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Abstract

New model-based feedback control strategies are presented for the steering problem of

a quantum system. Both the infinite and finite dimensional cases are discusses. This

approach is illustrated by means of a simple spin system example.
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1 Introduction

Miniaturization of electronic circuits and devices, and recent advances in laser technology

have brought to the forefront the need and the possibility of controlling systems exhibiting

quantum mechanical features. Control of quantum systems is a rapidly growing and evolving

field whose applications include quantum computing, control of molecular dynamics, NMR,

design of semiconductor nanodevices, control of charged particles in beam accelerators, etc.,

see [1]-[22] and references therein.

Many important problems involve When the nonlinear problem can be numeri the state

(propagator) of the quantum system to a desired target. For instance, the design of exter-

nal control fields to prepare a quantum system in a selected state is a problem of primary
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importance in quantum information processing, e.g., for such crucial tasks as initializing a

quantum processor’s memory in a desired quantum logical state by preparing the underly-

ing physical system in the corresponding physical quantum state according to the selected

encoding. Preparation of superposition of states is of great interest in order to exploit its

inherent parallelism. An example is the preparation in many-particle qubit systems of en-

tangled states, which offer information manipulation that is not possible with the classical

binary bits [23].

The most effective strategies in classical control applications involve feedback control. The

implementation of classical feedback control for quantum systems, however, poses severe

challenges since quantum measurements tend to destroy the state of the system (wave packet

reduction) [24, 25]. Nevertheless, the possibility of continuous monitoring and manipulation

on the natural time-scale has recently become realistic for some quantum systems [26, 27, 28].

This may be viewed as a first substantial step in the direction of closing the gap between

quantum feedback control and classical control theory.

We outline in this paper a different approach to the control of quantum systems. We

develop namely model-based feedback control strategies that possess certain desirable prop-

erties such as rapid convergence of the state/propagator to the desired target employing

low control energy. Once the functional form of these feedback controls has been obtained,

plugging them back into the Schrödinger equation, we get a nonlinear initial value problem.

When the nonlinear problem can be numerically solved, we can construct explicitly the con-

trol functions and then implement them in open-loop on the physical system to achieve the

desired transfer (see Figure 1). More information on this approach may be found in our

Ref.
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Figure 1: A model of the system is employed in a computer simulation to derive, by means

of feedback control techniques, an open loop input for the actual physical quantum system

Q.S.

journal paper [29] where, however, only finite-dimensional systems are considered.

Quantum mechanics associates to each physical system a complex Hilbert space H. To

every (pure) state of the system there corresponds an equivalence class of unit vectors |ψ〉
in H called a ray, where |ψ〉 and |ϕ〉 are called equivalent if |ψ〉 = a |ϕ〉 for some complex
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number a of absolute value one. The evolution of the system is given by the Schrödinger

equation

ih̄
d

dt
|ψ(t)〉 = H(t) |ψ(t)〉 , (1.1)

where the Hamiltonian operator H(t) is a self-adjoint operator on H representing the energy

of the system. The self-adjointness of H(t) implies that the evolution is unitary so that

|ψ(t)〉 = U(t) |ψ0〉 , (1.2)

where {U(t)}t≥0 is a family of unitary operators on H. The Hamiltonian operator H(t)

is given as the sum of two self-adjoint operators H(t) = H0 + Hc(t), where H0 is the

unperturbed (internal) Hamiltonian and Hc(t) is the interaction (external) Hamiltonian.

2 Feedback control strategies for the steering problem

Let us consider the case where H = L2

c(R
n), namely the space of square-integrable, complex-

valued functions defined on Rn. Suppose that the internal and interaction Hamiltonians are

given by

H0 = [−1

2
∆ + V0(x)], Hc(t) = Vc(x, t), (2.3)

respectively, so that (1.1) takes the form

∂ψ

∂t
=
i

2
∆ ψ − i V (x, t)ψ, (2.4)

where ∆ is the Laplacian operator and ,as it is customary, we have chosen units so that

m = 1 and h̄ = 1.

Consider the following transfer problem: Let ψ0(x) be the initial state, and let ψf(x) be

a desired terminal state. We assume for simplicity that our target state is an eigenstate of

the ambient Hamiltonian so that ψf (x) satisfies the time-independent Schrödinger equation

[

−1

2
∆ + V0(x)− E

]

ψf = 0, (2.5)

where E has the dimension of energy. We seek a control potential Vc(x, t), t ≥ t0, in a

suitable class such that the solution ψ(x, t) of the controlled Schrödinger equation

∂ψ

∂t
=
i

2
∆ ψ − i [V0(x, t) + Vc(x, t)]ψ, ψ(x, t0) = ψ0(x), (2.6)

converges to the desired terminal state ψf(x). A simple idea to determine suitable Vc(x, t)

functions is the following. We seek control potential functions Vc(x, t) that will eventually

force a decrease of the L2 distance ||ψ(t) − ψf ||2. To this end, notice that (2.6) and (2.5)

yield
∂

∂t
(ψ − ψf ) =

i

2
∆(ψ − ψf )− iV0(x)(ψ − ψf )− iVc(x, t)ψ − iEψf . (2.7)
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This, in turn, gives

d

dt

[

1

2
||ψ(t)− ψf ||22

]

=
∫

Rn

<
[(

∂

∂t
(ψ − ψf)

)

(ψ − ψf )
∗

]

dx =

=
∫

Rn

<
[(

i

2
∆(ψ − ψf )− iV0(x)(ψ − ψf)− iVc(x, t)ψ − iEψf ,

)

(ψ − ψf )
∗

]

dx, (2.8)

where ∗ denotes conjugation. Integrating by parts, and taking into account the “natural

boundary condition”, we get

d

dt

[

1

2
||ψ(t)− ψf ||2

]

= −
∫

[Vc(x, t) + E]ψf (x)= (ψ(x, t)) dx. (2.9)

At this point it is apparent that there are many control potentials guaranteeing

d

dt

[

1

2
||ψ(t)− ψf ||2

]

≤ 0.

Two possible control strategies are the following:

V ′
c (x, t) = −E +K = (ψ(x, t)) , K > 0 (2.10)

and

V ′′
c (x, t) = −E +K sign[= (ψ(x, t))], K > 0. (2.11)

Clearly, neither strategy guarantees convergence of the solution of the Schrödinger equation

to the target state. Nevertheless, plugging the functional form of the control (2.10) or

(2.11) into equation (2.6), we get a nonlinear Schrödinger equation that may be numerically

integrated. We may then check whether convergenge has occurred. In some preliminary

simulation work in the case of a potential well (V0(x) = 0 if |x| ≤ a, V0(x) = +∞ otherwise)

convergence does occur.

In the next section we describe how this procedure can be adapted to a finite dimensional

quantum system (spin system).

3 Steering for the propagator of an n-level system

In the finite-dimensional case, we may choose a basis |ψ1〉 , |ψ2〉 , . . . , |ψn〉 in H. We can then

identify |ψ〉 with the corresponding vector of coefficients c̄ in C
n, and the operators H(t),

H0, Hc(t) with the corresponding Hermitian matrices. Similarly, we identify the propagator

U(t) with the corresponding unitary matrix. In many applications (see [14]), the interaction

Hamiltonian has the form

Hc(t) =
m
∑

i=1

Hiui(t), (3.12)
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where the Hi, i = 1, ..., m, are n×n Hermitian matrices, and the ui(t) are scalar real-valued

control functions representing the applied electromagnetic fields. The Schrödinger equation

(2.4) may then be replaced by

ih̄ ˙̄c(t) =

(

H0 +
m
∑

i=1

Hiui(t)

)

c̄(t). (3.13)

It now follows from (3.13) and (1.2)), that the propagator satisfies the same equation as c̄

U(t) (see Eq. (1.2)):

ih̄U̇(t) =

(

H0 +
m
∑

i=1

Hiui(t)

)

U(t), U(0) = I. (3.14)

In quantum computation, steering the propagator to a given terminal condition Uf corre-

sponds to implementating a specific logic gate, see [4]. As in the previous section, we seek

control functions ui(t) that will eventually force a decrease of the distance

‖U(t)−Uf‖tr,

‖ · ‖tr denoting the trace norm. By (3.14), setting h̄ = 1, we get

d

dt

[

1

2
‖U(t)−Uf‖2

tr

]

=
1

2
tr
[

(U∗(t)−U∗
f )U̇(t) + U̇∗(t)(U(t)−Uf)

]

= <
{

tr

[

iU∗(t)

(

H0 +
m
∑

i=1

Hiui(t)

)

(U(t)−Uf)

]}

= −=
{

tr

[

U∗(t)

(

H0 +
m
∑

i=1

Hiui(t)

)

Uf

]}

,

= −={tr [U∗(t)H(t)Uf ]}

= −={tr [U∗(t)H0Uf ]} −
m
∑

i=1

ui(t)={tr [U∗(t)HiUf ]}(3.15)

The first term in the right hand side does not depend explicitly on the control functions ui(t).

It is therefore natural to look for control functions that make the second term nonpositive.

Among all such strategies, the simplest appears to be the following

ui(t) = Ki sign {= {tr [U∗(t)HiUf ]}} , Ki > 0, i = 1, 2, . . . , m, (3.16)

where the control function ui(t) only takes the values ±Ki. Plugging (3.16) into (3.14), we

get the nonlinear initial value problem

iU̇(t) =

(

H0 +
m
∑

i=1

HiKi sign {= {tr [U∗(t)HiUf ]}}
)

U(t), (3.17)

U(0) = I. (3.18)
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If, integrating (3.17), we find that indeed U(t) converges to Uf , we can determine the control

functions {ui(t); 0 ≤ t ≤ T, i = 1, . . . , m} through (3.16). These controls can then be applied

to the physical system in open loop.

Again, although convergence is not guaranteed, we may get satisfactory results in some

specific applications. In the next section, we present a case study.

4 Controlling a spin 1/2 particle by one electro-magnetic

field

In order to illustrate the effectiveness of our control strategies, we consider here the simple

case of a spin 1/2 particle controlled by varying only one component of the electromagnetic

field. Assuming that we can only vary the external field in the y direction, the propagator

evolution (setting h̄ = 1) is

iU̇(t) = σzU(t) + σyU(t)u(t), U(0) = I, (4.19)

with σx =

(

0 1

1 0

)

, and σy =

(

0 −i
i 0

)

. We seek a command input u(t) that will drive

(4.19) to the unitary matrix

Uf =

(

0 − exp(−iϕ)

exp(iϕ) 0

)

, (4.20)

for some phase factor ϕ. The same case study has been discussed by D. D’Alessandro and

M. Dahleh in [14] in the context of a general theory of optimal control of two-level quantum

systems. We now apply the simple feedback control (3.16) to this problem. Since U(t) is

special unitary (determinant equal to one), it has the form [31]

U(t) =

(

x1(t) x2(t)

−x̄2(t) x̄1(t)

)

. (4.21)

We compute tr [U∗(t)σyUf ] and get

tr [U∗(t)σyUf ] = −i [x1(t) exp(−iϕ) + x̄1(t) exp(iϕ)] .

Thus, the control (3.16) has the form

u(t) = 2K sign {< [x1(t) exp(−iϕ)]}
= 2K sign {< [x1(t)] cosϕ+ = [x1(t)] sinϕ} , K > 0. (4.22)

Notice that at this stage we still have one degree of freedom: the parameter ϕ may be chosen

in order to get the best performance. In Figure 2, we show the evolution of the elements of

U(t) corresponding to the control (4.22) with 2K = 1 and ϕ = 0.
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Figure 2: Time evolution of <[x1(t)], (solid line) =[x1(t)], (dashed line) <[x2(t)], (dotted

line) and =[x2(t)] (dashdot line) with 2K = 1 and ϕ = 0.

Under the action of this control function, the propagator reaches (with a very good approx-

imation) a matrix of the form (4.20) at approximately the same time T = π/
√

2 imposed in

[14]. For further details, see [29].
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