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Abstract

We study the effect of dissipation, i.e., uncontrollable interactions of a quantum sys-
tem with the environment, on one’s ability to control the system. In particular we show
that dissipation, although often considered undesirable, opens up unique possibilities
for quantum control by removing the constraint of unitary evolution, which restricts
the set of reachable states and imposes bounds on the optimization of observables.

1 Density operators and mixed quantum states

In pure-state quantum mechanics the state of the system is usually represented by a (nor-

malized) wavefunction |Ψ〉, which is a (unit) vector in a Hilbert space H. For dissipative

systems the state must be represented by a density operator ρ acting on the Hilbert space

H instead. If the system is in the pure state |Ψ〉 then ρ is simply the projector onto this

state, i.e., ρ = |Ψ〉〈Ψ|. However, the density operator formalism enables us to deal with

more general states of the system such as (statistical) ensembles of quantum states. Given

a quantum system where a fraction w1 of the system is in the state |Ψ1〉, a fraction w2 in

the state |Ψ2〉, etc., we can represent the state by a density operator ρ =
∑N

n=1 wn|Ψn〉〈Ψn|,
where 0 ≤ wn ≤ 1 and

∑N
n=1 wn = 1. The states of the ensemble must be orthonormal.

Hence, N ≤ dimH, but we may assume N = dimH since we can enlarge a smaller set of

independent quantum states to form a basis of the Hilbert space H by adding states with

probability wn = 0. A density operator with rank greater than one represents a non-trivial

ensemble, called a mixed state, which cannot be expressed as a wavefunction.

Let En be the eigenvalues of the internal Hamiltonian H0 of the system and |n〉 be the

corresponding eigenstates such that H0|n〉 = En|n〉. We shall only consider quantum systems

with a finite number of discrete energy levels here. The energy levels may be degenerate but

we assume that the eigenstates |n〉 are chosen such that they form a complete orthonormal

set for H. We can expand the density operator ρ with respect to the eigenstates |n〉

ρ =
N∑
n=1

ρnn|n〉〈n|+
N∑
n=1

∑
n′>n

(ρnn′|n〉〈n′|+ ρ∗nn′|n′〉〈n|). (1.1)

The diagonal elements ρnn in this matrix representation of ρ determine the populations of the

energy eigenstates |n〉, while the off-diagonal elements ρnn′ (n 6= n′) determine the coherences

between the eigenstates. The latter distinguish coherent superpositions of energy eigenstates

|Ψ〉 =
∑N

n=1 cn|n〉 from statistical ensembles of energy eigenstates ρ =
∑N

n=1 wn|n〉〈n|.
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2 Dynamics of dissipative systems

For a non-dissipative system the evolution of the density matrix ρ is governed by ρ(t) =

U(t, t0)ρ(t0)U(t, t0)†, where the evolution operator U(t, t0) satisfies the Schrodinger equation

i~ d
dt
U(t, t0) = H[~f(t)]U(t, t0). ρ also satisfies the quantum Liouville equation

i~ρ̇ = [H[~f(t)], ρ] = H[~f(t)]ρ− ρH[~f(t)] with H[~f(t)] = H0 +
M∑
m=1

fm(t)Hm, (2.2)

where H0 is the internal Hamiltonian, Hm (1 ≤ m ≤ M) is the interaction Hamiltonian for

the field fm, and H is the total Hamiltonian of the (non-dissipative) control system.

When a quantum system interacts with the environment, two types of dissipation occur:

phase relaxation and population relaxation. Phase relaxation or dephasing results when

interactions of the system with the environment destroy the phase correlations between

quantum states, which leads to a decay of the off-diagonal elements of the system’s density

matrix:

i~ρ̇kn(t) = ([H, ρ])kn − i~Γknρkn (2.3)

where Γkn (for k 6= n) is the dephasing rate between |k〉 and |n〉. Population relaxation

occurs, for instance, when an excited state |n〉 with En > E1 spontaneously emits a photon

and decays to a less excited quantum state |k〉. It affects both the populations of the energy

eigenstates |n〉, i.e., the diagonal elements of the density matrix ρ, and the coherences, i.e.,

the off-diagonal elements. The rate γkn of population relaxation from state |n〉 to |k〉 depends

on the lifetime of the excited state, and in case of multiple decay pathways, the probability

for the particular transition. Population relaxation forces us to modify the equations of

motion for the diagonal elements of ρ:

i~ρ̇nn(t) = ([H, ρ])nn − i~
∑
k 6=n

γknρnn + i~
∑
k 6=n

γnkρkk (2.4)

Since population relaxation induces phase relaxation, the off-diagonal elements of ρ must be

modified as well (as discussed above) where the total dephasing rate Γnk is 1
2
(γnk+γkn)+Γ̃nk.

Γ̃kn is the pure dephasing rate for the coherence ρkn and 1
2
(γnk + γkn) is the dephasing rate

induced by population relaxation between the states |n〉 and |k〉.
Adding population relaxation and dephasing leads to the quantum Liouville equation for

a driven, dissipative quantum system

i~ρ̇(t) = [H0, ρ] +
M∑
m=1

fm(t)[Hm, ρ]− i~LD(ρ), (2.5)

where LD(ρ) is the dissipation (super)operator.
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3 Dissipation and entropy

One of the main consequences of dissipation is that interactions of the system with a bath

(environment) can change the entropy of the system. The most useful measure of the entropy

for our purposes is the Renyi entropy. Technically, there is a family of Renyi entropies

Sα(ρ) = 1
1−α Tr(ρα), where α > 1 is a real parameter. We choose α = 2 and define S(ρ) =

S2(ρ) + 1 = 1−Tr(ρ2). Adding +1 ensures that the Renyi entropy of a pure-state system is

zero and agrees with the von-Neumann or Shannon entropy.

For a coherently driven, non-dissipative quantum system, the constraint of unitary evolu-

tion partitions the set density operators into infinitely many kinematical equivalence classes

of density operators with the same spectrum. The entropy of a non-dissipative, coherently

driven quantum system is therefore conserved. For the Renyi entropy this follows directly

from the fact that unitary transformations are trace-preserving. By applying coherent control

fields, we can steer the system from one state ρ0 to other states ρ1 in the same kinematical

equivalence class but we cannot reach states with different entropy [1].

By removing the constraint of unitary evolution, dissipation provides new opportunities

for control by allowing us to reach states outside the kinematical equivalence class of states

determined by the initial state, especially states whose entropy differs from the initial state.

Pure dephasing, for instance, converts a coherent superposition state into an uncorrelated

statistical mixture of energy eigenstates. Hence, dephasing enables us, in principle, to con-

vert any given pure state into an arbitrary mixed state by creating a superposition state

using coherent control, and letting the coherences decay. Population relaxation allows us,

in principle, to convert a high entropy mixed state into a (zero entropy) pure state and vice

versa. In the following sections, we shall present several applications of quantum control

which rely on dissipation.

4 Conversion of a pure state into a mixed state

In absence of population relaxation, a coherent superposition of energy eigenstates |Ψ〉 =∑N
n=1 cn|n〉 with

∑N
n=1 cnc

∗
n = 1 decays into a statistical mixture of the states |n〉 with dis-

crete probability distribution wn = |cn|2 for 1 ≤ n ≤ N as a result of pure dephasing. For

dephasing times much greater than the control time we can design a control field that trans-

forms the initial state into the required coherent superposition without worrying about the

effect of dephasing, and then turn the field off to let dephasing transform this superposition

state into the desired mixed state. However, if significant dephasing occurs during the co-

herent control phase, either due to rapid dephasing, or because the coherent control process

takes too long, then this approach will fail.

For instance, consider a system with two non-degenerate energy levels. Suppose we wish to

transform the initial pure state |1〉 into an equal and uncorrelated mixture of the states |1〉
and |2〉. Based on geometric control theory for non-dissipative systems, we might attempt
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to apply a resonant Gaussian control pulse with effective pulse area π
2
, which would create

the superposition state |Ψ〉 = 1√
2
(|1〉 + |2〉) in the non-dissipative case, and hope that this

state will decohere into the desired mixed state due to dephasing. Unfortunately, our control

calculations indicate that this scheme will definitely fail for dephasing rates of the order of

the Rabi frequency of the control pulse. Straight-forward optimization with respect to the

effective pulse area and length of the control pulse, however, indicate that the pulse length

and pulse area can be chosen as to achieve the desired result. For instance, by increasing

the effective pulse area of a Gaussian pulse lasting 50 vibrational periods from the predicted

value of π
2

to 0.81π, we were able to create the desired maximum entropy state for a dephasing

rate Γ = 0.1 in just over 50 vibrational periods.

5 Conversion of a mixed state into a pure state

An even more important application of controlled dissipative dynamics in quantum optics is

optical pumping to drive a mixed-state system into a desired pure state using a combination

of coherent control and population relaxation from an excited state. For instance, suppose

we have a cloud of cold atoms whose electronic ground state is three-fold degenerate. If the

system is not prepared in a particular pure state, it will usually be in a statistical mixture of

the three degenerate substates, which we denote by |1〉, |2〉 and |3〉 for simplicity. For many

applications, e.g., in quantum computing, it is crucial to prepare the system in a certain pure

initial state. As we have seen, this is an aim impossible to realize by coherent control alone.

To be able to take advantage of spontaneous emission to increase the purity of the system,

we must couple the ground state to an excited electronic state with a finite lifetime. There

are different ways of coupling the sublevels of the ground and excited states, depending on

the polarization of the field. The trick is to select the right coupling.

For example, suppose the upper level is also three-fold degenerate and the coupling induced

by the control field is as indicated in figure 1, i.e., the field couples states |2〉 and |5〉, as

well as |3〉 and |6〉. The excited states can emit a photon and return to one of the ground

states. Certain transitions are prohibited by atomic selection rules; the allowed decay modes

are indicated in figure 1 (right). The simplest optical pumping schemes involve applying

a constant amplitude field resonant with the transition frequency between the two levels

and suitably polarized to couple only the levels indicated in figure 1. Without population

relaxation due to spontaneous emission, the field merely leads to population cycling between

states |2〉, |5〉, and |3〉, |6〉, respectively. Adding population relaxation changes the effect of

the control field dramatically, leading to an accumulation of the population in state |1〉 as

figure 2 shows. If the control field is applied for a sufficiently long time, all the population

will eventually accumulate in state |1〉.
In the previous optical pumping scheme a simple constant amplitude resonant control field

was sufficient to achieve the objective of driving the system into the desired pure state.

However, this is not always the case. An application of optical pumping for dissipative
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Figure 1: Optical pumping for a degenerate two-level system. Transition diagrams for the

control field and population relaxation
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Figure 2: Optical pumping for a degenerate two-level system. Without population relaxation,

the coherent control field induces population oscillations between states |2〉 and |5〉 as well

as |3〉 and |6〉 (Rabi oscillations) and the entropy of the system remains constant (left).

Population relaxation dramatically changes the effect of the control field, leading to an

effective pumping of population into the lower left sublevel |1〉, and an entropy reduction as

the system approaches a pure state (right).
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systems, which relies on the interplay of carefully selected control pulses and dissipation, is

laser cooling of internal molecular degrees of freedom. A molecular gas at room temperature

consists of a statistical mixture of molecules in many different ro-vibrational states. Due

to many closely spaced energy levels and lack of selection rules, there are many possible

transitions with various transition probabilities that can be excited by applying a control

field, and many different decay pathways. The situation is further complicated by the fact

that the timescales for coherent control and population relaxation are often quite different.

The problem thus appears to be nearly hopeless. Yet, it has been shown that this problem can

be addressed successfully using optimal control for dissipative systems and creative control

strategies [2, 3].

An approach that is especially promising for systems where the timescales for control and

dissipation are quite different (as in our molecular cooling problem) involves breaking up the

control problem into a sequence of excitation and relaxation steps. The goal in each step is

to use control theory to design control fields to transfer the system from its initial state to a

kinematically equivalent, dynamically reachable state, which has the same entropy but will

(possibly after some time) decay into a state with lower entropy. In principle, the entropy of

the system can be decreased until it is zero and the system is the desired pure state. The main

difficulty of this approach is the choice of suitable target states for each optimization step,

which requires a good understanding of the effects of population relaxation and dephasing

on various kinematically equivalent states, in order to assure that the selected states will

decay into a lower entropy state.

6 Conclusion

We have presented a general framework for coherent control of dissipative quantum systems,

and have shown that dissipative effects open new possibilities for control by eliminating the

kinematical constraint of unitary evolution. This allows us to change the entropy of the

system and convert pure states into mixed states and vice versa, which is crucial for many

applications in quantum optics, chemistry and computing. We hope that these applications

will provide a motivation for further study of the control of dissipative systems.
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