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Abstract

Diffusive representations of positive pseudo-differential operators (PDOs) can often

be used in the analysis of coupled systems, in which their dissipative realization plays

a major role. Now, some coupled systems involving a negative PDO can still be stable.

Conversely, some unstable systems can be stabilized by positive PDOs, thus requiring

some more analytical knowledge: such striking examples will be presented, either in

continuous time or in discrete time.

1 Introduction

The impulse response of a pseudo-differential operators D of diffusive type can be decom-

posed on a continuous family of purely damped exponentials with weight µD. A diffusive

realisation helps transforming a non-local in time pseudo-differential equation into a first

order differential equation on a Hilbert state-space, which allows for stability analysis (see

[8, 18, 10, 15]).

This approach reveals useful for both theoretical and numerical treatment of pseudo-diffe-

rential equations (not only fractional differential ones, as in [10]), even time-varying and

non-linear ones (see [16]). An analogous framework with interesting properties alike can be

proposed in a discrete-time context, where the key idea is to decompose long-range time-

series on a continuous family of purely damped geometric sequences, see e.g. [5, 4, 6].

In the present paper, it will be focused on the spectral analysis of pseudo-differential or

pseudo-difference equations, such as those presented in [5, 11], the analysis of which concerns

the poles of an infinite-dimensional system of the following form:

∂2
ttX + ε1 ∂tX +D1(∂tX) + ε2A∂tX +D2 (A∂tX) +AX = 0 (1.1)

where Di = Dµi
+ d

dt
Dνi

are positive PDOs (i.e. µi and νi are positive measures, that

characterize the PDO of symbol D̂i(s) =
∫ +∞

0
dµi(ξ)+s dνi(ξ)

s+ξ
, for <e(s) > 0) and εi ≥ 0.

In the case where A is a Riesz spectral operator, as defined in [3, chap. 2, sec. 3], the

solution X can be decomposed onto a Riesz basis {ϕn}n≥0; then each time-component wn(t)

satisfies the following pseudo-differential equation:

ẅn + [ε1 ẇn +D1(ẇn)] + λn [ε2 ẇn +D2(ẇn)] + λn wn = 0 (1.2)
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where λn are the eigenvalues of the Riesz-spectral operator A.

Thus, in order to analyze the dynamics of (1.2), we are naturally led to the following

characteristic equation for the poles sn ∈ C\R−:

sn
2 +

[
ε1 + D̂1(sn)

]
sn + λn

[
ε2 + D̂2(sn)

]
sn + λn = 0 (1.3)

where λn are the complex eigenvalues of the Riesz-spectral operator A. If A is positive

and self-adjoint, all the λns are real and positive numbers, otherwise they can be complex-

valued, and even with negative real-part; in which cases, no straightforward energy analysis

is available.

For solving (1.3), a distinction will be made between cases where the D̂i(s) are known

analytically (such as for fractional differential equations, see [17, 14, 10]) or not. Similar

examples will be treated in discrete time, with the same distinction.

The main interest of such an analytical knowledge is that it enables to prove the sta-

bilizability of unstable systems without using the positivity properties of the PDOs; on the

contrary, the characteristic equation (1.3) will be carefully analyzed and even solved explicitly

in many cases.

The paper is organized as follows:

• the definitions and properties of PDOs of diffusive type are recalled in § 2,

• the use of positive diffusive PDOs in coupled systems is explained in § 3, with many

applications where introductory examples of the form (1.2) are used to analyze systems

of the form (1.1),

• finally, in § 4, characteristic equations of the form (1.3) will be solved to show that

some negative diffusive PDOs can be stability preserving on the one hand, and that

some positive diffusive PDOs can stabilize unstable systems on the other hand; in this

latter section, striking examples will be treated thoroughly, both in continuous and

discrete time.

2 What are PDOs of diffusive type?

Let us introduce the so-called diffusive realizations of PDOs of negative asymptotic order

(such as fractional integrals) and PDOs of potive asymptotic order (such as fractional deriva-

tives). These infinite-dimensional formulations will help us prove some positivity and also

dissipativity properties which will be of major help in the study of energy questions.

2.1 Diffusive realizations for PDOs of order less than 0

Let µ a positive measure on R+, with condition
∫∞
0

dµ(ξ)
1+ξ

<∞.
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Consider the infinite-dimensional dynamical system with input v, ouput y and state ϕ of

finite energy (namely Eϕ(t) = 1
2

∫ +∞

0
ϕ(ξ, t)2 dµ(ξ) <∞):

∂tϕ(ξ, t) = − ξ ϕ(ξ, t) + v(t); ϕ(ξ, 0) = 0, ∀ ξ ∈ R
+ (2.2)

y(t) =

∫ +∞

0

ϕ(ξ, t) dµ(ξ) (2.3)

We have the following properties :

Theorem 2.1. The input-output relation for system (2.2)–(2.3) is y = Dµv = hµ ? v, with

impulse response hµ and transfer function D̂µ:

hµ(t) =

∫ ∞

0

e−ξt dµ(ξ) (2.4)

D̂µ(s) =

∫ ∞

0

dµ(ξ)

s+ ξ
∀s, <e(s) > 0 (2.5)

Moreover, we have the positivity property of the input-output relation:

∀T > 0, < y, v >T =

∫ T

0

y(t) v(t) dt ≥ 0 (2.6)

and a corresponding dissipativity property of the realization (2.2)–(2.3):

d

dt
Eϕ(t) = y(t) v(t)−

∫ ∞

0

ξϕ(ξ, t)2 dµ(ξ) ≤ y(t) v(t) (2.7)

Proof. see [15, 10, 1]. Note that functional spaces must be specified for these infinite-

dimensional dynamical systems to make sense; in particular, a classical V ⊂ H ⊂ V ′

framework is needed.

Example 2.1. For 0 < β < 1, with µβ(ξ) = sin(βπ)
π

ξ−β, as density of the measure µ

w.r.t the Lebesgue measure on R
+, we get the PDO D = Iβ (fractional integral of order

β), with impulse response 1
Γ(β)

tβ−1
+ and transfer function s−β, a PDO of asymptotic order

−β ∈ (−1, 0).

2.2 Diffusive realizations for PDOs of order less than 1

Let ν a positive measure on R+, with condition
∫∞
0

dν(ξ)
1+ξ

<∞.

Now consider the infinite-dimensional dynamical system with input v, ouput z and state

ψ of finite energy (namely Eψ(t) = 1
2

∫ +∞

0
ξ ψ(ξ, t)2 dν(ξ) <∞):

∂tψ(ξ, t) = − ξ ψ(ξ, t) + v(t); ψ(ξ, 0) = 0, ∀ ξ ∈ R
+ (2.8)

z(t) =

∫ +∞

0

∂tψ(ξ, t) dν(ξ) =

∫ +∞

0

(−ξψ(ξ, t) + v(t)) dν(ξ) (2.9)

We have the following properties :
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Theorem 2.2. The input-output relation for system (2.8)–(2.9) is z = d
dt
Dνv = d

dt
(hν ? v),

in the sense of distributions, with transfer function s D̂ν(s).

Moreover, we have the positivity property of the input-output relation:

∀T > 0, < z, v >T =

∫ T

0

z(t) v(t) dt ≥ 0 (2.10)

and a corresponding dissipativity property of the realization (2.8)–(2.9):

d

dt
Eψ(t) = z(t) v(t)−

∫ ∞

0

(∂tψ(ξ, t))2 dν(ξ) ≤ z(t) v(t) (2.11)

Proof. see [15, 10, 1]. Note that functional spaces must be specified for these infinite-

dimensional dynamical systems to make sense; in particular, a classical V ⊂ H ⊂ V ′

framework is needed.

Remark 2.1. In (2.9), the two parts can not be evaluated separately, otherwise the integrals

would both diverge. This is very well understood in the appropriate functional framework.

Example 2.2. For 0 < α < 1, with να(ξ) = µ1−α(ξ) as density of the measure ν w.r.t

the Lebesgue measure on R+, we get the PDO Dα (fractional derivative of order α), with

distributional impulse response fp( 1
Γ(−α)

t−α−1
+ ) and transfer function sα, a PDO of asymptotic

order α ∈ (0, 1).

Remark 2.2. Diffusive realisations of fractional integrals Iβ and derivatives Dα, and other

pseudo-differential operators, are very important both from theoretical and numerical view-

points:

• from a theoretical aspect, these formulations help understand the very nature of frac-

tional integrals and derivatives (as a particular case of long–memory operators), they

also provide natural and straightforward proofs for properties which would otherwise

not be so obvious;

• from a practical aspect, these formulations help define stable numerical schemes for the

approximation of the solution of such systems.

In § 3, we will use the dissipativity properties (2.7) and (2.11) in order to find sufficient

stability conditions for the examples that will be considered. Moreover diffusive realizations

of fractional integrals or derivatives through a state of infinite dimension ϕ or ψ help define

a natural state space, together with appropriate energy functionals, which are both most

useful for stability considerations.

3 Using positive diffusive PDOs in coupled systems

We now examine a variety of examples where both positivity and dissipativity are useful.

The notations are those introduced in the preceding section.
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3.1 a fractional diffusion equation

We begin with a simple finite-dimensional example, written with the PDO Dα, but which is

treated very much in the same way for other positive PDOs of diffusive type.

Example 3.1. The dynamical system Dαw+ω0 w = u can be proved to be internally stable,

when ω0 > 0, using v = w in § 2.2, thanks to:

Ėψ(t) = wDαw−
∫ ∞

0

(∂tψ(ξ, t))2 dν(ξ) = u(t)w(t)−ω0 w
2(t)−

∫ ∞

0

(∂tψ(ξ, t))2 dν(ξ) (3.3)

Then as soon as the input u has stopped, the energy Eψ(t) starts decreasing; finally, LaSalle

invariance principle will help prove that the state ψ of the system goes to 0 as t → +∞.

This proves internal stability; from which external stability might also be proved, thanks to

the very simple nature of the infinite-dimensional dynamics.

Consider the following fractional diffusion equation on Ω ⊂ Rn:

∂αt X −∆X = u (3.4)

Ω is either the whole space, or a compact subset, in which case some boundary conditions

must be prescribed on ∂Ω; they can be of two kinds:

• conservative boundary conditions of Dirichlet type (X(x, t) = ub(x, t)) or Neumann

type (∂nX(x, t) = ub(x, t));

• dissipative boundary conditions of Robin type (X(x, t)+r(x) ∂nX(x, t) = ub(x, t), with

r(x) > 0 on ∂Ω) or impedance type (∂tX(x, t)X(x, t) + k(x) ∂nX(x, t) = ub(x, t), with

k(x) > 0 on ∂Ω); see the second item in problem 3.1.

In each of these cases, the Green formula
∫
Ω
Y ∆X dx = −

∫
Ω
∇Y .∇X dx +

∫
∂Ω
Y ∂nX dσ

will be applied carefully and help choose the appropriate functional spaces on Ω.

The stability analysis is then performed on this system using the following energy func-

tional:

E(t) =
1

2

∫ +∞

0

ξ ‖ψ(., ξ, t)‖2
L2(Ω) dν(ξ) =

∫

Ω

Eψ(x, t) dx (3.5)

where v(x, t) = X(x, t) is the input of the diffusive system, and applying the methodology

developped in example 3.1.

3.2 a fractionally damped diffusion equation

We begin with a simple finite-dimensional example.

Example 3.2. The dynamical system ẇ + pDαw + ω0w = u can be proved to be internally

stable, when p, ω0 > 0, using v = w in § 2.2, thanks to the balance on E(t) = 1
2
w2(t)+pEψ(t):

Ė(t) = u(t)w(t)− ω0 w
2(t)−

∫ ∞

0

(∂tψ(ξ, t))2 dν(ξ) (3.6)
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Then as soon as the input u has stopped, the global energy E(t) starts decreasing; finally,

LaSalle invariance principle will help prove that the augmented state (w, ψ) of the system

goes to (0, 0) as t→ +∞. This proves internal stability.

Consider the following fractionally damped diffusion equation on Ω ⊂ Rn:

∂tX + p ∂αt X −∆X = u (3.7)

The problem can be tackled with the following global energy functional:

E(t) =
1

2
‖X(., t)‖2

L2(Ω) +
p

2

∫ +∞

0

ξ ‖ψ(., ξ, t)‖2
L2(Ω) dν(ξ) (3.8)

where v(x, t) = X(x, t) is the input of the diffusive system; then, the methodology developped

in example 3.2 is applied.

3.3 a fractional wave equation

We begin with a simple finite-dimensional example, written with the PDOs Dα and Iβ, but

which is treated very much in the same way for other positive PDOs of diffusive type.

Example 3.3. The dynamical system Dαẇ + ε ẇ + q Iβẇ + ω1+α
0 w = u can be proved to be

internally stable, when ε, q > 0, using v = ẇ in both § 2.1 and § 2.2, thanks to the balance

on E(t) =
ω1+α

0

2
w2(t) + Eψ(t) + q Eϕ(t):

Ė(t) = u(t) ẇ(t)− ε ẇ2(t)−
∫ ∞

0

(∂tψ(ξ, t))2 dν(ξ)− q

∫ ∞

0

ξ(ϕ(ξ, t))2 dµ(ξ) (3.9)

Then as soon as the input u has stopped, the global energy E(t) starts decreasing; finally,

LaSalle invariance principle will help prove that the augmented state (w, ϕ, ψ) of the system

goes to (0, 0, 0) as t→ +∞. This proves internal stability.

Consider the following fractional wave equation on Ω ⊂ Rn:

∂1+α
t X + ε ∂tX + q ∂1−β

t X −∆X = u (3.10)

It can be analyzed with the following global energy functional:

E(t) =
1

2
‖∇X(., t)‖2

L2(Ω) +

∫

Ω

Eψ(x, t) dx+ q

∫

Ω

Eϕ(x, t) dx (3.11)

where v(x, t) = ∂tX(x, t) is the input of the diffusive system; the principle developped in

example 3.3 are then applied. Note that the Robin and impedance boundary conditions need

a special care in the analysis (see the second item in problem 3.1).
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3.4 a fractionally damped wave equation

The simple viscoelastically damped oscillator, already presented in [10], is first recalled.

Example 3.4. Consider the following second order stable (ε > 0) system perturbed (pq 6= 0)

by some fractional dampings of order 1 + α ∈ ]1, 2[ and 1− β ∈ ]0, 1[:

ẅ + pDαẇ + ε ẇ + q Iβẇ + ω2w = u (3.12)

The system is asymptotically internally stable ∀p > 0 and ∀q > 0, which is proved thanks to

the global energy functional of the augmented system:

E(t) =
1

2
ẇ2(t) +

ω2

2
w2(t) + pEψ(t) + q Eϕ(t) (3.13)

with v = ẇ as input for both § 2.1 and § 2.2. Some computations then lead to:

Ė(t) = ẇu− ε ẇ2 − p

∫ +∞

0

(∂tψ)2(ξ, t) dν(ξ)− q

∫ +∞

0

ξ ϕ2(ξ, t) dµ(ξ) (3.14)

Then, as soon as the input u has stopped, the global energy starts decreasing; finally, LaSalle

invariance principle will help prove that the augmented state (w, ẇ, ψ, ϕ) of the global system

goes to (0, 0, 0, 0) as t→ +∞.

Consider the following fractional wave equation on Ω ⊂ Rn, (a particular 1-dimensional

example of which has been studied in [12]):

∂2
ttX + p ∂1+α

t X + ε ∂tX + q ∂1−β
t X −∆X = u (3.15)

Such systems can be recast in the framework presented in [18], where diffusive representations

were first introduced (see also [8] on completely monotonic kernels and the use of Bernstein

theorem). The stability can be analyzed with the following global energy functional:

E(t) =
1

2
‖∂tX‖2

L2(Ω) +
1

2
‖∇X(., t)‖2

L2(Ω) + p

∫

Ω

Eψ(x, t) dx + q

∫

Ω

Eϕ(x, t) dx (3.16)

with v(x, t) = ∂tX(x, t) as input of the diffusive systems; the elementary principles of exam-

ple 3.4 are then translated in an appropriate manner.

Remark 3.1. The four applications developped in this section have been presented with

uniform coefficients versus the space variable x and with constant coefficients with respect to

the time variable t; moreover, all of them were linear systems.

A treatment of non-homogeneous systems is straightforward, provided the space-varying

coefficients c(x) satisfy 0 < mc ≤ c(x) ≤ Mc; thus, the Laplacian and its boundary conditions

can be taken as non-homogeneous, but also the fractional orders α(x), β(x) or more generally

the measures ν(x, ξ), µ(x, ξ) can be taken as non-homogeneous.

A treatment of time-varying or non-linear systems is certainly more involved, and we refer

to [16] for these extensions.
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Problem 3.1. In this section, principles have been derived so as to show the variety of

non-standard dynamics that can be analyzed, but more involved technical aspects that have

not been treated must not be overlooked. Let us cite the most important ones:

1. The Sobolev spaces on Ω must be chosen accordingly to the boundary conditions.

2. When the boundary conditions are of Robin or impedance type, some extra boundary

term do appear in the energy balance, and must be taken into account properly: either

as extra positive term in the definition of the global energy E , or as extra negative term

in the energy balance d
dt
E ; for Robin type it reads 1

2

∫
∂Ω
r(x)(∂nX(x, t))2 dσ, whereas for

impedance type it reads 1
2

∫
∂Ω
k(x)(∂nX(x, t))2 dσ.

3. When using LaSalle invariance principle on infinite-dimensional state spaces, a techni-

cal condition of precompactness of the trajectories in the energy space must be fulfilled,

which is generally not easy to check properly. Especially the non-linear case would be

even more difficult to tackle than the linear case.

4. Then, asymptotic internal stability need not imply external stability for infinite-dimen-

sional systems in general, and a careful study must be carried out; however, the very

simple nature of the diffusive realizations (well-posedness, approximate controllability

and approximate observability) should help to prove the external stability, at least on

the four introductory examples.

4 Using positive diffusive PDOs to stabilize unstable

systems

From this variety of applications and introductory examples, it could be thought that positive

coupling is a necessary condition for stability; we will first show that it is not true, on a very

simple example. Then, we will give some examples in which a positive PDO can stabilize an

unstable system, provided some conditions are fulfilled.

4.1 Positivity of the PDO is not necessary for stability

Let us take the simplest case study in example 3.2, that is ẇ+ pD
1

2w+w = u, the transfer

function of which is given by Hp(s) = (s+p
√
s+1)−1. It is already clear that, ∀p ≥ 0, there

are no poles in the closed right-half plane. Moreover, as the fractional differential system is

of commensurate orders (even fractional), the stability analysis can be carried out using the

roots of the polynomial P (σ) = σ2 + p σ+1. The necessary and sufficient stability condition

reads (see [10]) | arg(σ)| > π
4
. Now the poles can be computed exactly, namely those s = σ2

for the roots σ of the polynomial P which lie in the sector | arg(σ)| < π
2

(otherwise, there

are still roots in the σ-plane, but no poles in the s-plane).
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A very simple computation shows that the necessary and sufficient condition for stability

of Hp(s) reads: p > −
√

2. In the case when −
√

2 < p < 0, the system is oscillating: its

impulse response can be decomposed into a damped sinusoid and a purely diffusive part (in

the sense of (2.4)) with long-memory asymptotics (see also [10, 1]).

This negative coupling does introduce oscillations, though stable ones.

A similar counter-example can be built to example 3.4: the sufficient condition p > 0,

q > 0 is not necessary at all: still when α = 1/2, σ4 + p σ3 + ε σ2 + q σ + ω2 does not have

positive coefficients when taking 2 roots in π
4
< | arg(σ)| < π

2
and -1,-1.

4.2 A family of first order examples in continuous time

Let us study the family of transfer functions Hp(s) = (s+ p sα − s0)
−1, with 0 < α < 1 and

s0 ∈ C. We would like to analyze the influence of the coupling parameter p, especially when

the original system (for p = 0) is unstable, that is <e(s0) > 0.

The following careful analysis can be carried out:

Theorem 4.1. When p→ +∞, the roots of s+ p sα − s0 in C\R− are given by:

• if | arg(s0)| ≤ απ
2
, sp ∼ p−

1

α s0
1

α → 0 with arg(sp) ∼ arg(s0)
α

, hence <e(sp) ≥ 0 and this

pole is unstable.

• if απ
2
< | arg(s0)| ≤ απ, sp ∼ p−

1

α s0
1

α → 0 with arg(sp) ∼ arg(s0)
α

, hence <e(sp) < 0 and

this pole is stable.

• if απ < | arg(s0)| ≤ π, there exists p∗ such that ∀p ≥ p∗, the function s 7→ s+ p sα− s0

has no root in C\R−.

Moreover, with s0 = r0 e
iθ0 , we can compute p∗ = r0

α sin θ0
(sinαπ)1−α (sin(θ0−απ))α , and the limit

point s∗ = −ξ∗ = −r0 sin(θ0−απ)
sinαπ

on the cut is attained from above when =m(s0) > 0

and from below when =m(s0) < 0.

Proof. Some straightforward asymptotic analysis is performed, care is taken with the defi-

nition of sα (see [10]), some tedious computations are needed for p∗ and ξ∗.

Note that there is no root going to infinity, that is |sp| → +∞.

Example 4.1. In order to illustrate theorem 4.1, we compute the root locus of the transfer

function Hp(s) when α = 1
2
, in which case, it is only needed to find the roots of a second

order polynomial for each p, which can be done easily with Matlab. The results are shown

on figure 1 with different original poles: for p = 0, s0 is either stable or unstable. The

quite complex situation described by theorem 4.1 is fully confirmed on this simulation, and

especially when <e(s0) < 0, the existence of a limit point −ξ∗ on the cut R
− is clearly seen.

Remark 4.1. We know from [2, proposition 3.1] that such fractional differential systems

only have a finite number of poles, but we do not know how many there are in this example,
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Figure 1: Influence of the coupling parameter p on a family of stable or unstable systems

with pole s0. Poles of the system Hp(s) = [s+ p sα − s0]
−1 for p ≥ 0, and various stable or

unstable s0.

even though it can be conjectured that there is at most one pole – at least, this happens to be

the case for α = 1
2
.

Remark 4.2. The impulse reponse of such a system is composed of a finite-dimensional part,

the stability of which is given by the location of the corresponding poles, and a purely diffusive

part (in the sense of equation (2.4), which is always stable, though not exponentially). In

our case, µ is a measure with density, namely (with a slight abuse of notations):

µ(ξ) = p
sinαπ

π

ξα

(ξ + s0)2 + p2ξ2α − 2p cosαπ ξα(ξ + s0)
(4.4)

The asymptotics of the diffusive part is proportional to t−1−α thanks to the Watson lemma,

thus always BIBO-stable: that is why we are not very much concerned with it.

4.3 A family of first order examples in discrete time

Let us study the family of transfer functions Hp(z) = [(1− z0 z
−1) + p (1− z−1)α]

−1
, with

0 < α < 1 and z0 ∈ C. We would like to analyze the influence of the coupling parameter p,

especially when the original system (for p = 0) is unstable, that is |z0| > 1.

The following careful analysis can be carried out:

Theorem 4.2. When p→ +∞, the roots of (1− z0 z
−1)+ p (1− z−1)α in C\[0, 1] are given

by:

• if | arg(z0)− 1| ≤ απ
2
, zp → 1 with arg(zp− 1) ∼ arg(z0−1)

α
, hence <e(zp− 1) ≥ 0 implies

|zp| > 1 and this pole is unstable.
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• if απ
2
< | arg(z0−1)| ≤ απ, zp → 1 with arg(zp−1) ∼ arg(z0−1)

α
, hence | arg(zp−1)| > π

2

implies |zp| < 1 and this pole is stable.

• if απ < | arg(z0−1)| ≤ π and (1−α)π < | arg(−z0)| ≤ π, then there exists p∗ such that

∀p ≥ p∗, the function z 7→ (1− z0 z
−1)+ p (1− z−1)α has no root in C\[0, 1]. Moreover

p∗ can be computed exactly, and the limit point z∗ = ρ∗ located on the cut is attained

from above when =m(z0) > 0 and from below when =m(z0) < 0.

• if | arg(−z0)| ≤ (1− α)π, zp → 0 and this pole is stable.

Proof. It is fully based on theorem 4.1, with the change of variable s = 1− z−1: we first use

this theorem for the analysis of the roots of s 7→ z0 s+ p sα− (z0 − 1); we then use the same

theorem for the analysis of the roots of s 7→ (1− z0)
1
s

+ p 1
s

1−α
+ z0.

Geometrically, the region απ < | arg(z0 − 1)| ≤ π and (1 − α)π < | arg(−z0)| ≤ π is easy

to draw, and in the case α = 1
2

it is the vertical strip delimited by the two branching points

z = 0 and z = 1.

Remark 4.3. The remarks concerning the finite number of poles on the one hand and the

stability, though not of geometric type, of the diffusive part do also apply in this discrete-time

context.
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Figure 2: Influence of the coupling parameter p on two families of unstable systems with pole

z0: (a) Poles of the system Hp(z) =
[
(1− z0 z

−1) + p (1− z−1)
1

2

]−1

for p ≥ 0, and various

unstable z0. (b) Poles of the system H2
p(z) =

[
(1− z0 z

−1)(1− z̄0 z
−1) + p (1− z−1)

1

2

]−1

for

p ≥ 0, and various unstable z0.

Example 4.2. In order to illustrate theorem 4.2, we compute the root locus of the transfer

function Hp(z) when α = 1
2
, in which case, it is only needed to find the roots of a second

11



order polynomial for each p, which can be done easily with Matlab. The results are shown on

figure 2(a) with different original poles: for p = 0, z0 is unstable. The very complex situation

described by theorem 4.2 is fully confirmed on this simulation, and especially when z0 belongs

to the vertical strip 0 ≤ <e(z0) ≤ 1, the existence of a limit point ρ∗ on the cut [0, 1] is

clearly seen.

4.4 Families of second order examples

So far in this section, we have analyzed examples of first order systems with complex coeffi-

cients, it is then easy to build some second order systems with real coefficients by considering

the products Hp,s0,α(s)Hp,s̄0,α(s) in continuous time, or Hp,z0,α(z)Hp,z̄0,α(z) in discrete time.

Example 4.3. We compute the root locus of the transfer function:

H2
p(z) =

1

(1− z0 z−1)(1− z̄0 z−1) + p (1− z−1)
1

2

(4.5)

in which case, it is only needed to find the roots of a fourth order polynomial for each p, which

can be done easily with Matlab. The results are shown on figure 2(b) with different original

poles: for p = 0, z0 is unstable. From this simulation only, it seems that the stabilization

of the unstable system will always be achieved; now the analysis of this system appears to be

more complicated.

5 Conclusion

Positive PDOs of diffusive type are useful to study quite a great variety of systems with non-

standard dynamics, through an energy analysis on coupled systems. We have also shown

that the stability condition given by this methodology is only sufficient, but not necessary.

In fact, negative PDOs can make a stable system oscillate, even though it is kept stable;

conversely, positive PDOs can help stabilize unstable systems, under some conditions on the

parameters, which can be expressed quite nicely when the diffusive transfers at stake are

known analytically.
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