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Abstract

In this paper a system is considered as a (possibly unbounded) linear operator from
`2(Z) to `2(Z). Georgiou and Smith [3] concluded that there are intrinsic difficulties in
using `2(Z) as underlying signal space, since even a simple causal convolution system
is not stabilizable is the usual sense of the term. We discuss this problem, and we
“solve” the problem by adapting the definition of stabilizability. Finally, we compare
the obtained controller with the one we obtain by restricting our system to `2(N0).

1 Introduction

We consider an operator theoretical approach towards discrete-time systems over the signal

space `2(Z), that is, a linear, discrete-time system is considered as a (possibly unbounded)

operator from `2(Z) to `2(Z). This is an approach towards linear systems often used in

modern control theory, see for example [1], [12]. Georgiou and Smith [3] studied the simple

example

(Pu)(t) =
t∑

n=−∞

2t−nu(n), u ∈ D(P ), (1.1)

where the domain of P , denoted by D(P ), consists of all sequences u ∈ `2(Z) such that

Pu ∈ `2(Z). They were led to the counter-intuitive conclusion that the system could not be

stabilized in the usual sense of the term, since its graph is not closed; moreover, taking the

closure of its graph leads one to an extended definition of the system which is non-causal,

and this is physically unreasonable. This contrasts with the situation described in their

earlier work [2], where use of the signal space L2(R+) gives no such difficulties. We call the

phenomena that a causal system can have a non-causal closure the Georgiou-Smith paradox.

Jacob and Partington [6, 7] studied the problem of closability of graphs of linear systems

with one-dimensional inputs and outputs and its connections with causality. The graph of

a closed system is described by an element of L∞(T)2, called the symbol of P , and notions

such as causality and causal closability are characterized by means of equivalent conditions

in terms of the symbol.

In this paper, we characterize stable feedback systems in terms of the symbol of the involved

systems. In contrast to systems over the signal space `2(N0) a stable feedback system is not

necessarily causal, and so stable and causal feedback systems are characterized as well. While

1



working with stable and causal feedback systems the algebra H∞(D) becomes important.

For example it is shown that a feedback system can only be stable and causal if the systems

defining the feedback system possess symbols which are left-invertible over H∞(D). Another

problem which we address is stabilizability. Since even some simple LTI-system of practical

relevance are closable, but not closed, we do not use the standard definition of (feedback)

stabilizability. Instead we say a LTI-system is stabilizable if an extended definition of the

system, the closure, is stabilizable in the usual sense of the term by a causal controller and

the feedback system is causal as well. Finally, the Georgiou-Smith paradox is solved, and we

show that system (1.1) is stabilizable. Note, that the results of this paper can also be found

in the author’s habilitation thesis [5].

We proceed as follows. In Section 2 we introduce some notion and we review LTI-systems.

The main results of this paper are given Section 3 and 4, where we study the notion of stable

and causal feedback systems (Section 3), and stabilizability (Section 4). Finally, in Section 5

we solve the Georgiou-Smith paradox and in Section 6 we compare the obtained controllers

with the one of the on `2(N0) restricted system.

2 Preliminaries and review of LTI-systems

We introduce the following notation. We define T := {z ∈ C | |z| = 1}, and D := {z ∈ C |
|z| < 1}. H∞(D) denotes the Hardy space of bounded holomorphic function f on D, and by

H2(D) we denote the Hardy space of holomorphic functions f : D→ C satisfying

sup
r∈(0,1)

(∫ 2π

0

|f(reit)|2 dt
)1/2

<∞.

We consider `2(N0) as a subset of `2(Z) by extending x ∈ `2(N0) to `2(Z) by defining the

sequence to be zero outside N0. Moreover, x ∈ `2(Z) is an element of `2(N0) if x(j) = 0 for

j < 0. By S we denote the right shift on `2(Z), on which is given by

(Sx)(j) := x(j − 1), j ∈ Z.

By ek, k ∈ Z, we denote the kth unit vector of `2(Z), namely, ek(j) := δk,j. By ·̂ we denote

the z-transform which is given by

û(z) :=
∑
j∈Z

u(j)zj, u ∈ `2(Z).

The z-transform is an isometric isomorphism from `2(N0) onto H2(D), and from `2(Z) onto

L2(T). Following [4] we define a linear time-invariant system as follows.

Definition 2.1. An operator P : D(P ) ⊂ `2(Z) → `2(Z), is called a linear time-invariant

system with input space `2(Z) and output space `2(Z) (or LTI-system for short) if P is linear,

i.e. G(P ) is a linear subspace of `2(Z), if P is shift-invariant, i.e. SG(P ) = G(P ), and if P

is densely defined, i.e. D(P ) = `2(Z).
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Here D(P ) denotes the domain of P and G(P ) the graph of P , that is,

G(P ) :=

{(
x

Px

)
| x ∈ D(P )

}
.

Definition 2.2. We say a LTI-system P is closed, if the operator P is closed, that is, if

G(P ) is a closed subspace of `2(Z), and we say a LTI-system P is closable, if the operator

P is closable, i.e. if for every sequence {un} ⊆ D(P ) which tends to 0 and for which Pun
tends to a function y ∈ `2(Z) we have y = 0.

Equivalently, a LTI-system P is closable if and only if G(P ) is the graph of an operator.

Closability means that there exists a closed LTI-system T : D(T ) ⊂ `2(Z)→ `2(Z) such that

D(P ) ⊂ D(T ) and Tu = Pu for every u ∈ D(P ). If P is closable, then the closure P of P

is the smallest closed LTI-system, which extends P .

Definition 2.3. Let P be a LTI-system. Then P is called causal, if u ∈ `2(N0) ∩ D(P )

implies Pu ∈ `2(N0).

We stated the definition of a LTI-system in the time-domain. Using the z-transform and

the fact that the z-transform is an isometric isomorphism, we can interchangingly use the

description of P in the frequency domain. The frequency domain description of a LTI-system

P is given by

P̂ : D(P̂ ) ⊂ L2(T)→ L2(T),

P̂ û := P̂ u, u ∈ D(P ).

D(P̂ ) is the z-transform of D(P ) and G(P̂ ) is the z-transform of G(P ). Since P is a LTI-

system, we have that P̂ is linear, that G(P̂ ) is a linear subspace of L2(T), and that P̂ is

shift-invariant, that is, SG(P̂ ) = G(P̂ ). Further, P is causal if and only if x ∈ H2(D) implies

P̂ x ∈ H2(D), and P is closable if and only if the operator P̂ is closable. In the following we

use interchangingly the time-domain and the frequency domain description of a LTI-system.

Next we consider an example showing the Georgiou-Smith paradox, that is, a causal LTI-

system can have a non-causal closure. The continuous-time version of this example can be

found in Georgiou and Smith [2].

Example 2.1. We consider the operator P : D(P ) ⊆ `2(Z)→ `2(Z) given by

(Pu)(t) :=
t∑

n=−∞

2t−nu(n), u ∈ D(P ), (2.2)

D(P ) := {u ∈ `2(Z) | y(t) :=
t∑

n=−∞

2t−nu(n) converges∀ t ∈ Z, and y ∈ `2(Z)}.

In Jacob [4] it has been proved that P is a causal, closable LTI-system, and that P is a

non-causal, bounded linear operator from `2(Z) to `2(Z), given by

(Pu)(t) = −
∞∑

n=t+1

u(n)2t−n, t ∈ Z, u =
∞∑

n=−∞

u(n)en.
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Further, we have that P̂ is a bounded, linear operator from L2(T) to L2(T), having the form

(P̂ u)(z) =
1

1− 2z
u(z), u ∈ L2(T), z ∈ T.

Next we introduce the notion of a symbol of a LTI-system.

Definition 2.4. Let P be a LTI-system. We call a matrix G ∈ L∞(T)2 a symbol of P if

G(P̂ ) = GL2(T) and G∗G = I.

In [4] it is shown that every closed LTI-system possesses a symbol and that the symbol is

unique up to an unitary element of L∞(T).

3 Stable feedback systems
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Figure 1: Standard feedback configuration

We consider feedback systems as given in Figure 1, which is the standard feedback config-

uration used in system and control theory, see Vidyasagar [13] for more details. We say that

such a feedback system is stable if all the paths in the loop in Figure 1 are stable, or more

precisely

Definition 3.1. Let P and C be LTI-systems. We say that the feedback system [P,C], as

given in Figure 1, is stable, if

F[P,C] :=

(
I C

P I

)
: D(P )×D(C)→ `2(Z)2 :

(
x1

−x2

)
→
(
u1

−u2

)
has a bounded inverse, that is, the operators ui → xj, i, j = 1, 2, are well defined and

bounded. If [P,C] is stable, then we denote the inverse of F[P,C] by H[P,C].

In Figure 1 we have (
x1

x2

)
=

(
u1

u2

)
+

(
0 C

P 0

)(
x1

x2

)
.
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If the feedback system is stable, it is easy to see that the operators I − PC : D(C)→ `2(Z)

and I −CP : D(P )→ `2(Z) are boundedly invertible, and that the inverse of F[P,C] is given

by

H[P,C]

(
u1

−u2

)
=

(
(I − CP )−1 −(I − CP )−1C

−(I − PC)−1P (I − PC)−1

)(
u1

−u2

)
=

(
(I − CP )−1 −(I − CP )−1C

−P (I − CP )−1 I + P (I − CP )−1C

)(
u1

−u2

)
. (3.3)

We have the following necessary conditions for stability of feedback systems. The proof

follows Georgiou and Smith [2].

Proposition 3.1. Let P and C be LTI-systems. If [P,C] is stable, then P and C are closed.

Proof. Let {vn}n ⊂ D(P ) be a sequence which converges to v in `2(Z) and {Pvn}n converges

to y in `2(Z). Taking the limit n to ∞ in
(
vn
0

)
= H[P,C]

(
vn
Pvn

)
we get

(
v
0

)
= H[P,C]

(
v
y

)
, which

implies v ∈ D(P ) and y = Pv. Thus P is closed. Similarly, it can be proved that C is

closed.

Next we characterize stable feedback systems [P,C] by means of equivalent conditions.

The proof follows Georgiou and Smith [2], see also Vidyasagar [13], and the proof is based

on this known result.

Theorem 3.1. Let P and C be closed LTI-systems with symbols
(
m
n

)
and

(
s
t

)
. Then [P,C]

is stable if and only if
(
m t
n s

)
is invertible over L∞(T).

Proof. The inverse graph of a LTI-system P is defined by GI(P ) :=
(
P
I

)
D(P ). Stability of

[P,C] implies G(P ) ∩GI(C) = {0} and G(P ) +GI(C) = `2(Z)2. Thus we get

L2(T)2 = G(P̂ ) +GI(Ĉ) =

(
m

n

)
L2(T) +

(
t

s

)
L2(T),

and thus Corollary 3.10 of [4] shows that the matrix
(
m t
n s

)
is invertible over L∞(T). On

the other hand, the invertibility of
(
m t
n s

)
over L∞(T) implies that G(P ) ∩GI(C) = {0} and

G(P ) +GI(C) = `2(Z)2. This shows that F[P,C] is injective and surjective. Thus the inverse

of F[P,C] exists, and it only remains to show that the inverse is bounded. Using the Closed

Graph Theorem this holds if F[P,C] has a closed graph. The graph of F[P,C] is given by


x1

−x2

x1 − Cx2

Px1 − x2

 | x1 ∈ D(P ), x2 ∈ D(C)

 ,

and it is closed since P and C are closed.
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Beside stability another important property of a feedback system is causality, which is

defined as follows.

Definition 3.2. Let P and C be LTI-systems, such that the feedback system [P,C] is stable.

We say the feedback system [P,C] is causal if H[P,C], as given in (3.3), is causal, that is,

u ∈ `2(N0)2 implies H[P,C]u ∈ `2(N0)2.

Considering systems over `2(N0), see Georgiou and Smith [2], we see that every stable

feedback system is automatically causal. Unfortunately, this is not the case for systems over

`2(Z), as the following example shows. Note that in the example both systems P and C are

causal, whereas the feedback system is not causal.

Example 3.1. We consider a feedback system [P,C], which is given by

Pu := u, u ∈ `2(Z),

(Cu)(t) := u(t)− u(t− 1), u ∈ `2(Z), t ∈ Z.

Clearly, P and C are stable, causal LTI-systems, and G(P̂ ) =
(

1
1

)
L2(T) and G(Ĉ) =(

1
1−z

)
L2(T). Since D := 1 · 1− (1− z) · 1 = z is invertible over L∞(T), Theorem 3.1 shows

that the feedback system [P,C] is stable. In order to show that the feedback system is not

causal, we choose the inputs u1 := (. . . , 0, 1, 0, . . . ), where the 1 stands at position 0, and

u2 := 0. This choice implies x1 = (. . . , 0, 1, 0, . . . ), where the 1 stands at position −1, and

thus the feedback system is not causal.

Next we give a necessary condition for a feedback system to be causal.

Proposition 3.2. Let P and C be LTI-systems, such that the feedback system [P,C] is stable

and causal. Then there exist symbols GP , GC ∈ H∞(D)2 of P and C, respectively, such that

GP and GC are left-invertible over H∞(D).

Proof. By
(
m
n

)
∈ L∞(T)2 we denote a symbol of P , and by

(
s
t

)
∈ L∞(T)2 a symbol of C.

We define u1 ∈ H∞(D) by u1 = 0, and u2 ∈ H∞(D) by u2 = 1. Thus u2 is invertible over

H∞(D). Since the feedback system [P,C] is stable and causal, there exist unique elements

x1 ∈ H2(D) and x2 ∈ H2(D) such that

x1 = Ĉx2,

x2 = u2 + P̂ x1.

We have Ĉx = ts−1x and P̂ u = nm−1u for x ∈ D(Ĉ) and u ∈ D(P̂ ). Thus we get

x1 = m(sm− tn)tu2 and x2 = m(sm− tn)su2 which implies x1, x2 ∈ H∞(D). Clearly x2 6= 0.

Thus ts−1 ∈ R(H∞(D)). In a similar manner it can be proved that nm−1 ∈ R(H∞(D)).

We now write ts−1 = t̃s̃−1 and nm−1 = ñm̃−1 with ñ, m̃, s̃, t̃ ∈ H∞(D), gcdH∞(D)(ñ, m̃) = 1

and gcdH∞(D)(s̃, t̃) = 1. The stability and causality of the feedback system shows that the

functions

m̃(s̃m̃− t̃ñ)−1s̃, m̃(s̃m̃− t̃ñ)−1t̃, ñ(s̃m̃− t̃ñ)−1s̃, and ñ(s̃m̃− t̃ñ)−1t̃
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are holomorphic and bounded on D. By Lemma 4 of Smith [10] we get that

(s̃m̃− t̃ñ)−1s̃, and (s̃m̃− t̃ñ)−1t̃

are holomorphic and bounded on D. Using again Lemma 4 of Smith [10] we see that (s̃m̃−
t̃ñ)−1 ∈ H∞(D). This shows that

(
m̃
ñ

)
and

(
s̃
t̃

)
are left-invertible over H∞(D). Clearly,

G(P̂ ) =
(
m̃
ñ

)
L2(T) and G(Ĉ) =

(
s̃
t̃

)
L2(T). However,

(
m̃
ñ

)
and

(
s̃
t̃

)
are in general not inner.

We define U ⊂ H2(D)2 by U :=
(
m
n

)
H2(D). Following the proof of Proposition 5.5 of [4]

we get that U is a closed subset of H2(D)2. Moreover, U is shift-invariant in H2(D)2. Thus

by the Beurling-Lax theorem, see Lax [8], there is a number r ∈ {1, 2} and an inner function

G ∈ H∞(D)2×r such that U = GH2(D)r. Thus we get

GH2(D)r =

(
m

n

)
H2(D). (3.5)

Since
(
m
n

)
is left-invertible over H∞(D), we get that r = m. Let X be a left-inverse of

(
m
n

)
.

Then (3.5) shows XGH2(D) = H2(D), and hence XG is invertible over H∞(D). Thus G

is also left-invertible over H∞(D). Further, equation (3.5) shows that there are functions

Q1, Q2 ∈ H2(D) such that

G =

(
m

n

)
Q1,

(
m

n

)
= GQ2.

Now the left-invertibility of G and
(
m
n

)
implies that Q1, Q2 ∈ H∞(D), and that Q1, Q2 are

invertible over H∞(D) with Q−1
1 = Q2. We now split G as G =

(
m1

n1

)
with m1 ∈ H∞(D) and

n1 ∈ H∞(D). Since m 6= 0 we get m1 6= 0, and so
(
m1

n1

)
is a symbol of P which has the

required properties.

Remark 3.1. Note that if G is a symbol of a LTI-system P satisfying G ∈ H∞(D)2, then G

needs not to be left-invertible over H∞(D). For example, 1√
2

(
z
z

)
is a symbol of P := I, but

not left-invertible over H∞(D).

Next we formulate equivalent conditions for a stable feedback system to be causal. The

result is based on standard results using the coprime factorization approach (see Vidyasagar

[13]), see also Georgiou and Smith [2].

Theorem 3.2. Let P and C be LTI-systems with symbols
(
m
n

)
∈ L∞(T)2 and

(
s
t

)
∈ L∞(T)2

such that the feedback system [P,C] is stable. Then [P,C] is causal if and only if
(
m t
n s

)
is

invertible over H∞(D).

Proof. If
(
m t
n s

)
is invertible over H∞(D) then it is easy to see that [P,C] is causal. The

converse direction follows directly from the proof of Proposition 3.2.

4 Stabilizability

The system C is called a controller of P . Note that a controller always is a closed LTI-system.

There are different possibilities to define the notion of stabilizability for a LTI-system P . The
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simplest one would be to require that there exists a LTI-system C such that the feedback

system [P,C] is stable. This is the usual definition used in system and control theory.

However, in our situation this definition is not suitable, since it would rule out a huge class

of important systems from being stabilizable and this definition would not guarantee that

the feedback system is causal. Thus we adapt the defintion as follows.

Definition 4.1. A LTI-system P is called stabilizable if P is closable and if there exists a

causal LTI-system C such that the feedback system [P ,C] is stable and causal.

We have the following equivalent conditions for stabilizability.

Theorem 4.1. A closable LTI-system P is stabilizable if and only if the system P possesses

a symbol G ∈ H∞(D)2 which is left-invertible over H∞(D).

Proof. If P is stabilizable then Proposition 3.2 shows that P possesses a symbol G ∈ H∞(D)2

which is left-invertible over H∞(D).

Let us now assume that P possesses a symbol
(
m
n

)
∈ H∞(D)2 which is left-invertible over

H∞(D). Using Tolokonnikov’s Lemma (see for example Nikolski [9, page 293]) there exist

matrices s ∈ H∞(D) and t ∈ H∞(D) such that X =
(
m
n

t
s

)
is invertible over H∞(D). Since

s 6= 0, we can define C via the graph G(Ĉ) =
(
s
t

)
L2(T). The stability of [P,C] is then

implied by Theorem 3.1, since X is invertible over H∞(D), and hence over L∞(T), and

the causality of [P,C] is implied by Theorem 3.2. However, it can happen that C is not

causal. Clearly, for every Q ∈ H∞(D)2, the matrix XQ :=
(
m
n

t+mQ
s+nQ

)
=
(
m
n

t
s

) (
I
0

Q
I

)
is

invertible over H∞(D), and so it is enough to show that there is a matrix Q ∈ H∞(D)m×p

such that s + nQ is invertible over H∞(D). In this case C is causal as well. Since (n s) is

right-invertible, we have infi∈D(‖n(z)‖ + ‖s(z)‖) > 0. Now Treil [11] shows the existence of

a function Q ∈ H∞(D) such that s + nQ is invertible over H∞(D), and thus the theorem is

proved.

5 Discussion of the Georgiou-Smith paradox

We now study again the convolution system introduced in Example 2.1. In Example 2.1 the

LTI-system P was given by (2.2). We showed already that P is causal, closable, but not

closed, and the closure of P is not causal.

Georgiou and Smith [3] studied exactly this example in the continuous time situation. It

is a belief that P is stabilized by a proportional negative feedback of gain greater than one.

This is true if we study P on `2(N0), see [2]. Since system (2.2) is not closed, Georgiou

and Smith [3] concluded that P is not stabilizable in the usual sense of the term, that is,

there does not exists a LTI-system C such that [P,C] is stable. Moreover, they realized

already that the closure of P is a stable system which is non-causal, and this is physically

unreasonable. This contrasts with the situation described in their earlier work [2], where use

of the signal space L2(R+) gives no such difficulties.
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How can we overcome this problem? The idea is to identify P with P , and to stabilize

P in such a way that the controller and the feedback system are causal. In our example P

is already stable, but not causal, and so actually we have to find a causal controller which

causalizes P , and we will see that this can be done by proportional negative feedback of gain

greater than one.

We saw that the graph of P is given by

G(P̂ ) =

(
1
1

1−2z

)
L2(T).

However, in order to be able to causalize P , we have to choose the symbol of P in H∞(D)2.

For example we have

G(P̂ ) =

(
1− 2z

1

)
L2(T).

Note that 1− 2z is invertible over L∞(T). Now the matrix(
1− 2z c

1 1

)
is invertible over H∞(D) (and hence over L∞(T)) for every c < −1, and so P is stabilized

by proportional negative feedback of gain greater than one, and the controller as well as the

feedback system is causal.

6 Systems over the signal space `2(N0)

In the `2(N0)-setting a LTI-system is a (possibly) unbounded operator P : D(P ) ⊂ `2(N0)→
`2(N0) which is linear and shift-invariant with respect to the right-shift on `2(N0). It was

shown by Jacob and Partington [6] that every causal LTI-system over `2(N0) has the form

(Pu)(t) :=
t∑

n=0

g(t− n)u(n), u ∈ D(P ), (6.6)

for some g(t) ∈ C. Thus every causal LTI-system is closable, and every stable LTI-system is

causal. Further, it can be shown (see [6]), that a LTI-system is causal if and only if it is of

the form (6.6). Results concerning stable feedback systems and stabilizability are similar to

those obtained by Georgiou and Smith [2] for systems over the signal space L2(R+).

Let P be a closed LTI-system over `2(N0). Then there exist M ∈ H∞(D), and N ∈ H∞(D)

such that

G(P̂ ) =

(
m

n

)
H2(D) = GH2(D) (6.7)

and G is inner. As for LTI-system over `2(Z), a matrix G satisfying (6.7) is called a symbol

of P . Moreover, P is stabilizable (as system over `2(N0)) if and only if G is left-invertible

over H∞(D).
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Every LTI-system over `2(Z) can be restricted to a LTI-system over `2(N0) in the following

way. Let P be a LTI-system over `2(Z). Then we define PN : D(PN) ⊂ `2(N0)→ `2(N0) by

PNu := Pu, u ∈ D(PN),

D(PN) := {u ∈ D(P ) ∩ `2(N0) | Pu ∈ `2(N0)},

and we get that PN is a LTI-system over `2(N0). If P is closable, then PN is closable, and an

interesting question is the relation between the symbols of P and PN. We show that if PN
is stabilizable, then P is stabilizable, and that these systems can be described by the same

symbol and they are stabilized by the same set of controllers.

Theorem 6.1. Let P be a closable LTI-system over `2(Z). If PN is stabilizable, then P

is stabilizable. Moreover, every symbol of PN is a symbol of P , and the sets of controllers

stabilizing PN equals the set of controllers stabilizing P .

Proof. Let
(
mN
nN

)
be an arbitrary symbol of PN, and let

(
m
n

)
be a symbol of P . Since PN is

stabilizable, we have that
(
mN
nN

)
∈ H∞(D)2 and that

(
mN
nN

)
is left-invertible over H∞(D). Since(

mN

nN

)
H2(D) = G(PN) ⊂ G(P ) =

(
m

n

)
L2(T),

there exists a function Q ∈ L2(T) such that(
mN

nN

)
=

(
m

n

)
Q.

(
m
n

)∗(m
n

)
= 1 implies Q ∈ L∞(T). Since

(
mN
nN

)
is left-invertible over H∞(D), there is a

QL ∈ L∞(T) such that QLQ = I, which implies QLQ = 1. Thus Q is invertible over L∞(T),

and
(
mN
nN

)
is a symbol of P . This proves that P is stabilizable and that every symbol of PN is

a symbol of P . That the sets of controllers coincide follows from Theorem 3.2 and Georgiou

and Smith [2, Lemma 1].

Theorem 6.2. Let P be a closed LTI-system over `2(Z). Then P is stabilizable (as a system

on `2(Z)) if and only if PN is stabilizable as a system on `2(N0)). Moreover, every symbol

of PN is a symbol of P , and the set of controllers stabilizing PN equals the set of controllers

stabilizing P .

Proof. The proof is similar to the proof of the previous theorem.
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