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Abstract

Coprimeness conditions play important roles in various aspects of system/control
theory: realization, controllability, stabilization, just to name a few. While the issue
is now well understood for finite-dimensional systems, it is far from being settled for
infinite-dimensional systems. This is due to a wide variety of situations in which
this issue occurs, and several variants of coprimeness notions, which are equivalent
in the finite-dimensional context, turn out to be non-equivalent. This paper studies
the notions of spectral, approximate and exact coprimeness for pseudorational transfer
functions. A condition is given under which these notions coincide.

1 Introduction

Coprimeness conditions play important roles in various aspects of system/control theory:

realization, controllability, stabilization, just to name a few.

The class of pseudorational transfer functions (impulse responses) [7, 8, 9] is known to be

quite effective in dealing with delay systems, and some infinite-dimensional servomechanism

control, known as repetitive control; for details, see [10]. The crux of this framework is

that they allow a natural class of fractional representations as the ratio of distributions with

compact support [7]. In the Laplace domain, they are also the ratio of entire functions of

exponential type—the simplest extension of polynomials.

It is not suprising that the coprimeness of such a fractional representation is intimately

related to the notion of reachability/controllability. Reflecting the infinite-dimensional na-

ture, however, there arise several distinct notions of reachability, and accordingly those of

coprimeness. The interrelationships among them are thus of interest from both system theo-

retic and control points of view. We mainly consider the three notions: spectral coprimeness,

approximate coprimeness and exact coprimeness (Bezout condition). In particular, we give

a partial answer to the problem of finding a condition under which the exact coprimeness

holds, posed as an open problem in [11].
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2 Pseudorational Impulse Responses and Their Realizations

We start by defining the notions of time-invariant linear systems, pseudorational impulse

resposes, and their realizations. We confine ourselves, without losing much generality, to

the single-input single-output case. Generalization to the multivariable case can be suitably

obtained by introducing left factorizations.

Let E ′(R−) denote the space of distributions having compact support contained in the neg-

ative half line (−∞, 0]. Distributions such as Dirac’s delta δa placed at a ≤ 0, its derivative

δ′a are examples of elements in E ′(R−). An impulse response function W (suppW ⊂ [0,∞))

is said to be pseudorational if it satisfies the following two conditions:

1. W = q−1 ∗ p for some q, p ∈ E ′(R−), where the inverse is taken with respect to

convolution;

2. ord q−1 = − ord q, where ord q denotes the order of a distribution q [4].

Let Ω := lim
→
L2[−n, 0] denote the inductive limit of the spaces {L2[−n, 0]}n>0; it is the

union of all these spaces endowed with the finest topology that makes all injections jn :

L2[−n, 0] → Ω continuous; see, e.g., [6]. Dually, Γ := L2
loc[0,∞) is the space of all locally

Lebesgue square integrable functions with obvious family of seminorms:

‖φ‖n :=

{∫ n

0

|φ(t)|2dt
}1/2

, n = 1, 2, . . . .

This is the projective limit of spaces {L2[0, n]}n>0. Ω is the space of past inputs, and Γ is

the space of future outputs, with the understanding that the present time is 0. These spaces

are equipped with the following natural left shift semigroups:

(σtω)(s) :=

{
ω(s+ t), s ≤ −t,
0, −t < s ≤ 0, ω ∈ Ω, t ≥ 0, s ≤ 0.

(2.1)

(σtγ)(s) := γ(s+ t), γ ∈ Γ, t ≥ 0, s ≥ 0. (2.2)

An input/output or a Hankel operator associated with an impulse response function W is

defined to be the continuous linear mapping HW : Ω → Γ defined by

HW (ω)(t) :=

∫ 0

−∞
W (t− τ)ω(τ)dτ.

Let us now introduce the notion of a (linear, time-invariant) system.

Definition 2.1. A (linear, time-invariant) system Σ is a quadruple (X,Φ, g, h) such that

• X is a Banach space, and Φ(t) is a strongly continuous semigroup defined on it;
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• g : Ω → X is a continuous linear mapping such that gσt = Φ(t)g for all t ≥ 0;

• h : X → Γ is also a continuous linear map satisfying hΦ(t) = σth for all t ≥ 0.
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g
�

�
�

���
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�
�
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���

The mappings g and h are called reachability map and observability map, respectively. Σ

is said to be approximately reachable if g has dense image, and observable if h is one to

one. It is topologically observable if h gives a topological homomorphism (i.e., continuously

invertible when its codomain is restricted to imh). Σ is weakly canonical if it is approximately

reachable and observable; it is canonical if it is further topologically observable. Σ is said to

be a realization of an impulse response W if HW = hg.

The definition above looks a little abstract and appears to have little information needed to

analyze linear systems. However, when there are certain “smoothness hypotheses” satisfied,

then it is immediate to write down a differential equation description in the following form

[7]:

dx

dt
= Ax(t) +Bu(t)

y(t) = Cx(t)

where A is the infinitesimal generator of Φ(t), and

g(ω)(t) =

∫ 0

−∞
exp(−At)Bω(t)dt

h(x)(t) = C exp(At)x.

These properties justify the terms reachability and observability maps.

For a pseudorational impulse response W = q−1 ∗ p, one can always associate with it a

topologically observable realization Σq,p as follows [7]:

Define Xq as follows:

Xq := {x ∈ Γ | π+(q ∗ x) = 0}
where π+ is the truncation to (0,∞). It is easy to checkXq is a σt-invariant closed subspace of

Γ. To define Σq,p, take this Xq as the state space with σt (restricted to Xq) as its semigroup.

Then define g : Ω → Xq and h : Xq → Γ as follows.

g(ω) := π+(q−1 ∗ p ∗ ω)

h(x) = x (injection).

Since h is clearly a topological homomorphism, Σq,p is topologically observable.
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3 Coprimenss Conditions

We now introduce various coprimeness conditions.

Definition 3.1. Let W = q−1 ∗ p be pseudorational. The pair (q, p) is spectrally coprime if

their Laplace transforms q̂, p̂ have no common zeros. It is called approximately coprime if

there exists a sequence xn, yn ∈ E ′(R−) such that

q ∗ xn + p ∗ yn → 0

in E ′(R−). It is exactly coprime or said to satisfy the Bezout condition if there exist x, y ∈
E ′(R−) such that

q ∗ x+ p ∗ y = δ.

Clearly exact coprimeness is stronger than approximate coprimeness, and the latter is yet

stronger than spectral coprimeness. That each implication cannot be reversed can be proven

rather easily.

The significance of these notions may be obvious from the following:

Facts 3.1. ([7, 8])

1. Σq,p is approximately reachable if and only if (q, p) is approximately coprime. In this

case Σq,p gives the canonical realization of W = q−1 ∗ p.

2. The spectrum of the infinitesimal generator Aq of system Σq,p is given by

σ(Aq) = {λ | q̂(λ) = 0}. (3.3)

Furthermore, every point in σ(Aq) is an eigenvalue with finite multiplicity. The resol-

vent set ρ(Aq) is its complement.

3. For each λ ∈ σ(Aq), the generalized eigenfunctions are of the form {eλt, teλt, . . . , tn−1eλt},
where n is the geometric multiplicity.

4. The state spaceXq is eigenfunction complete if and only if r(q) = sup{t : t ∈ supp q} =

0.

5. The pair (q, p) is exactly coprime if every element of Xq can be made reachable if we

extend the inputs to E ′(R−).

The last property easily yields the following:

Proposition 3.1. Approximate coprimeness does not imply exact coprimeness.
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Proof Take q := δ−1 and take p to be a C∞ function with compact support contained in

[−1, 0], which is also not identically zero in a neighborhood of the origin. Since q̂ = es does

not admit any zero, the pair is spectrally coprime. It is futher approximately coprime due

to the main theorem of [8]. On the other hand, the pair cannot be exactly reachable because

q−1 ∗ p is a C∞ function and hence reachable elements in Σq,p are also C∞ functions, but,

on the other hand Xq = L2[0, 1]. �

This example, however, gives the impression that the converse may hold for a more re-

stricted class. One such case would be delay-differential operators.

Although we cannot answer this question in a full generality, we give the following result

for a special case.

Theorem 3.1. Let W = q−1 ∗ p be pseudorational. Suppose further that p is a polynomial in

δ′. Then the pair (q, p) is exactly coprime if and only if it is spectrally coprime.

Note that there is no restriction on q. The proof makes use of a spectral mapping theorem.

Suitably introducing the operator action of p(Aq), it can be seen that the pair is exactly

coprime if and only if p(Aq) is boundedly invertible. By proving a spectral mapping theorem,

this is characterized by 0 	∈ p(σ(Aq)).

4 Spectral Mapping Theorem

To prove our main result Theorem 3.1, we need some spectral results. We start by defining

some canonical projections.

Let W = q−1 ∗ p be pseudorational, and Xq be as above. Let π+ and π− be defined by

π+ψ := ψ|(0,∞), (4.4)

π−ψ := ψ − π+ψ = (I − π+)ψ. (4.5)

These are well defined at least for continuous ψ.

We then define the canonical projection πq : Γ → Xq as follows:

Definition 4.1. Take any x ∈ Γ ∩ C∞ . Define

πqx := π+(q−1 ∗ π−(q ∗ x)). (4.6)

Since x ∈ C∞, it is easy to see that πqx belongs to Γ. We further have the following

lemma:

Lemma 4.1. Let x be a C∞ function. Then

π+(q ∗ π+x) = π+(q ∗ x) (4.7)

and

π+(q ∗ πqx) = 0. (4.8)

That is, πqx belongs to Xq.
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Proof Write

x = φ+ π+x, π+φ = 0.

Then

q ∗ π+x = q ∗ x− q ∗ φ.

Since π+(q ∗ φ) = 0, (4.7) readily follows.

It now follows that

π+(q ∗ πqx) = π+(q ∗ π+(q−1 ∗ π−(q ∗ x))) = π+(q ∗ (q−1 ∗ π−(q ∗ x))) = π+(π−(q ∗ x)) = 0.

�

It is not difficult to see the continuity of πq with respect to the (locally) L2 topology. Hence

this mapping can be extended to the whole space Γ, and gives a canonical projection from

Γ onto Xq. We also denote this extended mapping by πq.

Via this projection we now introduce the following action on Xq:

Definition 4.2. Let p ∈ E ′(R−). Define p(Aq) by

p(Aq)x := πq(p ∗ x), (4.9)

where x ∈ Xq is sufficiently smooth so that p ∗ x is a locally L2 function.

Let us first note the following:

Lemma 4.2. Let p be a polynomial in δ′:

p = anδ
(n) + · · ·+ a0δ,

i.e., its Laplace transform being

p̂(s) = ans
n + · · · + a0.

Then p(Aq) = an(Aq)n + · · · + a0I.

Proof Consider the case p = δ′. Take any x ∈ Xq such that Aqx = dx/dt ∈ Xq. By

definition, q ∗ x = φ ∈ E ′(R−). By (4.9),

p(Aq)x = πq(δ′ ∗ x) = π+(q−1 ∗ π−(q ∗ δ′ ∗ x))
= π+(q−1 ∗ π−(δ′ ∗ φ)) = π+(q−1 ∗ δ′ ∗ φ)

= dx/dt = Aqx.

The general case is entirely analogous. �

We now have the following spectral mapping theorem:
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Theorem 4.1. Let p be a polynomial in δ′. Then σ(p(Aq)) = p̂(σ(Aq)), and hence

σ(p(Aq)) = {p̂(λ) : q̂(λ) = 0}. (4.10)

Proof We check this directly for operators of form (Aq)n. For simplicity of notation, assume

n = 2. The general case is entirely similar.

It is easy to see that σ(Aq)2 ⊂ σ((Aq)2). Conversely, take any λ 	= σ(Aq)2. We show such

a λ belongs to the resolvent set of (Aq)2. Let λ = µ2. Then by definition, µ,−µ 	∈ σ(Aq), so

that q̂(µ), q̂(−µ) 	= 0. Consider the equation

((Aq)2 − λ)y =

(
d2

dt2
− λ

)
y = x.

This should be solvable for every x ∈ Xq, and the solution y should depend continuously

on x. Taking the Laplace transform of both sides, we obtain (s2 − µ2)ŷ = x̂, which readily

yields

ŷ(s) =
1

s2 − µ2
x̂+

y0

s− µ
+

y1

s+ µ

for some constants y0, y1. Then

q̂(s)ŷ(s) =
q̂(s)

s2 − µ2
{x̂(s) + (s+ µ)y0 + (s− µ)y1} .

Since y ∈ Xq if and only if q ∗ y ∈ E ′(R−) which in turn is equivalent to q̂(s)ŷ(s) being an

entire function of exponential type satisfying the Paley-Wiener estimate [7]. This is valid

if and only if (s2 − µ2)|(x̂(s) + (s + µ)y0 + (s − µ)y1), i.e., (s − µ)|(x̂(s) + (s + µ)y0) and

(s+ µ)|(x̂(s) + (s− µ)y1). This holds if and only if

x̂(µ) + 2µy0 = 0

x̂(µ) − 2µy1 = 0.

This is clearly possible so the resolvent equation ((Aq)2 − λ)y = x is solvable. Since y0 and

y1 depend on x̂(µ) continuously, this correspondence is continuous. The case for (Aq)n is

entirely similar, with n free parameters to determine ŷ. It is then easy to extend the result

to their linear combinations. �

5 Proof of Main Theorem

We start with the following proposition.

Proposition 5.1. Let W = q−1 ∗ p be pseudorational. The pair (q, p) is exactly coprime if

and only if p(Aq) is invertible in Xq.
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Proof Suppose there exist a, b ∈ E ′(R−) such that

q ∗ a + p ∗ b = δ.

Then by substituing Aq into these, we obtain

q(Aq)a(Aq) + p(Aq)b(Aq) = I.

Now note that q(Aq)x = πq(q ∗ x) = 0, because supp(q ∗ x) ⊂ (−∞, 0]. This implies

p(Aq)b(Aq) = I, i.e., p(Aq) is invertible.

Conversely, suppose p(Aq) is an invertible operator. Consider the commutative diagram:

Xq ∩ C∞[0,∞) Xq ∩ C∞[0,∞)�
p(Aq)−1

Xq Xq�p(Aq)−1

�
j

�
j

where j is the inclusion. Since p(Aq)−1 is shift-invariant, it leaves elements in C∞[0,∞)

invariant. Thus we obtain the above commutative diagram. We also see that it is continuous

with respect to the C∞ topology of Xq ∩ C∞[0,∞). To this end, suppose xn → x and

p(Aq)−1xn → y inXq∩C∞[0,∞). But this also implies that they converge with respect to the

topology of Xq (i.e., L2 topology). Then by the continuity of p(Aq)−1 in Xq, y = p(Aq)−1x.

But this equality holds also in Xq ∩ C∞[0,∞). This means that p(Aq)−1 restricted to

Xq ∩ C∞[0,∞) has closed graph, and hence it is continuous.

We now note that (Xq ∩ C∞[0,∞))′ = E ′(R−)/(q ∗ E ′(R−)). This is because C∞[0,∞)′ =

E ′(R−) with respect to the duality

〈φ, ψ〉 := 〈φ, ψ̌〉, φ ∈ E ′(R−), ψ ∈ C∞[0,∞)

where ψ̌(t) := ψ(−t). Then the polar of the (Xq ∩ C∞[0,∞)) is easily seen to be equal

to q ∗ E ′(R−), and hence (Xq ∩ C∞[0,∞))′ = E ′(R−)/(q ∗ E ′(R−)) by [3]. This yields the

continuity of

E ′(R−)/(q ∗ E ′(R−))
p∗−→ E ′(R−)/(q ∗ E ′(R−)),

and also its invertibility. Then it follows that [p∗b] = [δ] in E ′(R−)/(q∗E ′(R−)), i.e., p∗b ≡ δ

mod q, i.e., p ∗ b− δ = q ∗ a for some a ∈ E ′(R−). This implies q ∗ (−a) + p ∗ b = δ. That is,

(p, q) is exactly coprime. �

Remark 5.1. For a corresponding (and more detailed) treatment in the finite-dimensional

context, see [1].

We are now ready to prove our main theorem 3.1.

Proof of Theorem 3.1 Suppose (p, q) are spectrally coprime. This means p̂(λ) 	= 0

for every λ such that q̂(λ) = 0. In other words, for every λ ∈ σ(Aq), p̂(λ) 	= 0. Since

σ(p(Aq)) = p̂(σ(Aq)) by Theorem 4.1, this means 0 	= σ(p(Aq)), i.e., p(Aq) is invertible. By

Proposition 5.1, (p, q) is exactly coprime. �
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6 Further Generalizations

6.1 Relationship with a Dunford-type Integral

The action (4.9) is given in terms of the canonical projection operator πq. On the other

hand, it is also possible to define such actions using the so-called Dunford integral.

We will show that such a formula can be obtained for Σq,p that is eigenfunction complete,

i.e., property 4 of Facts 3.1 is satisfied.

The following theorem holds:

Theorem 6.1. Let Σq,p be as above, and suppose that

1. r(q) = 0,

2. there exists c ∈ R such that σ(Aq) ⊂ {λ : Reλ < c}, and

3. the resolvent (λI − Aq)−1 decays with the order of 1/λ as λ→ ∞.

Then, for a polynomial p and x ∈ Xq that is sufficiently smooth,

p(Aq)x =
1

2πj

∫ c+j∞

c−j∞
p(λ) · (λI − Aq)−1xdλ, (6.11)

where p(λ) · x is understood to be the one obtained by extracting the analytic part when

expanded in powers of λ, i.e., its strictly proper part 1.

Proof Let γ be the path that goes from c − jω up to c + jω and along a large semicircle

on the left-hand side of the complex plane to return c− jω. As ω → ∞, this path encircles

all points in the spectrum σ(Aq). Also, the path integral

∫
p(λ) · (λI −Aq)−1xdλ

along the large semicircle approaches zero as ω → ∞, since the integrand decays sufficiently

fast due to the regularity of x. To prove (6.11) it is thus enough to show that p(Aq)x

equals the path integral along this closed semicircle. To this end, we first take a vector

that belongs to the generalized eigenspace corresponding to an eigenvalue µ. For simplicity,

assume x = eµt. Then

(λI − Aq)−1x = eλtx̂(λ) − eλt ∗ x = eλt 1

λ− µ
− eλt ∗ eµt =

eµt

λ− µ
.

It follows that

λeµt

λ− µ
= eµt +

µeµt

λ− µ
,

1This is possible since every element of (λI − Aq)−1x is meromorphic in λ [7].
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so that

λ · (λI − Aq)−1x =
µeµt

λ− µ
.

Since this function is analytic except at λ = µ, the above integral easily reduces to

1

2πj

∮
|λ−µ|=ε

µeµt

λ− µ
dλ = µeµt = Aq(eµt)

by Cauchy’s formula. The same argument easily carries over to the higher-order generalized

eigenvector, and in turn, to their linear combinations with different eigenvalues.

Since the set of all such elements is dense in Xq by the eigenfunction completeness, (6.11)

holds by continuity. �

It is possible to extend this formula for functions analytic and bounded in such a domain,

e.g., etλ, but the spectral properties of thus defined operators are more delicate to be discussed

here.

6.2 Actions via More General Class of Functions

Theorem 3.1 can be proven if the spectral mapping property carries over. An immediate

conjecture one may be led to is that it also holds for p which is a polynomial in two variables δ′

and δ−T , i.e., differentiation and delays. However, this case presents a considerable difficulty.

In fact, it is known in general that the spectral mapping theorem does not hold in this case

[2].

However, a slightly different generalization is still possible.

Let f be a complex-valued function such that

1) its domain D(f) is an open set in C that contains σ(Aq);

2) the complement of D(f) is compact;

3) f is differentiable in D(f) and is bounded as |λ| → ∞.

Then it is known that the spectral mapping theorem holds for such f , i.e., σ(f(Aq)) =

f(σ(Aq)). Hence if p̂(s) satisfies this condition, then spectral coprimeness still implies exact

coprimeness. Note however that the interesting case p(s) = e−Ts does not satisfy this

condition since exponentials are not bounded at infinity.

Conclusion

We have given a condition under which spectrally coprimeness implies exact coprimeness for

the class of pseudorational transfer functions. This is based upon the functional calculus, and
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in this connection, a relationship with the Dunford integral is investigated. Generalizations

to a more general context will require a more elaborate theory in this direction.
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[11] Y. Yamamoto, “Coprimeness of factorizations over a ring of distributions,” in Open

Problems in Mathmatical Systems and Control Theory, pp. 281–284, V. D. Blondel et

al. Eds., Springer, 1998.

11


