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Abstract

In this paper we investigate the relation between discrete- and continuous-time sys-
tems. More precisely, we investigate the stabiity properties of the semigroup generated
by A, and the sequence And , n ∈ N, where Ad = (I +A)(I −A)−1.

1 Introduction

For finite-dimensional spaces it is very easy to see that the eigenvalues of the matrix A are

in the right-half plane if and only if the eigenvalues of Ad := (I +A)(I −A)−1 are inside the

unit circle. Since the location of the eigenvalues determines the stability of the associated

system, it is now an easy consequence that the system

ẋ(t) = Ax(t) (1.1)

is stable if and only if the system

x(n+ 1) = Adx(n) (1.2)

is stable. For infinite-dimensional systems the situation is more complicated. Although the

eigenvalues still possess the same property as in the finite dimensional situation, they don’t

longer rule the stability. Since many years it is an open question whether the stability of

(1.1) and (1.2) are equivalent. For Banach spaces it is not hard to find a counter example,

and so we concentrate on the situation where the state space is a Hilbert space.

For Hilbert spaces there are some positive results, such as for dissipative operator and for

normal operators. The results of Crouzeix et. al. [1] and Palencia [5] imply that if A is the

infinitesimal generator of the holomorphic semigroup T (t) which is sectorially bounded, i.e.,
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‖T (t)‖ ≤ M for all t with |arg(t)| < θ, for some θ > 0, then Ad is power bounded. i.e.,

‖And‖ ≤ Md for all n ∈ N. Recently, Guo and Zwart [3] showed that the stability of (1.1)

and (1.2) are equivalent if A generates a holomorphic semigroup. We note that the systems

(1.1) and (1.2) are naturally related via the Gayley transform, see e.g. Curtain and Oostveen

[2]. In this paper we show that the stability of (1.1) implies that of (1.2) under the extra

assumption that the system

ẋ(t) = A−1x(t) (1.3)

is stable. Before we can show this result, we need some new stability results. This will be

the subject of the next section.

2 Stability results

In this section we relate the stability of (1.1) and (1.2) to the solution of a certain Lyapunov

equation. It is well-know that (1.1) is exponentially stable, i.e., the semigroup generated by

A satisfies ‖T (t)‖ ≤ Me−ωt for some ω > 0 if and only if there exists a positive, bounded

operator Q satisfying

A∗Q+QA = −I.

For the uniform boundedness and strong stability of (1.1) we prove similar results. These

results are inspired by the results of Shi and Feng [7], and Tomilov [8]. We begin with the

discrete-time.

Theorem 2.1. Let Ad be a bounded operator on the Hilbert space Z, then the following are

equivalent

1. Ad is power bounded, i.e., ‖And‖ ≤M for all n ∈ N.

2. For all r ∈ (0, 1) there exist positive operators R(r), R̃(r) ∈ L(Z) such that

r2A∗dR(r)Ad −R(r) ≤ −I (2.4)

r2AdR̃(r)A∗d − R̃(r) ≤ −I. (2.5)

Furthermore, they satisfy

(1− r)‖R(r)‖ ≤M, (1− r)‖R̃(r)‖ ≤ M̃, (2.6)

for certain constants M and M̃ independent of r.

Proof We first show that 1. implies 2. Let Ad be power bounded, then we see that ‖ (A∗d)
n ‖ =

‖And‖ ≤M . Now we define for r ∈ (0, 1)

R(r) =
∞∑
n=0

rn (A∗d)
nAndr

n.
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It is easy to see that R(r) is positive and satisfies (2.4). There is even equality. Furthermore,

since Ad and A∗d are power bounded, we see

‖R(r)‖ ≤
∞∑
n=0

r2nM2 =
M2

1− r2

Thus we see that R(r) satisfies (2.6). Repeating the argument for A∗d gives the remaining

part of the assertion.

We now concentrate on the implication 2. to 1. We first show that from (2.4) it follows

that

R(r) ≥
∞∑
n=0

rn (A∗d)
nAndr

n. (2.7)

To prove this we note that from (2.4)

N∑
n=0

rn (A∗d)
nAndr

n =
N∑
n=0

rn (A∗d)
n IAndr

n

≤
N∑
n=0

rn (A∗d)
n [R(r)− rA∗dR(r)Adr]A

n
dr

n

= R(r)− rN+1 (A∗d)
N+1 R(r)AN+1

d rN+1. (2.8)

Since R(r) ≥ 0, this implies that

N∑
n=0

rn (A∗d)
nAndr

n ≤ R(r).

Thus rn (A∗d)
nAndr

n is summable, and we get that (2.7) holds. Similarly, we can show that

R̃(r) ≥
∞∑
n=0

rnAnd (A∗d)
n rn.

Using this and (2.7) we can show the uniform boundedness of And . We start with the following

simple equality.

|(n+ 1)rn〈y, Andx〉| =

∣∣∣∣∣
n∑
k=0

〈y, rn−kAn−kd Akdr
kx〉

∣∣∣∣∣
=

∣∣∣∣∣
n∑
k=0

〈rn−k (A∗d)
n−k y, Akdr

kx〉

∣∣∣∣∣
≤

[
n∑
k=0

‖rn−k (A∗d)
n−k y‖2

]1/2 [ n∑
k=0

‖Akdrkx‖2

]1/2

=

[
n∑
k=0

‖rk (A∗d)
k y‖2

]1/2 [ n∑
k=0

‖Akdrkx‖2

]1/2

.
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Thus by (2.7) we have that

|(n+ 1)rn〈y, Andx〉| ≤ 〈y, R̃(r)y〉1/2〈x,R(r)x〉1/2 (2.9)

Using the conditions in (2.6) we see that

|(n+ 1)rn〈y, Andx〉| ≤M2
1

1− r
‖y‖‖x‖.

Thus

‖And‖ ≤
M2

(n+ 1)rn(1− r)
.

Since this holds for all r ∈ (0, 1), we can take the infimum over all these r’s. The miminum

over the right-hand side is attained in r = n/(n+ 1). Thus

‖And‖ ≤
M2

(n+ 1)( n
n+1

)n( 1
n+1

)
= M2

(
1 +

1

n

)n
.

Since the right-hand side can be bounded independently of n, we have that ‖And‖ is uniformly

bounded. �

The above result we can use to prove strong stability.

Theorem 2.2. Let Ad be a bounded operator on the Hilbert space Z, then the following are

equivalent

1. And is strongly stable, i.e., Andx→ 0 for n→∞.

2. For all r ∈ (0, 1) there exist bounded positive operators R(r) and R̃(r) which satisfy

the Lyapunov inequalities (2.4) and (2.5). Furthermore, R̃(r) satisfies

(1− r)‖R̃(r)‖ ≤ M̃ (2.10)

for some M̃ , and R(r) satisfies

lim
r↑1

(1− r)〈R(r)x, x〉 = 0. (2.11)

Proof We first prove that 1. implies 2. Define for r ∈ (0, 1)

R(r) =
∞∑
n=0

rn (A∗d)
nAndr

n,

R̃(r) =
∞∑
n=0

rnAnd (A∗d)
n rn.

As we have seen in the proof of the previous theorem, these operators satisfies (2.4), and (2.5),

respectively. Furthermore, since the strong stability of Ad implies the uniform boundedness

of And and (A∗d)
n, we see that R̃(r) satisfies (2.10).
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Let ε > 0 be given, and choose N such that ‖Andx‖ ≤ ε for all n ≥ N . Then we obtain

〈x,R(r)x〉 =
∞∑
n=0

‖rnAndx‖2

≤
N−1∑
n=0

‖rnAndx‖2 +
∞∑
n=N

r2nε2

=
N−1∑
n=0

‖rnAndx‖2 + ε2 r2N

1− r2

Thus

lim
r↑1

(1− r)〈R(r)x, x〉 ≤ 1

2
ε2.

Since this holds for any ε > 0, we have shown (2.11).

Now we show that 2. implies 1. From (2.9) and (2.10), one sees that

‖Andx‖2 ≤ M̃

r2n(n+ 1)2(1− r)
〈x,R(r)x〉

For 1− r sufficiently close to zero, we get that

‖Andx‖2 ≤ M̃

r2n(n+ 1)2(1− r)
M

1− r
ε.

Now one can proceed as in the first proof, and similarly show that for sufficient large n,

‖Andx‖ ≤ 2eMε. �

There is naturally a similar result in continuous time. Since we shall only use the simple

implications, and since the proofs are very similar, we omit the proofs.

Theorem 2.3. Let A be a closed, densely defined operator on the Hilbert space Z, then the

following are equivalent

1. A is the infinitesimal generator of an uniformly bounded C0-semigroup T (t), i.e.,

‖T (t)‖ ≤M for all t ≥ 0.

2. For all λ > 0 there exist unique positive solutions of the Lyapunov equations

(A− λI)∗Q(λ) +Q(λ)(A− λI) = −I (2.12)

(A− λI)Q̃(λ) + Q̃(λ)(A− λI)∗ = −I (2.13)

which satisfy that there exists a constant M and M̃ such that

λ‖Q(λ)‖ ≤M, λ‖Q̃(λ)‖ ≤ M̃. (2.14)
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Theorem 2.4. Let A be a closed, densely defined operator on the Hilbert space Z, then the

following are equivalent

1. A is the infinitesimal generator of a strongly stable C0-semigroup, i.e., T (t)x → 0 for

t→∞.

2. For all λ > 0 there exist unique positive solutions of the Lyapunov equations (2.13)

and (2.14). Furthermore, the solution Q̃(λ) of (2.13) satisfies

λ‖Q̃(λ)‖ ≤ M̃ (2.15)

for some M̃ , and the solution Q(λ) of (2.12) satisfies

lim
λ↓0

λ〈Q(λ)x, x〉 = 0. (2.16)

These theorem are very useful in showing the relation between bounded semigroups and

bounded co-generator.

Theorem 2.5. Let A and A−1 both be the infinitesimal generator of a bounded C0-semigroup

on the Hilbert space Z. Then the operator Ad := (I + A)(I − A)−1 is power bounded.

Furthermore, if the semigroups generated by A and A−1 are strongly stable, then Ad is

strongly stable.

Proof So we have to show that there exist solutions of (2.4) and (2.5). We shall only show

(2.4) since the proof of the other inequality goes very similar. Let Q(λ) be the solution of

(2.12), and let S(λ) be the solution of

(A−1 − λ)∗S(λ) + S(λ)(A−1 − λ) = −I. (2.17)

Multiplying both sides by A∗ from the left and A from the right, it is easy to see that this

equation is equivalently formulated as

−2λA∗S(λ)A+ S(λ)A+ A∗S(λ) = −A∗A. (2.18)

Now take an r ∈ (0, 1), and consider the left hand side of (2.4).

r2A∗dRAd −R
= (I − A)−∗

[
r2(I + A)∗R(I + A)− (I − A)∗R(I − A)

]
(I − A)−1

= (r2 + 1) ·

(I − A)−∗
[
r2 − 1

r2 + 1
R +

r2 − 1

r2 + 1
A∗RA + A∗R +RA

]
(I − A)−1.
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Now we choose −2λ = r2−1
r2+1

and R(r) = Q(λ) + S(λ).

r2A∗dR(r)Ad −R(r)

= (r2 + 1)(I − A)−∗

[−2λS(λ)− 2λA∗S(λ)A+ A∗S(λ) + S(λ)A)] (I − A)−1 +

(r2 + 1)(I − A)−∗

[−2λQ(λ)− 2λA∗Q(λ)A+ A∗Q(λ) +Q(λ)A)] (I − A)−1

= (r2 + 1)(I − A)−∗ [−2λS(λ)− A∗A] (I − A)−1 +

(r2 + 1)(I − A)−∗ [−I − 2λA∗Q(λ)A] (I − A)−1

≤ (r2 + 1)(I − A)−∗ [−A∗A− I] (I − A)−1 ≤ −γI.

From it follows that 1
γ
R(r) satisfies (2.4). Since the behavior of R at one is like Q and S at

zero, we obtain the result. �

Note that since we don’t know whether the inverse of a bounded A generates a bounded

semigroup, we are still missing the proof for the case that A is a bounded operator. This

will be the result of the next corollary.

Corollary 2.1. Let A ∈ L(Z) be the infinitesimal generator of a bounded C0-semigroup.

Then the operator Ad := (I + A)(I − A)−1 is power bounded.

Furthermore, if eAt is strongly stable, then And is strongly stable.

Proof For r ∈ (0, 1) we define λ as in the proof of Theorem 2.5, i.e.,

λ =
1− r2

2(1 + r2)
.

Furthermore, we choose

R(r) = Q(λ)

With this choice, we obtain similar as in previous proof that

r2A∗dR(r)Ad −R(r) = (r2 + 1)(I − A)−∗ [−I − 2λA∗Q(λ)A] (I − A)−1

≤ −(r2 + 1)(I − A)−∗(I − A)−1 ≤ −γI,

where the last inequality follows since A is a bounded operator. Thus we see that Ad is

power bounded. �

It is well-known that A generates an analytic semigroup which is sectorially bounded, i.e.,

‖T (t)‖ ≤M for all t such that |arg(t)| < θ for some positive θ if and only if ‖(sI −A)−1‖ ≤
m/|s| for all complex s with |arg(s)| < π/2 + θ, see e.g. [6, Theorem 2.5.2]. From this it is

easy to see that A generates an analytic, sectorially bounded semigroup if and only if A−1

generates an analytic, sectorially bounded semigroup. Thus from Theorem 2.5 we conclude

the following.
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Corollary 2.2. Let A be the infinitesimal generator of an analytic, sectorially bounded C0-

semigroup on the Hilbert space Z, and let A−1 exist as a closed operator. Then the operator

Ad := (I + A)(I − A)−1 is power bounded.
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