing algorithms, when it

affects the mutual interaction between different systems (each giving rise to one qubit). On

the other hand, when the system interacts with the ambient, it loses the information it con-

tains and becomes, in some sense, a classical object. This process, called decoherence, occurs

after an amount of time that depends on the system. Many methods have been proposed to

maintain coherence of a qubit [14] but this cannot be done during the transformation that

performs a logic operation. Therefore the control of the system has to be done within a

critical time. Note that the increase of energy, which would permit a quicker steering of the

state, is dangerous too, since it could affect not only the state of the designed system, but

also of other systems in its neighborhood, i.e. it could change the value of other qubits.

In this paper we present a strategy for state steering that is based on a feedback, in general

not linear, from the state. The feedback is constructed in order to cause the distance between

the state and the target to decrease. Even if the implementation of continuous feedback is

not an impossible task (see, e.g. [7, 8, 12]), we will not be concerned with practical issues.

Instead, the presented control strategy permits to compute a control that can be employed

successively in open loop. Note that a discrete feedback scheme could be developed as is

explained in [13]: intermediate suitable measures could be done to let the state collapse to

the value predicted by the off-line simulation.

As regards the optimality of the proposed methodology, it has to be further investigated,

since it highly depends on the exact form of the feedback, that is here only supposed to

belong to a vast class of functions.

Before we enter the details about the control strategy and show sufficient conditions for

its convergence, we need to recall some necessary notations and concepts from quantum

mechanics and to give a more precise meaning to the notion of distance between states. This

is done in the following two sections.

2 Finite dimensional quantum systems

Even if usually only one vector is taken to represent it, the state of a quantum system is

associated with a ray of vectors, i.e. with a one dimensional vector subspace, of a complex

Hilbert space H. Therefore we will talk of (physical) states and of state vector.

We are going to use the Dirac’s notation. A state vector is called ‘ket’ and written |ψ〉 ∈ H
while a vector in the dual space is called ‘bra’ and written 〈ψ| ∈ H∗ (note that H ' H∗).

With this notation, the Schrödinger equation, governing the evolution of the state vector |ψ〉
is

i~ ˙|ψ〉 = H|ψ〉, (2.1)
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where ~ is the Planck constant and H : H → H is an Hamiltonian operator, i.e. an operator

such that H = H∗. Therefore its eigenvalues are real valued. In the following, the system is

scaled in such a way that ~ = 1.

It is easy to see that if |ψ(t)〉 satisfies equation (2.1), also |ψ̃(t)〉 = eiθ|ψ(t)〉 does. The

Schrödinger equation is therefore invariant with respect to a change of phase. Nevertheless,

when θ is a complex valued function of time, |ψ̃(t)〉, though representing the same state as

|ψ(t)〉, is not anymore a solution of (2.1). To solve this problem two ways are possible. The

most correct one is based on complex projective geometry [2, 3]: in this context it is also

possible to give a projective formulation of equation (2.1). However, the formalism is rather

difficult. We may therefore follow an easier approach: we choose a state vector |ψ(t)〉 with

unitary norm, i.e. assume that 〈ψ(t)|ψ(t)〉 ≡ 1, and require that all the results we derive are

independent of the phase.

We are going to treat only the finite dimensional case, i.e. H is a finite dimensional complex

Hilbert space, thus isomorphic to Cn for some n. We will identify operators with (hermitian)

matrices and vectors in H with vectors in Cn. Therefore 〈ψ| is the conjugate transpose of

|ψ〉 so that 〈ψ1|ψ2〉 is the standard inner product in Cn, that gives rise to the euclidean norm

|| |ψ〉|| =
√
〈ψ|ψ〉.

As we said, each operator H represents a quantity that can be measured, and every

measured value λ has to be one of the eigenvalues of H. The role of the state is to give

the probability of the outcomes. Without entering too much into the details, if the state

collapses from |ψ〉 into |ψ′〉 after a measure , the a priori probability of this event is given

by |〈ψ′|ψ〉|2.
This process causes the so-called collapse: after the measurement, the state |ψ〉 assumes

the value of its projection onto the eigenspace associated with λ.

3 Distance between states

Our aim is to let the system reach a final state |ψf〉. To do this we construct a suitable

state feedback, that can ensure the asymptotic stability of the closed loop control system by

letting the distance between the actual and the final state decrease.

The distance between two states should be computed using formulas from complex projec-

tive geometry [3]. However, it can be proved [1] that the Fubini-Study distance dFS, which

is the distance measured along the geodesic connecting the states represented by |ψ1〉 and

|ψ2〉, can be computed by the equation

cos dFS(|ψ1〉, |ψ2〉) = 2|〈ψ1|ψ2〉|2 − 1.

Note that the value |〈ψ1|ψ2〉|2 is the probability to collapse from state |ψ1〉 into |ψ2〉 after a

measurement and therefore called transition probability.

There are other notions of distance that, as is shown in [15], depend in various ways on

the transition probability. The most intuitive one, since it is the euclidean distance of two
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equivalence classes, is the Bures distance

dBures(|ψ1〉, |ψ2〉) = min
θ
|| |ψ1〉 − eiθ|ψ2〉 ||.

It is not difficult to check that d2
Bures(|ψ1〉, |ψ2〉) = 2(1− |〈ψ1|ψ2〉|).

However, our choice is based on the so-called Hilbert-Schmidt (or, equivalently, on the

trace) distance, since it permits easier calculations. In particular we are going to study the

function

V (|ψ〉) =
1

2
d2

HS(|ψ〉, |ψf〉) =
1

4
d2

trace(|ψ〉, |ψf〉) = 1− |〈ψf |ψ〉|2, (3.2)

which will be used as a Lyapunov function to prove stability.

4 Model and feedback control strategy

The model of the system we are concerned with is a particular form of the rescaled Schrödinger

equation:

i|ψ̇(t)〉 = H(t)|ψ(t)〉, H(t) = H0 +Hc(t), Hc(t) =
r∑
l=1

Hlul(t), (4.3)

where H0 is the unperturbed Hamiltonian and Hc(t) is the interaction Hamiltonian. The

latter represents the effect of the control on the system. Each scalar control ul(t) acts on

the system in the way specified by the hermitian matrix Hl.

The problem we wish to solve is then the following: given an initial state of the system

|ψ0〉, find controls in feedback form ul(|ψ〉) that move the state to a desired final state |ψf〉.
Before we go on, we state two important assumptions about the final state |ψf〉.

H1 The final state is an eigenstate of the unperturbed system, i.e.

H0|ψf〉 = λ0|ψf〉. (4.4)

H2 The final state is not an eigenvalue of all the operators Hl, i.e.

∃l ∈ {1, . . . , r} such that Hl|ψf〉 6= λ|ψf〉 ∀λ ∈ R.

Remark 4.1. These are not technical hypotheses: condition (4.4) of H1 ensures that once

the final state is reached, no control is necessary to keep the system in that state. Indeed,

if |ψf〉 is an eigenvector of H0, the solution of equation (4.3) with no controls and starting

from |ψf〉 is

i|ψ̇(t)〉 = H(t)|ψ(t)〉 = H0|ψ(t)〉 ⇒ |ψ(t)〉 = e−iH0t|ψf〉 = e−iλ0t|ψf〉,

and therefore, even if the state vector |ψ(t)〉 is not stationary, the physical state is and

coincides with the state |ψf〉.
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As for hypothesis H2, note that any notion of distance between two states always depends

on the modulus of their inner product. If the final state were an eigenvector of Hl for any

l = 0, . . . , r with eigenvalue λl, then we would have

i〈ψf |ψ̇(t)〉 = 〈ψf |H(t)|ψ(t)〉 =

(
λ0 +

r∑
l=1

λlul(t)

)
〈ψf |ψ(t)〉 = u(t)〈ψf |ψ(t)〉, (4.5)

where we introduced the real-valued function u(t) just to simplify the notation. Consider now

that the derivative of |〈ψf |ψ(t)〉|2 is

d

dt
|〈ψf |ψ(t)〉|2 = 〈ψ̇(t)|ψf〉〈ψf |ψ(t)〉+ 〈ψ(t)|ψf〉〈ψf |ψ̇(t)〉 = 2 Re[〈ψ(t)|ψf〉〈ψf |ψ̇(t)〉], (4.6)

and so, by replacing the result found in (4.5), we obtain that we would have

d

dt
|〈ψf |ψ(t)〉|2 = 2 Re[−iu(t)|〈ψf |ψ(t)〉|2] = 0.

In other words, if hypothesis H2 were not satisfied, we could never bring |ψ(t)〉 near to |ψf〉.

The control strategy that we propose is explained by the following statement.

Proposition 4.1. Suppose that the initial state |ψ0〉 is not orthogonal to the final state |ψf〉,
i.e. that

〈ψf |ψ0〉 6= 0. (4.7)

Then with the state feedback control

ul(|ψ〉) = gl(Im[〈ψ|ψf〉〈ψf |Hl|ψ〉]), ∀l = 1, . . . , r, (4.8)

where gl(x) are functions such that gl(0) = 0 and x 7→ xgl(x) is positive definite for x ∈ R,

the closed loop system is stable.

Proof. Consider the Lyapunov function V defined in (3.2). It is clear that it is positive

definite, being zero only when |ψ〉 and |ψf〉 are the same physical state. Let us compute its

derivative V̇ (t) along the trajectory imposed by (4.3). We can employ equation (4.6) and,

since Re ix = − Im x, obtain that

V̇ (t) = − d

dt
|〈ψf |ψ(t)〉|2 = 2 Re[〈ψ(t)|ψf〉〈ψf |iH(t)|ψ(t)〉]

= −2 Im[〈ψ(t)|ψf〉〈ψf |H0|ψ(t)〉]− 2
r∑
l=1

ul(|ψ(t)〉) Im[〈ψ(t)|ψf〉〈ψf |Hl|ψ(t)〉]

where, by hypothesis (4.4), 〈ψ(t)|ψf〉〈ψf |H0|ψ(t)〉 = λ0|〈ψf |ψ(t)〉|2 ∈ R and therefore

= −2
r∑
l=1

gl(Im[〈ψ(t)|ψf〉〈ψf |Hl|ψ(t)〉]) Im[〈ψ(t)|ψf〉〈ψf |Hl|ψ(t)〉] ≤ 0, (4.9)

with the proposed feedback law (4.8). Therefore, being V̇ (t) negative semidefinite, the

system is stable.
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As we required before, the control strategy is independent of the phase of both |ψ〉 and

|ψf〉. Actually, if for instance we alter the phase of |ψ〉 by ∆, then

〈ei∆ψ(t)|ψf〉〈ψf |Hl|ei∆ψ(t)〉 = e−i∆〈ψ(t)|ψf〉ei∆〈ψf |Hl|ψ(t)〉 = 〈ψ(t)|ψf〉〈ψf |Hl|ψ(t)〉).

Moreover, note that when |ψ〉 and |ψf〉 represent the same physical state (the target has

been reached), the feedback controls are ul(|ψ〉) = 0 since in (4.8) the argument of Im is a

real number.

Remark 4.2. Note that if 〈ψf |ψ(t0)〉 6= 0 and the feedback laws (4.8) are applied, then

〈ψf |ψ(t)〉 6= 0 for every t > t0. (4.10)

Indeed, this is a consequence of the fact that, with V the Lyapunov function (3.2), by the

proof of Proposition 4.1, d
dt
|〈ψf |ψ(t)〉|2 = −V̇ (t) ≥ 0.

The fact that condition (4.10) holds, permits to construct other feedback laws. For exam-

ple, definitions

ul(|ψ〉) = gl(Im[e−i∠〈ψf |ψ〉〈ψf |Hl|ψ〉]), (4.11)

work as well, since ∠〈ψf |ψ〉 (i.e. the phase of 〈ψf |ψ〉)is always defined. If an arbitrary value

is assigned to ∠0 (e.g. ∠0 = 0), then it could be possible to start from a state orthogonal

to the final one. Indeed, depending on the values of 〈ψf |Hl|ψ0〉, one or more controls could

be activated. (To be sure that at least one control is different from zero more conditions are

needed, as in Theorem 4.1).

It is interesting to point out that the state feedbacks (4.11) can be obtained by direct

computation, as in the proof of Proposition 4.1, by choosing a different Lyapunov function

V (|ψ〉) based on the Fubini-Study or on the Bures distances, defined in Section 3.

To overcome the problems given by an initial state such that 〈ψf |ψ〉 = 0, one possibility

would be to make a measure of a suitable quantity. This would change (and at the same

time furnish) the state of the system. Then the feedback control could be used.

However, the proposed control laws may not provide a closed loop system which is con-

vergent to |ψf〉 but one that may remain on some stationary orbit instead of reaching the

desired final state.

A sufficient condition for this controllability question is given by the following theorem.

Theorem 4.1. Consider the conditions:{
〈ψf |[H0, Hl]|ψ〉 = 0

〈ψf |λlI −Hl|ψ〉 = 0 for some λl ∈ R,
(4.12)

where [A,B] = AB−BA are the commutator brackets. Suppose that there is no state vector

|ψ〉 that satisfies the above conditions ∀l = 1, . . . , r and

〈ψf |ψ〉 6= 0, |〈ψf |ψ〉| 6= 1.

Then, under the hypotheses of Proposition 4.1, the feedback control strategy (4.8) is also

convergent.
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Proof. To prove convergence of |ψ(t)〉 to |ψf〉, i.e., asymptotic stability, we use the Krasovskii

criterion with the same Lyapunov function V introduced in Proposition 4.1. In other words

we aim to show that the set V of states such that V̇ = 0 does not contain trajectories of the

system, with the exception of the trajectories corresponding to the final state |ψf〉.
First of all, note that by equation (4.9) and by the definition of functions gl given in the

statement of Proposition 4.1, for all the state vectors |ψ〉 ∈ V the feedback is ul(|ψ〉) = 0.

So, if we suppose that there exists a trajectory of the system (4.3) entirely contained in V ,

then it must satisfy the following Schrödinger equation

|ψ̇(t)〉 = −iH0|ψ(t)〉. (4.13)

Now we characterize V . Again by equation (4.9), we know that V̇ = 0 if and only if the

state |ψ(t)〉 satisfies the following system of equations in |ψ〉

Im[〈ψ|ψf〉〈ψf |Hl|ψ〉] = 0, ∀l = 1, . . . , r.

Notice that Im a∗b = 0 if and only if there exist two real numbers η and ν, not both zero,

such that ηa = νb. Moreover, if a 6= 0, necessarily ν 6= 0 and therefore we get the equivalent

condition λa = b, for some λ ∈ R.

This is exactly the case, since 〈ψf |ψ〉 6= 0 for any value |ψ〉 of the state, by Remark 4.2.

Therefore |ψ〉 belongs to V if and only if it satisfies the system of r equations λl〈ψf |ψ〉 =

〈ψf |Hl|ψ〉 = 0, i.e.,

|ψ〉 ∈ V ⇔ ∀l = 1, . . . , r ∃λl such that 〈ψf |λlI −Hl|ψ〉 = 0.

We only need to analyze one single equation F (λ, |ψ〉) = 0, where

F : R× Cn → C, (λ, |ψ〉) 7→ 〈ψf |λI −Hl|ψ〉,

and the index l is not determined for now, but will be fixed later. Before giving the details,

we briefly explain this fact.

By considering also the equation λ̇ = 0, we extend equation (4.13) to define a dynamical

system on the manyfold M = R×Cn. This dynamical system is associated with the vector

field

X(λ, |ψ〉) = (0,−iH0|ψ〉) (4.14)

(see [10] for the notions of differential geometry that are used). The projection π(λ, |ψ〉) =

|ψ〉 permits to go back to the original system. In particular, V = π(F−1(0)).

Suppose that we are able to show that, for some l, F−1(0) is a submanyfold of M. Hence

it admits a tangent space at the point (λ, |ψ〉) ∈ F−1(0). So, if it does not contain the

tangent vector X(λ, |ψ〉), it follows that the integral curve of X through p is not contained

in F−1(0), i.e., that the trajectory of system (4.13) is not contained in V .
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For F−1(0) to be a submanifold of M it suffices to prove that the differential of F at

(λ, |ψ〉) is surjective for every (λ, |ψ〉) ∈ F−1(0). Indeed,

dF(λ,|ψ〉)(µ, |φ〉) =
d

ds
F (λ+ sµ, |ψ〉+ s|φ〉)

∣∣∣∣
s=0

=
d

ds
〈ψf |(λ+ sµ)I −Hl|ψ + sφ〉

∣∣∣∣
s=0

= 〈ψf |λI −Hl|φ〉+ µ〈ψf |ψ〉. (4.15)

Let us fix the index l, which exists by hypothesis H2, such that λI −H|ψf〉 6= 0 for every

λ ∈ R. This choice clearly permits to conclude that (4.15) is surjective.

The tangent space at (λ, |ψ〉) ∈ F−1(0) is equal to ker dF(λ,|ψ〉). Hence, we have to check if

dF(λ,|ψ〉)(X(λ, |ψ〉)) = 0. This, by (4.15) and (4.14), is equivalent to

dF(λ,|ψ〉)(X(λ, |ψ〉)) = dF(λ,|ψ〉)(0,−iH0|ψ〉) = −i〈ψf |(λI −Hl)H0|ψ〉 = 0. (4.16)

Note, finally, that since F (λ, |ψ〉) = 0 we have

〈ψf |λH0|ψ〉 = λ0λ〈ψf |ψ〉 = λ0〈ψf |Hl|ψ〉 = 〈ψf |H0Hl|ψ〉,

where we also used relation (4.4) of hypothesis H1. Condition (4.16) becomes then

〈ψf |(λI −Hl)H0|ψ〉 = 〈ψf |H0Hl −HlH0|ψ〉 = 〈ψf |[H0, Hl]|ψ〉 = 0.

The theorem is proved since, by hypothesis, this equation does not admit non-trivial solu-

tions.

5 The two-level spin system — an example

In this section we show that the standard model of a two-level spin system allows to perform

a simple logic operation with one single feedback control.

A two-level spin system, e.g. the spin of an electron, is the simplest finite dimensional

quantum system. The spin is a quantity that can be measured along every direction and the

result is ±s for some constant s. In this paper, we let s = 1 for the sake of simplicity. Once

we consider one direction, which traditionally is the z axis, the two eigenvectors associated

with the eigenvalues −1 and 1 are simply denoted by |0〉 and |1〉. This shows that the spin

system furnishes a ‘quantum hardware’ that can handle one bit of information, i.e., it is a

qubit.

To be more detailed, consider the following set of matrices

σx =

[
0 1

1 0

]
σy =

[
0 −i
i 0

]
σz =

[
1 0

0 −1

]
,

which satisfy the relations σ2
j = I, j = x, y, z and σxσyσz = iI. Their linear combinations,

with real coefficients, generate the whole set of matrices with eigenvalues ±1, i.e., of spin
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operators. In particular, it can be proved that, given any versor a =
[
ax ay az

]
, the

operator σa =
∑

j ajσj is the spin operator along the direction a. Note also that the set

{I, σx, σy, σz} generates every hermitian operator.

With this choice, the states of the qubit are

|0〉 =

[
0

1

]
and |1〉 =

[
1

0

]
.

The model usually employed defines H0 = σz, thus ensuring that the states of the qubit

|0〉 and |1〉, (which coincide with the eigenvectors of H0) are stable with no control. Then

one control acts by means of the matrix H1 = σy. To perform a NOT, the simplest logic op-

eration, we have to steer the state from |ψ0〉 = |1〉 to |ψf〉 = |0〉 (the opposite transformation

is symmetrical).

By Theorem 4.1, we have convergence. Indeed, note that

[H0, H1] = σzσy − σyσz = −2iσx.

Since σx is exactly the operator that performs the NOT operation, σx|ψf〉 = σx|0〉 = |1〉.
Therefore the first of conditions (4.12) can be written as

〈ψf |[H0, H1]|ψ〉 = 0 ⇔ 〈0|σx|ψ〉 = 0 ⇔ 〈1|ψ〉 = 0 ⇔ |ψ〉 = |0〉 = |ψf〉,

and admits only the trivial solution.

It is not difficult to show that the simple open loop bang-bang control presented, for

instance, in [5] can be achieved by the feedback control (4.8) where

g1(x) = sign(x) =


1 x > 0

0 x = 0.

−1 x < 0
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