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Abstract

The relations between attractors, input-to-state-stability, and controllability prop-

erties are discussed. In particular it is shown that loss of the attractor property under

perturbations is connected with a qualitative change in the controllability properties

due to a merger with a control set.

1 Introduction

The fundamental notion of input-to-state-stability relates the admissible inputs and initial

values to the amplitudes of the corresponding trajectories, cp. Sontag [5], Grüne [3]. For a

smooth control system

ẋ(t) = f(x(t), u(t))

with inputs u taking values in U ⊂ R
m, we define Input-to-State-Stability in the following

way.

Definition 1.1. A positively invariant compact set A is called Input-to-State-Stable (ISS)

on a neighborhood B of A with attraction rate β of class KL and robustness gain γ of class

K∞ if the following inequality holds for every x ∈ B and t ≥ 0:

‖ϕ(t, x, u)‖A ≤ max{β(‖x‖A , t), γ(‖u‖
∞

)}.

Here ‖·‖A denotes the distance to the set A. Since γ(0) = 0, it follows that A is attracting

for the unperturbed system with u = 0; and near A there are attracting sets for small

perturbation ranges. The ingredients of this definition are attracting sets and their behavior

under perturbations with varying maximal amplitudes. In order to get more insight into

the behavior of systems under perturbations and the ISS-property, we will start with an

attractor for the unperturbed system; then we discuss the behavior under perturbations

with ‖u‖
∞

≤ ρ, for varying ρ > 0. In particular we will relate the loss of the attractivity

property to a change in the controllability behavior; see Corollary 3.1.
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There are a huge variety of different notions for attractors in control theory and dynamical

systems theory. We will use notions going back to the work of C. Conley that are well

established in dynamical systems theory. They will also be used for the perturbed system

via the notion of control flows.

We consider the following class of systems

ẋ(t) = f(x(t), u(t)), u ∈ U , (1.1)

where f is C∞ and U = {u ∈ L∞(R, Rm), u(t) ∈ U for almost all t ∈ R}. We assume that

unique global solutions ϕ(t, x, u) exist for t ∈ R. We also assume that the vector space V

spanned by these smooth vector fields

V = span{f(·, u), u ∈ U}

is finite dimensional and that

F = {f(·, u), u ∈ U}

is compact and convex. Let

F = {v ∈ L∞(R, V ), v(t) ∈ F for t ∈ R}.

System (1.1) defines a continuous flow on F × R
d (with weak∗-topology on F)

Φt(v, x) = (v(t + ·), ϕ(t, x, v)), t ∈ R.

We call this the associated non-parametric control flow. It is closely related to control flows as

considered in [1] with the shift on the space U of control functions; hence the time dependent

vector fields are parametrized by the control functions and it has to be assumed that the

system is control-affine and the control range U is compact and convex. Nonparametric

control flows inherit all properties of control flows, mainly due to the fact that the shift on

F is chain transitive. Details will appear elsewhere.

For simplicity we suppose that everything is contained in the interior of a compact invariant

set K ⊂ R
d. Thus we consider the control flow on the compact metric space F × K.

Remark 1.1. This apparently very restrictive assumption can often be achieved if the in-

volved vector fields are smoothly changed outside a large ball. Then one has to add in an

appropriate way invariant sets “near infinity”. The technical details are somewhat involved

and hence will not be presented here (some constructions in this direction are included in

[2]).

2 Attractors and Chain Control Sets

First we discuss the behavior on the level of chain control sets or, equivalently, of chain

transitivity for the control flow. In the next section we combine this with control sets.

A reference for the facts stated here is [1], Appendix B; see Robinson [4] for the relation

to gradient-like systems and Lyapunov functions.
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Definition 2.1. For a flow Φ on a compact metric space X a compact invariant set A is an

attractor if it admits a neighborhood N such that A = ω(N) = {y ∈ X, there are tk → ∞

and xk ∈ N with Φ(tk, yk) → y}.

We also allow the empty set as an attractor. A neighborhood N as in Definition 2.1 is

called an attractor neighborhood. Every attractor is compact and invariant, and a repeller is

an attractor for the time reversed flow (with limit sets denoted by ω∗(N)). Every attractor

comes with an associated complementary repeller A∗ = {x ∈ X, ω(x) ∩ A} = ∅. Then for

every x 6∈ A ∪ A∗

ω∗(x) ⊂ A∗ and ω(x) ⊂ A.

For all considered flows we assume that there are only finitely many connected components

of the chain recurrent set R, which consists of all x ∈ X such that for all ε, T > 0

there is an (ε, T )-chain from x to x consisting of x0 = x, x1, ..., xn = x and Ti > T with

d(Φ(Ti, xi), xi+1) < ε for i = 0, ..., n − 1. The connected components of the chain recurrent

set are chain transitive, i.e., consist of points which can be connected by (ε, T )-chains for all

ε, T > 0. Observe that an attractor A consists of chain recurrent components Mi1, ...,Mik

together with the connecting trajectories. To be more precise define

[Mj,Mk] = {x ∈ X, ω∗(x) ⊂ Mj and ω(x) ⊂ Mk}.

Then

A =
⋃

jMij ∪
⋃

j, k

[

Mij ,Mik

]

.

A Morse decomposition consists of finitely many subsets {M1, ...,Mn} of X (called Morse

sets) such that there is a strictly increasing sequence of attractors

∅ = A0 ⊂ A1 ⊂ A2 ⊂ ... ⊂ An = X,

with

Mn−i = Ai+1 ∩ A∗
i , 0 ≤ i ≤ n − 1.

A finest Morse decomposition exists if and only if the chain recurrent set has finitely many

connected components; its Morse sets are these connected components.

We denote the connected components of the chain recurrent set of the unperturbed system

ẋ = f(x, 0) by E0
1 , ...E

0
n, and consider a compact set A0 ⊂ intK which is an attractor. We

number the E0
i such that

A0 =
⋃l

i=1
E0

i ∪
⋃l

j, k=1

[

E0

j , E
0

k

]

. (2.2)

In order to allow for different maximal amplitudes of the inputs, we consider the ranges

Uρ = ρ · U, ρ ≥ 0. It is easily seen that the corresponding trajectories coincide with the

trajectories ϕρ(t, x, u) of

ẋ(t) = f ρ(x(t), u(t)) = f(x(t), ρu(t)), u ∈ U .
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The maximal chain transitive sets E0
i of the unperturbed system are contained in chain

control sets Eρ
i of the ρ-system for every ρ > 0. These are the maximal controlled invariant

subsets of R
d: for every two elements x, y and all ε, T > 0 there are x0 = x, x1, ..., xn =

y, u0, ..., un ∈ U and T0, ..., Tn−1 > T with d(ϕρ(Ti, xi, ui), xi+1) < ε. Their lifts

Eρ
i =







(f(·, u), x) ∈ F × R
d,

u ∈ U and

ϕρ(t, x, u) ∈ Eρ
i for t ∈ R







(2.3)

are the maximal chain transitive sets of the corresponding control flows Φρ. Here, for con-

venience, f(·, u) denotes the vector field-valued function

t 7→ f(·, u(t)) ∈ F ⊂ L∞(R, V ).

Every chain transitive set for small positive ρ > 0 is of this form with a unique E0
i , i = 1, ...n.

Sadly, for larger ρ-values, there may exist further maximal chain transitive sets E ρ containing

no chain transitive set of the unperturbed system. An easy example is obtained by looking

at systems where for some ρ0 > 0 a saddle node bifurcation occurs in ẋ = f(x, ρ). A

more intricate example is [1], Example 4.7.8. We will ignore this fact here, mainly, because

we cannot contribute much to its analysis. Instead we concentrate on the maximal chain

transitive sets Eρ
i , i = 1, ..., n. Observe that for larger ρ-values they may intersect and

hence coincide and change attraction properties; it is this process that we will analyze.

Upper semicontinuity of chain transitive components on parameters immediately yields the

following first result.

Proposition 2.1. For all ρ > 0 and all i = 1, ..., n, there are maximal chain transitive sets

Eρ
i depending upper semicontinuously on ρ.

Next we state the situation for small ρ > 0.

Proposition 2.2. Assume that for every ρ > 0 every maximal chain transitive set contains

a chain transitive set E0
i of the unperturbed system. Then there is ρ0 > 0 such that for all ρ

with ρ0 > ρ ≥ 0 there is an attractor Aρ of the ρ-system of the form

Aρ =
⋃l

j=1
Eρ

j ∪
⋃l

j,k=1

[

Eρ
j , Eρ

k

]

,

It depends upper semicontinuously on ρ and all E ρ
j are different.

Proof. Every attractor for ρ is a union of chain transitive components and the corresponding

intervals. Since chain transitive components depend upper semicontinuously on parameters,

this also follows for the intervals. Furthermore note that E ρ
j ⊂ Eρ′

j for ρ′ > ρ ≥ 0. Hence the

chain transitive components Eρ
j contained in Aρ must satisfy l ∈ {1, ..., l} and for ρ small

enough, they are different.
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Looking at the notion of Input-to-State Stability, we observe that in this context only

those attractors are of interest which are input-global in the following sense: The attraction

property should hold for arbitrary inputs u ∈ U ρ. This is not part of the definition of

attractors. Luckily, this is automatically satisfied for control flows as shown by the following

proposition.

Proposition 2.3. Consider an attractor A for the nonparametric control flow Φ associated

to system (1.1). Then it has an attractor neighborhood of the form F ×B with B ⊂ R
d, i.e.,

A = ω(F × B).

Proof. If A∗ is the complementary repeller for A, then the distance between the projections

π2A and π2A
∗ of A and A∗, respectively, to R

d is greater than some positive number δ. In

fact: Otherwise, there are x ∈ π2A ∩ π2A
∗ and u, u∗ ∈ U with (u, x) ∈ A and (u∗, x) ∈ A∗.

Define w ∈ U by

w(t) =

{

u∗(t) for t ≤ 0

u(t) for t > 0
.

Then (w, x) ∈ A, since invariance of A and A∗ imply ω(w, x) = ω(u, x) ⊂ A and ω∗(w, x) =

ω∗(u∗, x) ⊂ A∗. This contradicts A ∩ A∗ = ∅.

Now let v ∈ F be arbitrary and take x in the δ/2-neighborhood of π2A. If ω(v, x) is

not contained in A, then (v, x) is in the complementary repeller A∗. But then the distance

between π2A
∗ and π2A must be smaller than δ/2. This contradiction shows that (v, x) is in

an attractor neighborhood of A.

The discussion up to now completely describes the attractor properties for small positive

ρ. Here the attractors and the chain control sets reflect the properties of the unperturbed

system. For larger ρ-values this need not be the case, because chain control sets contained in

the attractor Aρ may merge with other chain control sets. We cannot describe the changes

in the attractor properties on the level of chain control sets. Instead we have to go to control

sets, which is possible under additional assumptions.

3 Loss of Attractivity and Control Sets

The purpose of this section is to describe loss of the input-global attraction property. In

general, attractors are sets of the form

Aρ =
⋃l

j=1
Eρ

j ∪
⋃l

j, k=1

[

Eρ
j , Eρ

k

]

. (3.4)

We assume that for all ρ with 0 < ρ < ρ1 the set Aρ is an attractor. Recall that a control

set D is a maximal controlled invariant set such that

D ⊂ clO+(x) for all x ∈ D. (3.5)
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Here O+(x) denotes the reachable set from x. A control set C is an invariant control

set if equality holds in (3.5). Throughout we assume that local accessibility holds, i.e.,

that the small time reachable sets in forward and backward time O+

≤T (x) and O−
≤T (x),

respectively, have nonvoid interiors for all x and all T > 0. Recall that there are only

finitely many, say 1 ≤ m < n, invariant control sets in K, and that control sets depend

lower semicontinuously on parameters. If a chain control set is the closure of a control set,

then it depends continuously on ρ. This equality holds for all up to at most countably many

ρ-values under an inner pair condition guaranteeing that the reachable sets for ρ ≥ 0 are

contained in the reachable sets for ρ′ with ρ′ > ρ; see [1], Theorem 4.7.5..

Remark 3.1. The inner-pair condition may appear unduly strong. However it is easily

verified for small ρ > 0 if the unperturbed system has a controllable linearization (more

information is given in [1], Chapter 4.) For general ρ > 0 the inner pair condition holds, e.g.,

for coupled oscillators if the number of perturbations is equal to the degrees of freedom; for

this result and more general conditions see the forthcoming Ph.D. Thesis of Tobias Gayer).

We assume that for all ρ with ρ1 > ρ > 0 the chain control sets Eρ
i are the closures of

control sets with nonvoid interior. Then some of these chain control sets in the attractor

must be invariant. Thus we can write

Eρ
i = clCρ

i for i = 1, ..., l1

Eρ
i = clDρ

i for i = l1, ..., l,

for invariant control sets Cρ
i and variant control sets Dρ

i . It follows that

Eρ
i = clCρ

i for i = 1, ..., l1,

Eρ
i = clDρ

i for i = l1, ..., l,

and hence for ρ < ρ1 the attractors are

Aρ =
⋃l1

i=1
Cρ

i ∪
⋃l

i=l1
Dρ

i ∪
⋃l1

i=1

⋃l′

j=l1

[

Dρ
j , C

ρ
i

]

. (3.6)

We analyze the case where for ρ = ρ1 the set Aρ1 has lost the attractor property. The

following example illustrates some of the issues involved.

Example 3.1. Consider a locally accessible system contained in a compact set K ⊂ R
d with

five control sets

C1, C2, D1, D2, D3

where C1 and C2 are invariant control sets, D1 is open, and

D2 ⊂ O+(D1), C1 ⊂ O+(D2),

D3 ⊂ O+(D2), C2 ⊂ O+(D3).
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and it is not possible to steer the system from clD3 to C1. Assume furthermore that the

closures of these control sets are the chain control sets. Then there is the following increasing

sequence of attractors:

A0 = ∅, A1 = C1, A2 = C1 ∪ C2,

A3 = A2 ∪ D3 ∪ [D3, C2],

A4 = A3 ∪ [D2, C1] ∪ [D2, C2] ∪ [D2,D3],

A5 = A4 ∪ D1 ∪ [D1,D2] ∪ [D1,D3] ∪ [D1, C1] ∪ [D1, C2] = F × K,

with corresponding repellers

A∗
0 = F × K,

A∗
1 = D1 ∪ D2 ∪ D3 ∪ C2 ∪ [D1,D2] ∪ [D1,D3] ∪ [D1, C2] ∪ [D2,D3] ∪ [D2, C2] ∪ [D3, C2],

A∗
2 = D1 ∪ D2 ∪ D3 ∪ [D1,D2] ∪ [D1,D3] ∪ [D2,D3],

A∗
3 = D1 ∪ D2 ∪ [D1,D2],

A∗
4 = D1,

A∗
5 = ∅.

This sequence yields the finest Morse decomposition

M5−i = Ai+1 ∩ A∗
i , i = 0, 1, ..., 4,

which consists of the lifted (chain) control sets:

M5 = A1 ∩ A∗
0 = C1,

M4 = A2 ∩ A∗
1 = C2,

M3 = A3 ∩ A∗
2 = D3,

M2 = A4 ∩ A∗
3 = D2,

M1 = A5 ∩ A∗
4 = D1.

Observe that one can obtain this finest Morse decomposition also by other increasing attractor

sequences, e.g.,

A0 = ∅, A1 = C2,

A2 = C2 ∪ D3 ∪ [D3, C2],

A3 = A2 ∪ C1,

A4 = A3 ∪ [D2, C1] ∪ [D2, C2] ∪ [D2,D3],

A5 = A4 ∪ D1 ∪ [D1,D2] ∪ [D1,D3] ∪ [D1, C1] ∪ [D1, C2] = U × K.

Now consider what may happen when the input range is increased with ρ: The corresponding

(chain) control sets increase. If C2 intersects the closure of D3, there is no essential change in

the attractor structure: Just the attractors C1 and C1∪C2 merge into one attractor containing

these two lifted control sets. Things are different, if C1 and the closure of D2 intersect. Then

the attractor C1 has vanished. It is only recovered as part of an attractor containing also C2.
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The situation alluded to in the previous example is characterized by the facts that the

closure of the control set is strictly contained in the chain control set; and arbitrarily close

to C1 there are points which can be steered into another invariant control set. Then one

finds the control set D2 which then merges with C1. Thus the loss of the attraction property

of the attractor C1 is accompanied by this phenomenon. We formalize this intuition in the

following way.

Definition 3.1. For a set I ⊂ R
d, the domain of attraction is

A(I) =
{

x ∈ R
d, clO+(x) ∩ intI 6= ∅

}

,

and the invariant domain of attraction is

Ainv(I) =







x ∈ R
d,

if C ⊂ clO+(x) is

an invariant control

set, then C ⊂ I







. (3.7)

Recall that for every x ∈ K there is an invariant control set in clO+(x) and clO+(x) =

cl intO+(x). Furthermore observe that for an invariant control set C the invariant domain

of attraction satisfies

Ainv(C) =







x ∈ R
d,

if clO+(x) ∩ C ′ 6= ∅ for

an invariant control set C ′,

then C = C ′







.

We will analyze the case where I = π2I is the projection to R
d of an invariant set I ⊂ F×R

d

of the form

I =
⋃l1

i=1
Ci ∪

⋃l
i=l1

Di ∪
⋃l1

i=1

⋃l
j=l1+1

[Dj, Ci] .

with invariant control sets Ci and variant control sets Dj. We suppose that I is not an

attractor due to the fact that the projection I intersects the boundary of its invariant domain

of attraction,

I ∩ ∂Ainv(I) 6= ∅.

Thus arbitrarily close to I one finds points xn such that for some control un ∈ U one can

steer the system away from I into an invariant control set (and then stay there). Hence it is

clear that in this case I is not an attractor. If for increasing input range the attractors are

strictly increasing, it will also follow that they must contain other invariant control sets. We

will show that this occurs if the attractor I merges with some variant control set as observed

in the example above.

While the invariant domain of attraction need not be open, this is true for the domain of

attraction.

Lemma 3.1. The domain of attraction A(I) is open.
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Proof. Consider x ∈ A(I). Then there are u ∈ U and T > 0 such that ϕ(T, x, u) ∈ intI.

This remains true for all initial points in a neighborhood of x.

The analysis below will be based on constructing control sets in the open set

L =

m
⋃

i=l+1

[A(I) ∩ A(Ci)] . (3.8)

Observe that the union is taken over all invariant control set Ci with Ci ∩ I = ∅. A control

set D ⊂ L is called an L-invariant control set if x ∈ D and ϕ(t, x, u) /∈ D for some t > 0 and

u ∈ U implies ϕ(t, x, u) /∈ L. The following technical lemma is needed.

Lemma 3.2. For every x ∈ L there are J ⊂ {l + 1, ..., m} and y ∈ O+(x) such that

y ∈ A(I) ∩
⋂

j∈J A(Cj) and J is a minimal index set in the following sense:

If ϕ(t, y, u) ∈ L for some t > 0 and u ∈ U , then ϕ(t, y, u) ∈
⋂

j∈J A(Cj).

Proof. Since x ∈ L, there exists J1 ⊂ {l + 1, ..., m} with x ∈
⋂

j∈J1
A(Cj). If there are

t1 > 0 and v1 ∈ U with y1 := ϕ(t1, x, v1) ∈ L\
⋂

j∈J1
A(Cj), then there exists a proper subset

∅ 6= J2 ⊂ J1 with y1 ∈
⋂

j∈J2
A(Cj). Proceeding recursively, one ends up, after finitely many

steps, at a point y ∈ O+(x) with a minimal index set J .

Note that a minimal index set has at least one element. Furthermore, the lemma implies

that for each L-invariant control set D there is J ⊂ {l + 1, ..., m} such that for each x ∈ int D

the index set J is minimal.

Proposition 3.1. Assume that I is an invariant set of the form (3) and consider the set L

in (3.8). Then there exists at least one and at most finitely many L-invariant control sets D

and every point in L can be steered into an L-invariant control set.

Proof. This is follows from [1], Theorem 3.3.10 (as in [2]). Consider x ∈ A(I)∩
⋂

j∈JA(Cj),

where J ⊂ {l+1, ..., m} is some minimal index set for x. Then one constructs an L-invariant

control set D ⊂ clO+(x) with

∂D ∩ ∂L ∩ A(Cj) 6= ∅ for j ∈ J .

Then the cited theorem implies the assertions.

We use this result in order to show that loss of the attractor property is connected with

the merger with some control set.

Theorem 3.1. Assume that I ⊂ F × K is an invariant set of the form (3) such that

its projection I to R
d intersects the boundary of its invariant domain of attraction, I ∩

∂Ainv(I) 6= ∅. Then there exists a variant control set D with D ∩ I = ∅ such that clA(D)∩

I 6= ∅.
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Proof. By our assumption there exists a point x ∈ I ∩ ∂Ainv(I). Since I is contained in

the interior of its domain of attraction, it follows that there are xn ∈ A(I)\Ainv(I) with

xn → x. Thus there are invariant control sets Ci, i ∈ {l + 1, ..., m} with Ci ⊂ clO+(xn).

Since the number of invariant control sets is finite, we may assume that there is a single

invariant control set, say Cl+1, with Cl+1 ∩ I = ∅ and Cl+1 ⊂ clO+(xn) for all n. Hence xn

is in the set L defined in (3.8). By the preceding proposition we find un ∈ U and tn > 0

such that ϕ(tn, xn, un) ∈ intDn for some L-invariant control set Dn. Since the number of

L-invariant control sets is finite we may assume that there is a single control set D ⊂ L

with these properties. One can steer the system from every point of D into I and into Cl+1.

Hence D ∩ I = ∅.

As a corollary, we obtain a result showing that under the inner-pair condition loss of

attractivity is connected with the merger of control sets. It is the main result of this paper.

The inner-pair condition guarantees that the domains of attraction are strictly increasing,

and thus one can steer from one of the control sets in I to the control set D constructed

in the previous theorem; hence this control set is contained in every attractor containing

I. Recall that all attractors are of the form (3.4) and that generically they are of the form

(3.6).

Corollary 3.1. Assume the following inner-pair condition at ρ1: For all ρ > ρ1 and (u, x) ∈

Uρ1 ×K there is T > 0 with ϕρ1(T, x, u) ∈ intOρ,+(x). Consider the invariant sets in F ×K

Iρ =
⋃l1

i=1
Cρ

i ∪
⋃l

i=l1
Dρ

i ∪
⋃l1

i=1

⋃l

j=l1

[

Dρ
j , C

ρ
i

]

,

and assume that they are attractors for ρ < ρ1 and that Iρ1 intersects the boundary of its

invariant domain of attraction defined in 3.7, i.e.,

Iρ1 ∩ ∂Ainv(Iρ1) 6= ∅.

Then for all ρ > ρ1 every attractor containing Iρ1 contains a lifted variant control set Dρ1

with Dρ1 ∩ Iρ1 = ∅.

Proof. By the previous theorem, there is a control set Dρ1 for the ρ1-system such that

Dρ1 ∩ Iρ1 = ∅ and clA(Dρ1) ∩ Iρ1 6= ∅. Now consider for ρ > ρ1 an attractor neighborhood

of an attractor containing Iρ1 . By Proposition 2.3 we may assume that this neighborhood

has the form Fρ × B. Hence it contains a pair (u, x) with ω(u, x) ⊂ Dρ1. This implies that

Dρ1 is contained in this attractor.
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