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Abstract

As for pseudo-differential operators of diffusive type in continuous time, diffusive
filters in discrete time have been introduced for the fractional difference filter and for
other discretizations of fractional integrals. The impulse response of diffusive filters can
be decomposed on a continuous family of geometric sequences with weight µ. Using
this diffusive symbol µ in a diffusive realization – in the sense of systems theory – helps
transforming a non-local in time difference equation into a first order difference equation
on an infinite-dimensional state-space, endowed with a Hilbert structure, which allows
for positivity, dissipativity, asymptotic and stability analysis.

In the present paper, this framework is extended to filters of the form: H(z) =
1
2(1 − eiθz−1)−α + 1

2(1 − e−iθz−1)−α for |z| > 1. The impulse response of such filters
is oscillating with a slowly decreasing amplitude. We show that these filters are a
continuous aggregation of positive oscillating filters. Hence, these filters are positive
and have a dissipative realization. This enables to prove both the external and internal
stabilities of some coupled systems involving a rational filter and such an oscillating
diffusive filter in the feedback loop, thus extending the results when θ = 0.
Keywords: diffusive representations, discrete time, positivity, dissipativity, Lyapunov
functionals, asymptotic analysis, stability analysis.

1 Introduction and definition of oscillating diffusive

filters

Discrete-time second order fractional filters such as HGB(z) = (1 − 2 cos θ z−1 + z−2)−α are

generally used in time-series analysis to model long memory processes with seasonal effects

(see [11] who has applied this methodology on sunspot data, exposed in [19]). There are

mathematical reasons to use this kind of processes in such cases (see [10]).

The behaviour of similar continuous-time operator has been analysed (see [12], and [13]

for a more involved study). An abstract framework can also be found in [15].

Continuous-time diffusive operators are defined as a continuous aggregation of purely

damped dynamics, such an idea is not new: it has been used by [17] on fractional operators

and on completely monotonic operators in [1], in [8] and in [18] thanks to Bernstein theorem

1



(see [20]). Extensions of this idea to time-varying systems and to non-linear systems can be

found in [14]. Various applications exist (see [16]). Some also deal with random processes [3].

In this paper, only causal filters are considered, which enables to use the same notation

for transfer functions and for operators. Only real-valued filters are considered, even though

the realization might use a complex-valued state.

The following definition of oscillating diffusive filter generalises the systems described in

[13], it is very close to equation (45) of [5]1 (or to equation (25) of [5] in a continuous-time

framework). The following definition can be reinterpreted as a special case of second order

diffusive filters, as exposed in [15].

Definition 1.1. Hθ is an oscillating diffusive filter of angular frequency θ and diffusive

symbol µ ∈ L1(0, 1) if (1.1) or (1.2) applies to Hθ.

h0 and ∀n ≥ 1 hn = �e

(∫ 1

0

einθµ(ρ)ρn−1 dρ

)
; (1.1)

H(z) = h0 +
1

2
eiθz−1

∫ 1

0

µ(ρ)dρ

1 − ρeiθz−1
+

1

2
e−iθz−1

∫ 1

0

µ̄(ρ)dρ

1 − ρe−iθz−1
, for |z| > 1 (1.2)
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Figure 1: Impulse responses of HFI,θ (+) and of HGB (◦) for α = 0.4 and θ = 0.2. The graph shows that
the amplitude of the oscillation is slowly decreasing.

When θ = 0, this definition coincides with the classical definition of diffusive filters [5],

an example of which is HFI = (1 − z−1)−α (i.e. FI stands for fractional integral). The two

examples of oscillating diffusive filters exposed in [5] are

HFI,θ(z) =
1

2
(1 − eiθz−1)−α +

1

2
(1 − e−iθz−1)−α (1.3)

HGB(z) = (1 − 2 cos θ z−1 + z2)−α (1.4)

1The exponent on eiθ is here n instead of n − 1 in equation (45) of [5]; in fact, this choice makes the
sufficient condition for positivity more easy to write (see §2).
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Definition 1.1 applies with µFI(ρ) = sin(απ)
π

ρα(1−ρ)−α and µGB(ρ) = 2 sin(απ)
π

ρ2α(1−ρ)−α(ρ−
e−2iθ)−α. Both filters have analytical continuations with branching points in z = 0, z = eiθ

and z = e−iθ. As pointed out earlier in [12], these branching points entail the non-standard

behavior. Indeed, their impulse responses are oscillating at angular frequency θ with a slowly

decreasing amplitude. Their impulse responses are shown on figure 1.

Oscillating diffusive filters have infinite-dimensional realizations with a special Markov

structure.

Definition 1.2. The diffusive realization of an oscillating diffusive filter Hθ with feedthrough

h0 is defined by:

{
ϕn+1(ρ) = ρeiθ ϕn(ρ) + vn with ρ ∈ I , ϕ0 ∈ H and n ≥ 0

yn = �e
(∫

I
µ(ρ)eiθϕn(ρ) dρ

)
+ h0 vn

and H =
{
ϕ | supp(ϕ) ∈ I and

∫
I
|µ(ρ)ϕ2(ρ)| dρ < +∞

}
is the Hilbert space

H = L2(I, |µ|dρ).

(1.5)

vn and yn are the real-valued input and output respectively, ϕn is a function of ρ mapping I

into C, (the state of the system). I is the smallest closed subset outside which µ is zero.

The following proposition proves that equation (1.5) is a realization of oscillating diffusive

filters as defined in 1.1.

Proposition 1.1. These equations can be expressed as an [A,B, C,D]-system where A, B,

C and D are continuous linear operators, respectively from H to H , from R to H , from H to

R and from R to R . This system has internal asymptotic stability for the topology associated

to H in that the free-evolution of the state ϕn vanishes for initial condition ϕ0 in H.

Proof. The output yn is the convolution of the impulse response hn by the input vn: yn =∑n−1
k=0 hn−kvk + h0vn . With (1.1) and after exchanging the sum and the integral, this expres-

sion becomes: yn =
∫

I
µ(ρ)

∑n−1
k=0 ρn−kei(n−k)θuk dρ + h0un . Let ϕn(ρ) =

∑n−1
k=0 ρn−kei(n−k)θuk

and ϕ0(ρ) = 0, thus (1.5) is proved.

When θ = 0, this realization coincides with the classical diffusive realization (cf [5]).

2 Positivity issue and energy stability of coupled sys-

tem

Positivity means that the input-output relation (vn �→ yn) of a causal filter satisfies
∑

n vnyn ≥
0. As for finite-dimensional filters, it has been shown in [4, appendix B] that for diffu-

sive filters also, positivity reads ∀|z| ≥ 1 �e (H(z)) ≥ 0, under a technical assumption

µ(ρ) ln( 1
1−ρ

) ∈ L1(0, 1) ; this proof can be extended to oscillating diffusive filters.
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The following proposition gives a sufficient condition on oscillating diffusive filters for

positivity. The key idea of the proof is that this condition enables to express such filters as

a continuous aggregation of positive filters.

Proposition 2.1. Let Hθ be an oscillating diffusive filter with diffusive symbol µ.

If µ is a real-valued and positive function such that h0 ≥
∫ 1

0
µ(ρ)
1+ρ

dρ, then Hθ is positive:

∀|z| ≥ 1, �e
(
Hθ(z)

)
≥ 0.

Proof. Simple algebraic computations lead to

Hθ(z) = h0 −
∫ 1

0

µ(ρ)

1 + ρ
dρ +

1

2

∫ 1

0

µ(ρ)

1 + ρ

1 + eiθz−1

1 − ρeiθz−1
dρ +

1

2

∫ 1

0

µ(ρ)

1 + ρ

1 + e−iθz−1

1 − ρe−iθz−1
dρ (2.6)

1+z−1

1−ρz−1 are positive filters, (indeed when z lies outside the unit disk, arg(1+z−1) and arg(1−
ρz−1) lie both in [−π

2
, π

2
] and have the same sign). Substituting eiθz to z and then substituting

e−iθz to z proves that ∀|z| > 1, �e
(

1+eiθz−1

1−ρeiθz−1

)
≥ 0 and �e

(
1+e−iθz−1

1−ρe−iθz−1

)
≥ 0.

Hence (2.6) shows that Hθ is a continuous aggregation of positive filters.

HFI,θ fulfills the sufficient condition of proposition 2.1, whereas HGB does not. Now both

filters are positive (see their Nyquist diagrams on figure 2). This suggests that proposition 2.1

is quite restrictive, remark 2.1 enlights why it is difficult to extend the result.
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Figure 2: Nyquist diagram of HFI,θ on the left-hand side and of HGB on the right-hand side.

Remark 2.1. Extension of proposition 2.1 to an oscillating diffusive filter with a positive

measure as diffusive symbol, µ(ρ) = 2δ(ρ − 1), and feedthrough h0 = 1, shows that

Rθ(z) = 1
2

1+eiθz−1

1−eiθz−1 + 1
2

1+eiθz−1

1−eiθz−1 = 1−z−2

1−2 cos(θ)z−1+z−2 is a positive filter and has two poles on the

unit circle. In fact in [2], a necessary condition for such second order rational filters to be

positive is derived from an asymptotic analysis: (1 − eiθz−1)Rθ(z) must have a positive real

limit when z → eiθ with |z| ≥ 1. And indeed it has, since: (1 − eiθz−1)Rθ(z) → 1.
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That pure oscillating filters can be positive is not specific to discrete time: s
s2+θ2 is also a

positive causal oscillating operator. Indeed its inverse is s + θ2

s
, which is the sum of two

positive operators.

Positivity is a property that can be used to prove energy stability of coupled systems.

The classical positivity theorem (cf : [21]) assumes the input strict positivity of a system

and the positivity of another, or it assumes the positivity of a system and the output strict

positivity of the other. The following proposition is based on the same idea and requires

weaker assumptions. Note that for a filter H, input strict positivity means that there exists

κ such that �e (H) ≥ κ and output strict positivity means that there exists κ > 0 such that

�e (H) ≥ κ|H(z)|2. Moreover the input strict positivity of H is equivalent to the output

strict positivity of the inverse of H, namely, �e
(

1
H(z)

)
≥ κ.

Proposition 2.2. Let H1 and H2 be two positive filters.

If there exists K1 and K2 a partition2 of the exterior of the unit disc E such that z ∈ K1 ⇒
�e (H1(z)) ≥ κ1 (i.e. input strict positivity on K1) and z ∈ K2 ⇒ �e (H2(z)) ≥ κ2|H2(z)|2
(i.e. output strict positivity on K2) with κ1 and κ2 any two positive constants.

Then HS = H2

1+H1H2
is energy-stable: |HS(z)| ≤ 1

min(κ1,κ2)
.

Proof. It stems from simple computations on HS = 1
1

H2
+H1

.

H

y

−

Su w vqFI,

1−z−1

Figure 3: HS1 is the interconnection of two positive subsystems.

The coupled system S1 with HS1(z) = HFI,θ(z)
1+(1−z−1)HFI,θ(z)

is shown on figure 3. Proposition 2.2

proves the energy stability of HS1 because (1 − z−1) is input strictly positive outside a

neighborhood of z = 1 and HFI,θ(z) is input strictly positive on a small neighborhood of

z = 1. Its impulse response is shown on figure 5, it is oscillating and the amplitude of the

oscillations are slowly decreasing.

The coupled system HS2(z) = Rθ(z)
1+HFI(z)Rθ(z)

is shown on figure 4. Proposition 2.2 proves

the energy stability of HS2(z) = Rθ(z)
1+HFI(z)Rθ(z)

because of the input strict positivity of HFI .

Its impulse response is also shown on figure 5, it vanishes quickly. The reason is that Rθ has

2
E = K1

⋃
K2 and K1

⋂
K2 = Ø
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Figure 4: HS2 is the interconnection of two positive subsystems.

a zero of order two at z = 1 that kills the singularity of HFI . This issue is studied more in

depth in [4, chapter 6] on coupling systems involving non-oscillating diffusive filters.
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Figure 5: Impulse responses of two coupled systems HS1(z) = HF I,θ(z)
1+(1−z−1)HF I,θ(z)

on the left-hand side

and HS2(z) = Rθ(z)
1+HF I(z)Rθ(z)

on the right-hand side. The impulse response of HS1 has slowly decreasing
oscillations whereas the impulse response of HS2 vanishes quickly.

3 Dissipativity and internal stability of coupled sys-

tems

Dissipativity is related to a realization of a filter. It does imply positivity of the filter. The

reverse is sometimes also true. For rational filters, the Kalman-Yacubovich-Popov lemma

states the dissipativity of any minimal realization of any positive rational stable filter. The

proof can be found in [2] or in [9]. For diffusive filters, [6] shows that positivity implies

the dissipativity of the diffusive realization when the diffusive symbol is of constant sign.

Now for oscillating diffusive filters, the following proposition shows the dissipativity of the
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diffusive realization when the sufficient condition of proposition 2.1 is fulfilled.

Proposition 3.1. Let H be an oscillating diffusive filter with diffusive symbol µ and with

feedthrough h0.

If µ is real-valued and if e0 = h0 −
∫ 1

0
µ(ρ)dρ
1+ρ

≥ 0,

then the diffusive realization of H is dissipative: there exists a Lyapunov functional which

satisfies:

a. V is positive and coercive: V (ϕ) > 0 when ϕ �= 0, and V (0) = 0 and V (ϕ) → +∞ as

‖ϕ‖H → +∞ .

b. V (ϕn+1) − V (ϕn) ≤ vnyn

In fact V (ϕ) = 1
2

∫
I
µ(ρ)|ϕ(ρ)|2 dρ = 1

2
‖ϕ‖2

H
.

Sketch of the proof. Equation (2.6) shows that Hθ − e0 is a continuous aggregation with

weight µ(ρ)
1+ρ

of second order dissipative filters, namely Hθ
ρ(z) = 1

2
1+eiθz−1

1−ρeiθz−1 + 1
2

1+e−iθz−1

1−ρe−iθz−1 .

Vρ(ϕn) = 1+ρ
2
|ϕn|2 reveal their dissipativity. The expected result then follows.

3.1 Analysis of system S1

The following system is a minimal representation of the input-output relation vn �→ yn =

vn − vn−1 with state Xn = vn−1{
Xn+1 = 0 × Xn + vn with X0 ∈ R

yn = −Xn + vn

This system is dissipative for E(Xn) = 1
2
X2

n. Indeed E(Xn+1) − E(Xn) = 1
2
v2

n − 1
2
v2

n−1 ≤
v2

n − vnvn−1 = vnyn .

A realization of HS1 is


ϕn+1 = ρeiθϕn(ρ) + wn with ϕ0 ∈ H

vn = �e
(∫ 1

0
µ(ρ)eiθϕn(ρ) dρ

)
+ h0wn

yn = vn − vn−1

wn + yn = 0

(3.7)

Figure 6 is a simulation of (3.7), it shows the evolution of the state for an initial condition

ϕ0. This figure illustrates that the sequence of functions ϕn vanishes on any compact subset

contained in [0, 1). However, ϕn(1) does not tend towards zero.

3.2 Analysis of System S2

From remark 2.1 and definition 1.2, a minimal realization of Rθ with state Xn is{
Xn+1 = eiθXn + wn with X0 ∈ C

vn = �e
(
eiθXn

)
+ wn
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Figure 6: Simulation of a realization of HS1 for α = 0.4, ϕ0(ρ) = 1 + |ρ − 0.5|−0.1 and θ = 0.2. The
sequence of functions ϕn(ρ) is shown on the vertical axis with time n on the right and ρ on the left.

Application of proposition 3.1 to µ(ρ) = 2δ(1 − ρ) this system is dissipative for E(Xn) =
1
2
|Xn|2.

A realization of HS2 is 


Xn+1 = eiθXn + wn with X0 ∈ C

vn = �e
(
eiθXn

)
+ wn

ϕn+1 = ρϕn + vn with ϕ0 ∈ H

yn =
∫

µϕndρ + h0vn

wn + yn = 0

(3.8)

Figure 7 is a simulation of (3.8), it shows the evolution of the state for an initial condition

ϕ0. The sequence of functions ϕn vanishes on any compact subset contained in [0, 1) at a

geometric speed. Unlike on figure 6, ϕn(1) also tends to zero but with a bigger speed.

The following theorem proves the dissipativity of both realizations (3.7) and (3.8), thanks

to dissipativity of HFI,θ, 1 − z−1 and HFI , Rθ.

Theorem 3.1. Let HΦ be an interconnection between a dissipative oscillating diffusive filter

with state ϕn (i.e. a function) and a dissipative finite dimensional filter with state Xn (a

vector). The state of HΦ is Φn = (Xn, ϕn). The internal stability of HΦ is revealed by the

Lyapunov function E(Φn) = V (ϕn) + E(Xn) in the sense that:

∀ε > 0, ∃γ, such that ‖Φ0‖HΦ
≤ γ ⇒ ∀n ≥ 0, ‖Φn‖HΦ

≤ ε

where HΦ is the extended Hilbert space inferred from ‖Φ‖2
HΦ

= ‖ϕ‖2 + XTX.

Sketch of the proof. E(Φn) decreases along the free trajectories of HΦ: E(Φn+1)−E(Φn) =

V (ϕn+1) − V (ϕn) + E(Xn+1) − E(Xn) ≤ 0.

8



0
0.2

0.4
0.6

0.8
1

0

2

4

6

8

10

0

0.5

1

1.5

2

2.5

3

Figure 7: Simulation of a realization of HS2 for α = 0.4, ϕ0(ρ) = 1 + |ρ − 0.5|−0.1 and θ = 0.2. The
sequence of functions ϕn is shown on the vertical axis with n on the right and ρ on the left.

4 Conclusion and prospects

A sufficient condition on diffusive symbols of oscillating diffusive filters has been stated. It

ensures positivity and dissipativity of these systems. It also reveals the input-output energy

stability and the internal stability of such systems, when coupled with dissipative finite di-

mensional systems.

The sufficient condition seems a little restrictive, since it concerns only real-valued diffusive

symbols. Now the cut joining the branching points z = 0 and z = eiθ needs not be a straight

line. Concerning HGB, it is conjectured that the cut can be chosen so that the corresponding

diffusive symbol is positive and fulfills the sufficient condition.

Other prospects are to extend the results of [6], [7] to oscillating diffusive filters and to see

whether these claims are true:

• The diffusive realization of a strictly positive diffusive filter is asymptotically stable

under a technical condition.

• A positive oscillating diffusive filter coupled with a positive rational filter is the sum

of a stable rational filter and an other oscillating diffusive filter that is BIBO stable.

This coupled system is therefore BIBO stable.

• In the realization of these coupled systems, the asymptotic behaviour of the input and

output of the diffusive filters can be determined by the asymptotics of µ and ϕ0.

In [4], there is another result that may also be extended.

• Gaussian white noise filtered by oscillating diffusive filters produce long-memory pro-

cesses with seasonal effect: the autocorrelation is oscillating with slowly decreasing

amplitude.
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de l’informatique, Dunod, 1979.

[10] G. Oppenheim, M. Ould Haye, and M.-C. Viano. Long memory with seasonal effects. Statistical
Inference for Stochastic Processes, 3:53–68, 2000.

[11] H.L. Gray, N.-F. Zhang, and W.A. Woodward. On generalized fractional processes. Journal
of Time Series Analysis, 10(3):233–257, 1986.

[12] D. Matignon. Generalized fractional differential and difference equations: stability properties
and modelling issues. In Mathematical Theory of Networks and Systems symposium, pages 503–
506, Padova, Italy, July 1998. mtns.

[13] D. Matignon. Stability properties for generalized fractional differential systems. ESAIM: Pro-
ceedings, 5:145–158, December 1998. URL: http://www.emath.fr/Maths/Proc/Vol.5/.

[14] G. Montseny, J. Audounet, and D. Matignon. Diffusive representation for pseudo-differentially
damped non-linear systems. In A. Isidori, F. Lamnabhi-Lagarrigue, and W. Respondek, editors,
Nonlinear Control in the Year 2000, volume 2, pages 163–182. Springer Verlag, 2000.

10



[15] G. Montseny and J. Audounet. Représentation diffusive : une introduction. In Journées Doc-
torales d’Automatique, pages 313–318, Toulouse, France, septembre 2001. gdr automatique.

[16] D. Matignon and G. Montseny, editors. Fractional Differential Systems:
models, methods and applications, volume 5 of ESAIM: Proceedings, URL:
http://www.emath.fr/Maths/Proc/Vol.5/, December 1998. smai.

[17] P.E. Rouse. A theory of the linear viscoelastic properties of the dilute solutions of coiling
polymers. Chemical Physics, 21(7), July 1953.

[18] O. Staffans. Well-posedness and stabilizability of a viscoelastic equation in energy space.
Transactions of the American Mathematical Society, 345(2):527–575, October 1994.

[19] W.A. Woodward and H.L. Gray. ARMA models for wolfers’ sunspot data. Commun. Statistics,
7(B):97–115, 1978.

[20] D.V. Widder. The Laplace Transform. Princeton University Press, 1946.

[21] G. Zames and P.L. Falb. Stability conditions for systems with monotone and slope-restricted
nonlinearities. SIAM J. Control, 6(1):89–108, 1968.

11


