
Sufficient conditions for controllability of finite level
quantum systems via structure theory of semisimple

Lie algebras

Claudio Altafini

SISSA-ISAS

International School for Advanced Studies

via Beirut 2-4, 34014 Trieste, Italy

altafini@sissa.it

Abstract

The controllability of the unitary propagator of a finite level quantum system is
studied in this paper by analyzing the structure of the semisimple Lie algebra su(N).

1 Introduction

The question of controllability for a finite level quantum system, see Ref. [6, 16, 18], is

studied in this paper by analyzing the structure of the semisimple Lie algebra of its time

evolution operator. For a compact semisimple Lie group like SU(N), the testing of global

controllability is the simplest of all noncommutative Lie groups. In fact, compactness im-

plies that the accessibility property collapses into (global) controllability and semisimplicity

implies that almost all pairs of vector fields span the corresponding Lie algebra. The first

property means that purely algebraic tools, like the Lie algebra rank condition normally used

in control theory provides necessary and sufficient conditions for controllability, while the

second property affirms that controllability is generically verified with a single control. The

main scope of this paper is to give the interpretation of these properties in terms of structure

theory of semisimple Lie algebras, see Ref. [5, 10], and to provide alternative tests to the

exhaustive computation of commutators that the Lie algebra rank condition requires. So

genericity is interpreted in terms of regularity of the roots of the Lie algebra su(N) and

another property, regularity along the control vector field, immediately follows. The main

tool we use, together with the regularity of the roots, is the connectivity of the graph of the

control vector field. Both properties were classically used to analyze controllability of vector

fields on semisimple Lie algebras (especially the noncompact ones, see Ref. [12, 9, 8]). For

the same type of problem as ours, the properties of the graph were recently used also in [18].

The conditions we obtain, based only on the a priori knowledge of the two vector fields, are

only sufficient but they allow us to avoid any computation of Lie brackets. From the generic

case, physically representing a quantum system with all different transition values between

its (nondegenerate) energy levels, these tools carry on to the singular case, where some of

these levels might be equispaced.

This paper is an abridged version of [2], to which we refer for proofs of the results reported.
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2 Quantum control system

Consider a finite level quantum system described by a state |ψ〉 evolving according to the

time dependent Schrödinger equation

i~|ψ̇(t)〉 =
(
Ĥ0 + u(t)Ĥ1

)
|ψ(t)〉 (2.1)

where the traceless Hermitian matrices Ĥ0 and Ĥ1 are respectively the internal (or free)

Hamiltonian and the external Hamiltonian, this last representing the interaction of the sys-

tem with a single control field u(t). In the N -level approximation, the state |ψ〉 is expanded

with respect to a basis of N orthonormal eigenstates |ϕi〉: |ψ〉 =
∑N

i=1 ci|ϕi〉 where the ci are

complex coefficients that satisfy the normalization condition
∑N

i=1 |ci|2 = 1. If we write the

initial condition of (2.1) as |ψ0〉 =
∑N

i=1 c0i|ϕi〉, then also the vector c = [c1 . . . cN ]T satisfies

a differential equation similar to (2.1):

i~ċ(t) =
(
H̃0 + u(t)H̃1

)
c(t)

c(0) = c0

(2.2)

where now the traceless Hermitian matrix H̃0 is diagonal. The real coefficients Ei, E1 ≤ . . . ≤
EN , appearing along the diagonal of H̃0 are eigenvalues, H̃0|ϕi〉 = Ei|ϕi〉, and represent the

energy levels of the system. If Ei = Ej for some i 6= j, then the system is said degenerate. If,

instead, some of the levels are equispaced, Ei − Ej = Ek − El for (i, j) 6= (k, l), i 6= j, k 6= l,

then the system is said to have degenerate transitions (or resonances). The solution of (2.2)

is c(t) = X(t)c(0) with the unitary matrix X(t) representing the time evolution operator. If

we use atomic units (~ = 1), then instead of (2.2) we can study the right invariant bilinear

control system evolving on the Lie group SU(N) and characterized by the skew-Hermitian

vector fields A = −iH̃0 and B = −iH̃1:

Ẋ(t) = (A+ u(t)B)X(t) X(t) ∈ SU(N), A, B ∈ su(N)

X(0) = I
(2.3)

The system (2.3) is said (globally) controllable if the reachable set

R{A,B} =
{
X̄ ∈ SU(N) | there exists an admissible input u(·) such that the integral

curve of (2.3) satisfies X(0) = I, X(t) = X̄ for some t > 0}

is all of the Lie group: R{A,B} = SU(N). Given (any) A, B ∈ su(N), call {A, B}L.A. the

Lie algebra generated by A and B with respect to the Lie bracket. The literature on the

subject of quantum control, see Ref. [7, 15, 1], has relied essentially on the condition of the

following Theorem (originally due to [13]):

Theorem 2.1. The system (2.3) is controllable if and only if {A, B}L.A. = su(N).

Theorem 2.1 is a consequence of the following Lemma, which affirms that subsemigroups

of compact groups are always subgroups:
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Lemma 2.1. (Lemma 1, Ch.6 of [11]) For the compact semisimple Lie group SU(N)

cl (exp(tA, t < 0)) ⊂ cl (exp(tA, t > 0)) ∀ A ∈ su(N)

where exp : su(N)→ SU(N) is the Lie group exponential map (and cl means closure).

Consequently, the drift vector field A of (2.3) is not hampering controllability on the large

and thus Theorem 2.1 follows. Furthermore, the semisimple character of su(N) implies the

following:

Lemma 2.2. (Theorem 12, Ch.6 of [11]) The set of pairs A,B ∈ su(N) such that {A, B}L.A. =

su(N) is open and dense in su(N).

Putting together Theorem 2.1 and Lemma 2.2 then we have:

Corollary 2.1. The system (2.3) is controllable for almost all pairs A, B ∈ su(N).

3 Roots and graphs

Consider the following basis of su(N):

{iHi , i = 1, . . . , N − 1}∪{Xij = Eij − Eji , 1 6 i < j 6 N}∪{Yij = i(Eij + Eji) , 1 6 i < j 6 N}
(3.4)

where Eij has 1 in the (i, j)-th position and 0 elsewhere.

Definition 3.1. An element H ∈ su(N) is said regular if dim(ker adH) = N − 1.

The set of regular elements H is open and dense in su(N).

For the quantum system on su(N), the roots α of the Lie algebra, see [2], admit the

interpretation of transitions between energy levels of the system. In particular, the roots

computed at H̃0 are αij(H̃0) = Ej − Ei (i < j ⇒ αij > 0). Denote by ∆ the set of nonzero

roots, by ∆+ the subset of positive roots, and by Φ the set of fundamental roots i.e. the set

of positive roots that cannot be written as sums of two other positive roots.

We need a stronger version of the regularity property, see Ref. [11], p. 187.

Definition 3.2. A regular H ∈ su(N) is said strongly regular if all nonzero eigenvalues

α(H) are distinct and have multiplicity 1.

Also the set of strongly regular elements is open and dense in su(N).

B is expressed in terms of the components of the su(N) basis as:

B = B0 +
∑

α∈Γ+⊆∆+

(
b<αXα + b=αYα

)
(3.5)

where B0 ∈ ih, b<α and b=α are real and Γ+ ⊆ ∆+ is the subset of roots “touched” by B.
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In this case, it is possible to use the connectivity properties of the graph of B to draw

conclusions about controllability in the same spirit as it is done in [9] for normal (or split)

real forms. Consider the graph GB associated to a square matrix B = [bij], i.e. the pair

GB = (NB, CB) where NB represents a set of N ordered nodes NB = {1, . . . , n} and CB the

set of oriented arcs joining the nodes: CB = {(i, j) | bij 6= 0}. The graph GB is said strongly

connected if for all pairs of nodes in NB there exists an oriented path in CB connecting them.

GB is strongly connected if and only if B is permutation-irreducible (P-irreducible) 1, i.e.

there exists no permutation matrix P such that

P−1BP =

[
B1 ∗
0 B2

]
A square matrix is P -irreducible if and only if its graph does not contain any strongly

disconnected subgraph. As long as we consider matrices B that are Hermitian or skew-

Hermitian, the adjective “strong” (referring to the path being oriented) is irrelevant since

bij 6= 0 if and only if bji 6= 0. GEα , α ∈ ∆+, are called elementary root graphs. If bα = b<α+ib=α ,

rewriting B as

B = B0 +B1 = B0 +
∑
α∈Γ+

(bαEα − b∗αE−α) (3.6)

where ∗ is complex conjugate, then the (positive) root graph of B is G+
B =

⋃
α∈Γ+ GEα and

GB−B0 is “twice” G+
B .

The concepts of regular and strongly regular roots correspond to those of degenerate system

and of system with degenerate transitions in the following way:

(i) if a system is degenerate then it has nonregular roots;

(ii) if a system is nondegenerate but has degenerate transitions then it has regular but not

all strongly regular roots;

(iii) if a system is nondegenerate and has no degenerate transitions then it has only strongly

regular roots.

In the basis (3.4), bα = bij, 1 6 i < j 6 N and B0 is simply the diagonal

B0 =
N∑
k=1

bkkEkk =
N−1∑
k=1

( k∑
j=1

ibjj
)
(iHK) (3.7)

since B0 ∈ su(N) has to be traceless. The bjj (which must be purely imaginary) correspond

to loops on GB, i.e. to arcs beginning and ending on the same node. Thus they are irrelevant

for the connectivity property. In the basis (3.4), A and B are:

A =
N−1∑
k=1

( k∑
j=1

Ej
)
(iHk) (3.8)

B = B0 +
∑

(i,j)∈C+
B

(
b<ijXij + b=ijYij

)
(3.9)

1A permutation matrix P has elements that are 0 or 1, see [19]
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The following lemma is the adaptation to our situation of Theorem 2 and Corollary 2 of

[17]. Call fα = span {Xα, Yα}.

Lemma 3.1. B is P -irreducible ⇐⇒ {fα, α ∈ Γ+}L.A. = su(N)

The condition of Lemma 3.1 is “minimally” satisfied by a set of fundamental roots, although

due to the nonuniqueness of the selection of the fundamental roots, not all the α ∈ Φ have

to be in Γ+ for GB to be connected.

Corollary 3.1. If Φ ⊆ Γ+ then B is P -irreducible.

4 Sufficient conditions for controllability in the generic

case

Considerations similar to those used in the controllability analysis of normal real forms of

classical Lie algebras (see [12, 9, 8, 17]) can be employed for our compact real form as well.

In the case of free Hamiltonian of diagonal type, the connectivity property of the graph of

the forced term B can replace the Lie algebraic rank condition, see [9].

Lemma 4.1. If A is diagonal, a necessary condition for controllability is that GB connected.

In the case of GB disconnected, the quantum system is decomposable into noninteracting

subsystems 2.

The equivalence between {A, B}L.A. = su(N) and GB connected is not exact: while GB
connected is a necessary condition for controllability, alone it is not a sufficient condition,

but requires extra assumptions to be made on the diagonal matrix A. The simplest case

corresponds to the drift term A being strongly regular and corresponds to all nondegenerate

transitions.

Theorem 4.1. Given A and B as in (3.8) and (3.9), assume that GB is connected. If A is

strongly regular, then the system (2.3) is controllable.

A weaker property than strong regularity is B-strong regularity, introduced in [17].

Definition 4.1. Given B as in (3.5), A is said B-strongly regular if the elements α(H̃0),

α ∈ Γ+, are nonzero and distinct.

Unlike strong regularity, which requires all roots of ∆ to be nonnull and distinct when

computed in A, B-strong regularity requires the root decomposition determined by A to be

strongly regular only along the roots Γ+ entering into the decomposition of B: αij(H̃0) =

Ej −Ei 6= 0 if bij 6= 0. Obviously, A strongly regular means A is B-strongly regular for all B.

Theorem 4.1 is a particular case of the following:

2In Turinici [18] it is required that H̃1 is off-diagonal. The interpretation in terms of root decomposition
offered here shows that this assumption is irrelevant for controllability: the diagonal terms of H̃1 belong to
the Cartan subalgebra and as such they commute with A.
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Theorem 4.2. Given A and B as in (3.8) and (3.9), assume that GB is connected. If A is

B-strongly regular, then the system (2.3) is controllable.

An alternative extension of Theorem 4.1 is mentioned in [18]. If Π+
A is the set of positive

roots α(H̃0) that are strongly regular for A, call Θ+
A = Γ+∩Π+

A the subset of positive strongly

regular roots of Γ+ when computed in A and Ω+
A the corresponding complementary set in

Γ+ (i.e. the set of non strongly regular roots of Γ+): Ω+
A = Γ+

r Θ+
A. So B splits into

B = Br +Bs with Br = B0 +
∑

α∈Θ+
A

(
b<αXα + b=αYα

)
, the intersection of B with the strongly

regular roots, and Bs =
∑

α∈Ω+
A

(
b<αXα + b=αYα

)
.

Theorem 4.3. Given A and B as in (3.8) and (3.9), assume that GB is connected. If GBr
is connected, then the system (2.3) is controllable.

For controllability, it is sufficient that Θ+
A contains the fundamental roots, as in this case

GBr is connected by Corollary 3.1.

Corollary 4.1. If Φ ⊆ Θ+
A, then the system (2.3) is controllable.

Notice that the condition of Theorem 4.1 is the one traditionally used in the literature to

show that a generic pair of vector fields on compact semisimple Lie algebras are generating,

see [14, 4, 3]. For this purpose, given A strongly regular, B is constructed such that adA is

cyclic on
⊕

α∈∆+ fα, for example by having bα 6= 0 ∀α ∈ ∆+. This means that
⊕

α∈∆+ fα
can be spanned by “A-brackets” and thus all su(N) is generated by adding the elements of

the Cartan subalgebra. However, here the method is not directly applicable because some

of the bij elements of B are allowed to be zero. In this case, from
⊕

α∈Γ+ fα, the missing

subspaces must be reached by means of “B-brackets” [C, B], [[C, B], B] etc. and then their

span completed by single “A-brackets” [A, [C, B] ], [A, [[C, B], B] ], etc.

5 Sufficient conditions for controllability in a few sin-

gular cases

The use of “B-brackets” is the leit motif of all other sufficient conditions which are based on

properties weaker than the strong regularity and B-strong regularity of the diagonal vector

field A. These conditions belong to the first two cases of the classification of Section 3 and,

from Corollary 4.1, they correspond to at least a pair of fundamental roots being equal.

If new diagonal terms can be provided to compensate for the degenerate transitions, then

controllability can be recovered. From (3.6), the level two bracket [C, B] is

D = [C, B] = [C, B0] + [C, B1]

If B0 is nonnull and linearly independent from A, it constitutes the simplest candidate to

provide the missing fundamental roots. From (3.7), the fundamental roots at B0, α(B0), are

equal to βi,i+1 = bii − bi+1,i+1 when expressed in the basis (3.4). Restricting to the case (ii)
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of Section 3, i.e. assuming that the system is nondegenerate but with possibly degenerate

transitions, equivalent versions of Theorems 4.1 and 4.2 hold for B0 and C instead of A and

B.

Theorem 5.1. If A regular and GB connected, then either of the following conditions is

sufficient for controllability of (2.3):

1. B0 is strongly regular

2. B0 is C-strongly regular

One can think of weakening further the hypothesis of Theorem 5.1 by combining together

strongly regular pieces from both A and B0. To this end, analogously to what was done for

the diagonal matrix A, call Θ+
B the set of positive strongly regular roots α(B0) of Γ+ and Cr

the corresponding part of C: Cr =
∑

Θ+
B
α(A) (bαEα + b∗αE−α).

Theorem 5.2. Assume A regular and GB connected. If GBr ∪ GCr is connected then the

system (2.3) is controllable.

As last, we treat the case of Cartan subalgebras from level two brackets of A and B. Since

C is off-diagonal, the only useful bracket in this respect is [C, B].

If D0 is the diagonal part of D, then D = D0 +D1 and we can reformulated Theorem 5.1

with D0 replacing B0.

Theorem 5.3. If A regular and GB connected, then any of the following conditions is suffi-

cient for controllability of (2.3):

1. D0 is strongly regular

2. D0 is B-strongly regular

3. D0 is C-strongly regular

The practical situations in which Theorems 5.1-5.3 apply are when the system has resonant

modes (which, again, corresponds to the case (ii) in the classification of Section 3). The

extreme case is when Ei+1 − Ei = const ∀ i = 1, . . . n − 1 (nondegenerate system with all

equally spaced energy levels). It is treated for example in [16].
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