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Abstract

Systems that model chemical networks are often defined through a set of parame-

ters (the reaction rate constants) whose values may be determined with a small margin

of error. These parameters will typically also appear in the construction of observers.

The idea of robustness of observers with respect to the parameters is discussed. A def-

inition of parameter-robustness is proposed and an explicit observer for zero-deficiency

chemical networks is presented, which is robust in this sense.

1 Introduction

Consider the following model for chemical reaction networks of Feinberg-Horn-Jackson zero

deficiency type ([3, 4, 5]), with mass-action kinetics:

ẋ = fA(x) =

m∑

i=1

m∑

j=1

aijx
b1j
1 x

b2j
2 . . . xbnjn (bi − bj) (1.1)

together with a set of measurements

y = h(x). (1.2)

The vector x ∈ Rn represents the concentration of each species involved in the reactions

and thus we will be interested only in those trajectories that evolve in the positive orthant

Rn>0 = {(x1, . . . , xn) ∈ Rn : xi > 0, ∀ i}. The matrix A = (aij) is the matrix of the reaction

rate constants, whose entries are all nonnegative (without loss of generality, we assume

that its diagonal entries are zero), and which is assumed to be irreducible. The matrix

B = (b1, . . . , bm), with bj = (b1j, . . . , bnj), is the matrix whose columns represent the several

complexes involved in the reactions; all its entries are nonegative integers. It is assumed that

B has full rank m, and that none of its rows vanishes completely.

The output map h : Rn → Rp is assumed to be of the form

h(x) =



xc11

1 xc12
2 · · ·xc1nn

...

x
cp1
1 x

cp2
2 . . . x

cpn
n


 , (1.3)

where the matrix of exponents C is allowed to have entries either cij = 0 or cij ≥ 1, so that

h(x) is a locally Lipschitz function.
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In the paper [2], a necessary and sufficient condition for detectability of system (1.1), with

outputs (1.2) of the form just described, was stated and proved. Under this condition, it

was also shown that system (1.1) admits a global observer, of the Luenberger type

ż = f(z) + C ′(h(x)− h(z)), (1.4)

such that, |z(t)− x(t)| → 0 for any initial conditions z(0) ∈ Rn≥0 of (1.4) and x(0) ∈ Rn>0

of (1.1).

We would like to investigate the performance of the observer (1.4) under small perturba-

tions of the matrix A, that is, suppose that the observer is constructed, not with the “real”

A, but instead with some “ideal” value A0. Will the observer still produce a reasonable

estimate of the state x(t)? Our goal is to establish that, provided the difference ‖A−A0‖F

is small, the difference |z(t)− x(t)| will also be small, and to provide error estimates.

Throughout this paper we will consider the matrix B to be fixed and allow only A to vary.

This is reasonable, since a change in B would mean a change in the complexes involved in the

reaction network: this would be a more profound change in the system and a very different

problem to analyse.

Important results for the system

An important object associated with this system is its stoichiometric space, given by

D = span {bi − bj : i, j = 1, . . . ,m}.

Define the classes of the system (1.1) by:

S = (p +D) ∩ Rn≥0 = {p+ d : d ∈ D} ∩ Rn≥0, p ∈ Rn≥0.

Note that the classes S depend on the matrix B but not on A, and that, given an initial

condition x0 ∈ Rn≥0, the system (1.1) will stay for all t in the class S = (x0 + D) ∩ Rn≥0. If

S ∩ Rn>0 6= ∅, S is said to be a positive class.

Another important object associated with (1.1) is the set of equilibria:

EA := {x ∈ Rn≥0 : fA(x) = 0}.

The set of strictly positive equilibria is denoted EA,+ = EA ∩ Rn>0. In the work of Feinberg

and Horn & Jackson, it has been proved that in each positive class S there exists a unique

positive equilibrium, {x̄} = S ∩ EA,+, and that x̄ is asymptotically stable relative to S. For

this reason, it will be useful to identify the positive classes by their positive equilibrium, and

thus give another representation of each positive class:

Sx̄ = {x ∈ Rn≥0 : 〈vi, x〉 = 〈vi, x̄〉, i = 1, . . . , n−m+ 1}

where {v1, . . . , vn−m+1} forms a basis of D⊥, since dimD⊥ = n− dimD = n−m+ 1.
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The set of elements of EA which have at least one coordinate equal to zero (the boundary

equilibria) will be denoted by E0. It is interesting to note that the boundary equilibria do

not depend on the matrix A, but only on the matrix B. Indeed, Lemma VI.2 in [7] gives the

following characterization

x ∈ E0 ⇔ x
b1j
1 x

b2j
2 . . . xbnjn = 0, ∀ j = 1, . . . ,m

The zero-deficiency chemical reaction networks are also described by Sontag in the paper [7]

which summarizes the stability properties of system (1.1) and also gives further results in

the context of control theory. In particular, it is shown that, if no boundary equilibria exist

in a positive class (i.e., Sx̄ ∩ E0 = ∅, for x̄ ∈ EA,+), then the unique positive equilibrium,

x̄, is in fact globally asymptotically stable relative to Sx̄. From now on, we will assume

that (1.1) satisfies this no boundary equilibria assumption. (From a physical point of view,

this assumption is reasonable since many known chemical reactions of this type don’t have

boundary equilibria in the positive classes.)

2 Parameter–robust observers

The concept of “perturbation to the ideal A0” is next discussed. Given a chemical network,

characterized by B and A0, each nonzero entry of A0 stands for an existing reaction between

two of the complexes. In this paper, a perturbation of the matrix A0 will mean a perturbation

of the nonzero entries of A0 only. Thus, we are not considering here any alterations to the

structure of the existing network. Furthermore, we will also assume that any perturbation is

constant along time, that is, we assume the true system may look like ẋ = fA(x), where A is

constant, while the design of an observer is based on a nominal system ẋ = fA0(x).

To formalize our concept of robustness, some notation is needed. Let

A≥0 = {A ∈ Rm×m : A ≥ 0 and (A+ I)k > 0 for some power k}.

Thus A≥0 is the set of irreducible m × m matrices whose entries are nonnegative. The

inequality A ≥ 0 (resp. A > 0), means that every entry of the matrix on the left hand side is

nonegative (resp. positive). Let ‖A‖F denote the matrix norm induced by the vector norm

|·| (euclidean norm).

Each matrix A ∈ A≥0 characterizes a system of the form (1.1), so let fA : Rn → Rn denote

the function defined in (1.1) computed with the entries aij of A. Let Σ(A) denote the system

ẋ = fA(x), y = h(x), and x(t, x0, A) be the solution of the diferential equation ẋ = fA(x),

at time t, when the initial condition is x0. Similarly, let x̄(x0, A) denote the corresponding

equilibrium, and let EA,+ = {x̄(x0, A) : x0 ∈ Rn>0}.
Define also E =

⋃
A∈A≥0

EA,+ to be the set of all positive equilibrium points.

We will use the following notation, for any function u : [0,+∞)→ Rn:

‖u‖T := ess.sup. {|u(t)| : t ≥ T}
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(if T = 0, we may simply drop the subscript “T”).

Let us also introduce the following vector functions:

~ρn(x) = (lnx1, . . . , lnxn)′ and Expn(v) = (ev1, . . . , evn)′

defined on Rn>0 and on Rn, respectively. (From now on, we will drop the subscript n, since

its value is usually clear from the context.) Notice that, for x ∈ Rn>0,

~ρ(h(x)) = C~ρ(x) and h(x) = Exp(C~ρ(x)).

Definition 2.1 For any given matrix A0 ∈ A≥0, define an A0-type matrix to be any other

element A ∈ A≥0 such that aij = 0 if and only if a0
ij = 0.

Let A0 be a matrix in A≥0. A pair of compact sets K of A≥0 and P of E is said to satisfy

the property P0 if the following hold:

(a) A0 ∈ K,

(b) x̄(x0, A0) =: x̄0 ∈ P for some x0 ∈ Rn>0, and

(c) for every x̄ ∈ P , |hi(x̄0)− hi(x̄)| ≤ 1
3
hi(x̄0) for every i = 1, . . . , p.

It is useful to define also the set

Q(P,K) = {q ∈ Rn>0 : x̄(q,A) ∈ P for some A ∈ K}.
Definition 2.2 A system ż = g(z, h(x)), evolving in a state space X (open set of Rn con-

taining Rn>0) is a (full-state) observer for system Σ(A0) if, for each x(0) ∈ Rn>0, z(0) ∈ Rn≥0,

the composite system has solutions defined for all t > 0, and |z(t)− x(t)| → 0 as t→ +∞.

The system ż = g(z, h(x)) is a parameter A0-robust observer for the system Σ(A0) if

(i) there exist functions β = βA0 ∈ KL and ϕ = ϕA0 ∈ K∞,

and for any pair of compact sets K ⊂ A≥0 and P ⊂ E that satisfy property P0

(ii) there exist functions β̃ = β̃K,P ∈ KL and ζ = ζK,P ∈ K,

(iii) for each compact set Q0 ⊂ Q(P,K), there exists T = TK,Q0,x̄0

such that, for each A ∈ K (A0-type matrix) and q ∈ Q0 with x̄(q,A) ∈ P , the solution of the

extended system

ẋ = fA(x), x(0) = q

ż = g(z, h(x)), z(0) = z0

satisfies

|z(t)− x(t, q,A)| ≤ β(|z(T )− x̄0| , t) + β̃(|q − x̄(q,A)| , t)
+ϕ(‖x(·, q, A)− x̄(q,A)‖T )

+ζ(‖A0 −A‖F) + ζ(|x0 − q|),
for all t ≥ T and all z0 ∈ Rn≥0.
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Remark 2.1 The set of initial conditions, Q(P,K), contains whole positive classes and thus

can be unbounded. In particular, note that if P ≡ {x̄0}, and K ≡ {A0} the definition of a

parameter A0-robust observer reduces to that of a full-state observer.

Given a system of the from (1.1) we know that x(t, q,A) converges to x̄(q,A), so one may

always choose T large enough so that the term ϕ(‖x(·, q, A)− x̄(q,A)‖T ) becomes very small.

The terms in β and β̃ also become very small, since these are KL functions. Eventually, the

observer’s estimates will be dominated only by the differences ‖A0 −A‖F and |x0 − q|.
From now on, assume that the output maps are such that one of the rows of the matrix C

coincides with one of the columns (transposed) of B, for instance,

hl(x) = x
b1j
1 x

b1j
2 . . . xbnjn (2.5)

for some 1 ≤ l ≤ p and some 1 ≤ j ≤ m. This is simply saying that one of the measure-

ments is one of the reaction rates of the network, which seems to be a reasonable choice.

This condition together with D + imC ′ = Rn are sufficient to ensure detectability of the

system (1.1) with outputs (1.2) (see [1, 2]). We will try to prove the following result.

Theorem 2.1 Let the matrix B be fixed. Let A0 ∈ A≥0 and let C be such that the system

Σ(A0): ẋ = fA0(x), y = h(x) is detectable and h(x) satisfies (2.5). Then the system ż =

fA0(z) + C ′(h(x)− h(z)) is an A0-robust observer for system Σ(A0).

The difference between the real and ideal values of the equilibria points will be a major

factor in deciding whether an observer is robust, and so whether a reasonable estimate for

x(t, q,A) is to be expected. In Section 3 we will show how the equilibria and trajectories of

the original system behave as the parameter A varies.

Input-to-state stability estimates also play a very important role in establishing this The-

orem, and are stated next.

2.1 An ISS-estimate

By an input u(·) we mean a measurable essentially bounded function u : [0,+∞) → Rp,
possibly restricted to take values in a set U of Rp. In the papers [1, 2], we have studied the

stability properties of the following system with inputs

ż = fA0(z) + C ′(u− h(z)) := f∗A0
(z, u) (2.6)

from which the full-state observer (1.4) is obtained by letting u(t) ≡ h(x(t, x0, A0)). By

profiting from the stability properties of (2.6) one would like to conclude that this observer

is also A0-robust. In other words, if the input is

u(t) ≡ h(x(t, x0, A0)) + error,
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where error = h(x(t, q,A))− h(x(t, x0, A0)) would be the difference between the actual and

“ideal” outputs of the system, one may still obtain a reasonable estimate of x(t, q,A). This

is indeed true, as we will show for output maps h that satisfy (2.5).

For any fixed x̄ ∈ EA0,+, consider the function V (which plays the role of a Lyapunov

function in [7, 2]), defined on Rn≥0:

V (z, x̄) =
n∑

i=1

zi(ln zi − ln x̄i) + (x̄i − zi) (2.7)

V is continuous on Rn≥0 and differentiable on Rn>0, and satisfies the properties:

(i) For z ∈ Rn≥0, V (z, x̄) ≥ 0 and V (z, x̄) = 0⇔ z = x̄.

(ii) There exist two functions ν1, ν2 ∈ K∞ such that ν1(|z − x̄|) ≤ V (z, x̄) ≤ ν2(|z − x̄|),
for all z ∈ Rn≥0 (properness).

For any real number 0 < θ < 1, define the following set of inputs

Uθ = {u ∈ Rp : |uk − hk(x̄)| ≤ θ

2
hk(x̄), k = 1, . . . , p}.

It can be shown that V is an ISS-Lyapunov function, with input set Uθ, with respect to the

point x̄ and the input h(x̄) (see [2] for the definition), for system (2.6), when the map h

satisfies (2.5). By a usual argument, we can prove that the existence of an ISS-Lyapunov

function implies ISS:

Proposition 2.1 Assume that the map h is such that (2.5) holds and the system with outputs

ẋ = fA0(x), y = h(x), is detectable. Then the system with inputs ż = f ∗A0
(z, u) is ISS with

input set Uθ, with respect to the point x̄ and the input h(x̄), i.e., there exist functions β ∈ KL
and ϕ ∈ K∞ such that

|z(t)− x̄| ≤ β(|z(0) − x̄| , t) + ϕ(‖u− h(x̄)‖) (2.8)

for all z ∈ Rn≥0 and all u ∈ Uθ.

3 Dependence of the system on the parameters

In this section we will consider the system ẋ = fA(x) and will start by studying the continuity

of the equilibria x̄ = x̄(q,A) as a map from A≥0 ×Rn>0 to the union of the equilibria E, and

so from now on assume that B has been fixed.

For each fixed A, the continuity with respect to initial conditions has already been estab-

lished by Sontag in [7], through the following result:

Lemma 3.1 Fix a matrix A ∈ A≥0. Then
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1. For each q, w in Rn>0, there exists a unique x = ϕ(q, w) ∈ Rn>0 such that:

x− q ∈ D and ~ρ(x)− ~ρ(w) ∈ D⊥.

Furthermore, the map q, w 7→ ϕ(q, w) is of class C 1.

2. For any q ∈ Rn>0 and any w ∈ EA,+, the element x = ϕ(q, w) corresponds to the

(unique) positive equilibrium x̄(q,A).

The differentiability of x̄(·, A) with respect to initial conditions, follows from this Lemma

by picking any equilibrium z̄ ∈ EA,+ and observing that x̄(q,A) = ϕ(q, z̄) for all q ∈ Rn>0.

We will establish joint continuity, and in fact differentiability, with respect to q,A, and for

that will first prove a general result which is valid for a wider class of matrices.

3.1 Irreducible matrices

Consider a matrix G ∈ Rm×m, G = [gij], and define another matrix

MG =

(
1

1 +
∑
g2
ii

G+ I

)m−1

.

Also define

φ(G) =

(
1 +

m∑

i=1

g2
ii

)−1

,

so that MG = (φ(G)G + I)m−1.

Introduce the following subset of Rm×m

G = {G ∈ Rm×m : MG > 0 and ~1G = 0},

where the inequality means that every entry of the matrix on the left hand side is strictly

positive, and ~1 ≡ [1 1 . . . 1]. Note that G contains all the irreducible matrices which have

nonnegative off-diagonal entries and arbitrary diagonal entries. The set G may be seen as an

open subset of the m2 −m dimensional linear subspace {G : ~1G = 0} of Rm×m.

To each matrix A ∈ A≥0, we associate a matrix in G as follows. Recall that we assumed

that all the diagonal entries of A are zero (since their value does not enter in the computations

of the vector field fA), and we define

Ã = A+




−∑m
i=1 ai1 0 · · · 0

0 −∑m
i=1 ai2 · · · 0

...
...

...

0 0 · · · −∑m
i=1 aim


 .
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Now clearly, ~1Ã = 0 and, since it is always true that |ãii| ≤ 1 +
∑
ã2
ii, it follows that

1

1 +
∑
ã2
ii

Ã+ I ≥ 0.

Note that A is irreducible if and only if 1
1+

�
ã2
ii
Ã + I is, so the latter is again irreducible.

Thus Ã ∈ G. For each G ∈ G observe that

~1 (φ(G)G + I)m−1 = ~1

because ~1G = 0 and ~1 (φ(G)G + I) = ~1. So, any nonnegative eigenvector, v ∈ Rn≥0 (but

v 6= (0, . . . , 0)′), of the matrix MG must correspond to the eigenvalue µ = 1 since

MGv = µv ⇒ ~1(MGv) = ~1(µv) ⇔ ~1v = µ~1v,

and ~1v is a positive scalar.

Since, by definition, MG is irreducible and has all entries positive, by the Perron-Frobenius

theorem we know that the spectral radius of MG, σ(MG), is an eigenvalue of MG, of algebraic

(and hence geometric) multiplicity one. Moreover, an eigenvector associated to σ(MG) can

be chosen to have all entries strictly positive. This eigenvector is usually called a Perron

eigenvector of MG. But, as we have just seen, any positive eigenvector of MG corresponds

to the eigenvalue µ = 1, i.e.,

σ(MG) ≡ 1, ∀ G ∈ G.

Define vP : G → Rm>0 to be the map that assigns to each G ∈ G, the unique Perron

eigenvector of MG, which has its first coordinate equal to 1.

By a rational function everywhere defined on G we mean a function ψ : G → R which

is a quotient ψ = pnum/pden of two polynomial functions pnum, pden : Rm×m → R such that

pden(G) 6= 0 for all G ∈ G.

Proposition 3.1 The map vP is a rational function on G. In particular, vP is C1 on G.

Proof. For each G ∈ G, by abuse of notation, write vP for vP(G). We will also drop

the subscript and let M = MG, for simplicity. We have MvP = σ(M)vP or, equivalently,

(M − I)vP = 0. The matrix M − I has rank m− 1 because σ(M) = 1 is a simple root of the

characteristic polynomial of M .

Put M − I = [N1 N ] where N1 is the first column of M − I and N is the remaining

m× (m− 1) matrix, put vP =

(
1

wP

)
, and notice that

NwP = −N1.

Claim. N has rank m− 1.
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Suppose the claim is false. Then there exists an element u in the kernel of N , and one could

write N(wP + u) = −N1. But if this is true, then it also holds that

(M − I)

(
1

wP + u

)
= 0

which implies wP + u = wP, because vP is in fact the unique vector with first coordinate 1 in

the kernel of M − I. So u ≡ 0, which proves the claim.

Applying the Moore-Penrose pseudoinverse of N yields

vP =

(
1

wP

)
=

(
1

−(N ′N)−1N ′N1

)
.

(Note that det(N ′N) 6= 0 for every G.) This shows that vP is a rational function on G.

The Perron eigenvector of MG, defined above for each G ∈ G, is also an eigenvector of the

matrix G, corresponding to the 0 eigenvalue.

Indeed, let the equation φ(G)Gv = λ v define an eigenvalue of φ(G)G and its correspond-

ing eigenvector. Then

(φ(G)G + I)v = (λ+ 1)v ⇒ (φ(G)G + I)m−1v = (λ+ 1)m−1v

So, the pair v, λ given by v = vP and (λ + 1)m−1 = σ(MG) = 1 satisfies the eigenvalue

equation. Moreover, since ~1(φ(G)G + I)vP = ~1vP is a positive scalar, it must hold that

(λ+ 1)~1vP is also a positive scalar, implying that λ+ 1 (hence λ) is a real number. The only

real number that satisfies (λ+ 1)m−1 = 1 is λ = 0.

Furthermore, since φ(G) > 0, we have

GvP = 0, ∀ G ∈ G.

And since σ(M) has multiplicity one, the kernel of G has dimension 1 and is given by:

ker (G) = span {vP(G)}.

3.2 Continuity of equilibrium points

For each fixed A ∈ A≥0, note that system (1.1) can be written in yet another form (see [7]):

fA(x) =
m∑

i=1

m∑

j=1

aijx
b1j
1 x

b2j
2 . . . xbnjn (bi − bj) = BÃθB(x) (3.9)

where Ã = A − diag (
∑
ai1,

∑
ai2, . . . ,

∑
aim). It is clear that Ã is also an irreducible

matrix and, in particular, Ã ∈ G. The function θB : Rn>0 → Rm≥0 is given by

θB(x) = Exp(B ′~ρ(x)) = (e〈b1,~ρ(x)〉, e〈b2,~ρ(x)〉, . . . , e〈bm,~ρ(x)〉)′.

This form provides an alternative characterization of the equilibria which follows from the

fact that B ′ is an onto map from Rn to Rm (see Lemma V.1 of [7]):

Fact. The point x̄ ∈ Rn>0 is an equilibrium for (1.1) if and only if θB(x̄) ∈ ker Ã.
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Proposition 3.2 The map Rn>0 × A≥0 → E ⊂ Rn>0 given by (x0, A) 7→ x̄(x0, A) is real-

analytic, in particular, continuously differentiable.

Proof. For each A consider the matrix Ã, constructed from A as indicated above. Then by

the arguments above, ker Ã = span {vP(Ã)}.
The fact then says that each equilibrium x̄ ∈ EA,+ is characterized by

θB(x̄) = c vP ⇔ B ′~ρ(x̄) = ~ρ(c vP),

where c is a positive constant.

Therefore, for each A, there exists some equilibrium point, z̄(A) given by

~ρ(z̄(A)) = B(B ′B)−1~ρ(vP(Ã)).

(Since B ′ has full column rank, this formula gives B ′~ρ(z̄(A)) = B ′B(B ′B)−1~ρ(vP(Ã)) =

~ρ(vP(Ã)).) Now, by Proposition 3.1, the map vP is rational on G; the entries of Ã are linear

combinations of the entries of A; the functions Exp(·) and ~ρ(·) are analytic on Rn and Rn>0, re-

spectively, so it follows that the map from A≥0 to E given by z̄(A) :=Exp(B(B ′B)−1~ρ(vP(Ã))

is also an analytic map.

Now let q = x0 be any initial condition in Rn>0 and set w = z̄(A) in Lemma 3.1. It follows

that ϕ(q, w) ≡ x̄(x0, A), so we may we conclude that x̄ : Rn>0×A≥0 → E, given by ϕ(z̄(A), x0)

is a real analytic map.

Using the modulus of continuity one can show:

Corollary 3.1 For each pair of compact sets P ⊂ E and K ⊂ A≥0, there exists a function

ζ of class K such that

|x̄(x0, A0)− x̄(q,A)| ≤ ζ(|x0 − q|) + ζ(‖A0 −A‖F)

for all x0, q ∈ Q(P,K) and all A0, A ∈ K.

4 Uniform bounds

For a fixed matrix A, the convergence of system (1.1) was proved using the Lyapunov func-

tion (2.7). The function V (·, ·) is continuous when seen as a function Rn≥0 × Rn>0 → R, and

is continuously differentiable on Rn>0 × Rn>0.

In principle, the K∞ functions ν1, ν2, that provide lower and upper bounds for V , depend

on the point x̄. However, for each compact set P ⊂ E, one can find two class K∞ functions

ν1 = ν1,P , ν2 = ν2,P such that property (ii) of V is satisfied for every x̄ ∈ P . Consider

ν1(r) = inf{V (x) : |x− x̄| ≥ r, x ∈ Rn≥0, x̄ ∈ P}

and

ν2(r) = r + max{V (x) : |x− x̄| ≤ r, x ∈ Rn≥0, x̄ ∈ P}.
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Introduce the notation

πj(x, x̄) = πj :=

[
x1

x̄1

]b1j [x2

x̄2

]b2j
. . .

[
xn
x̄n

]bnj
,

qj(x, x̄) = qj := 〈bj, ρ(x)− ρ(x̄)〉,

where x̄ = (x̄1, . . . , x̄n)′ ∈ E and πj is defined for x ∈ Rn≥0 and qj is defined for x ∈ Rn>0.

Observe that πj = eqj . Define the function Rn≥0 ×Rn>0 → R≥0

Ψ(x, x̄) :=

m∑

i=1

m∑

j=1

(
e−πi − e−πj

)2
.

Lemma 4.1 (Lemma 2.8 in [2]) If x̄ ∈ EA,+, then for all x ∈ Rn≥0:

Ψ(x, x̄) = 0 ⇔ x ∈ E0 ∪ EA,+.

For a fixed A ∈ A≥0 and any element x̄ ∈ EA,+, it is proved in Lemma 2.10 in [2] that

∇V (x, x̄) fA(x) = −∑m
i=1

∑m
j=1 aij e

〈bj ,ρ(x̄)〉 eqj |qi − qj − (eqi−qj − 1)|

≤ −1
2

∑m
i=1

∑m
j=1 aij e

〈bj,ρ(x̄)〉 (e−πi − e−πj )2 .

Suppose A1 ∈ A≥0 is a matrix with entries a1
ij = 1 if aij > 0 and a1

ij = 0 if aij = 0. Then we

can write:

∇V (x, x̄) fA(x) ≤ −1

2
min
aij>0
{aij} min

j
e〈bj ,ρ(x̄)〉

m∑

i=1

m∑

j=1

a1
ij

(
e−πi − e−πj

)2
.

Since A1 is irreducible, we may apply a result on quadratic forms given in Lemma VIII.1

in [7] to conclude that there exists a positive constant k such that

m∑

i=1

m∑

j=1

a1
ij

(
e−πi − e−πj

)2 ≥ k
m∑

i=1

m∑

j=1

(
e−πi − e−πj

)2
.

Thus we have:

Lemma 4.2 (Lemma 2.10 in [2], adapted) There exists a positive constant k, a continuous

function c : Rn≥0 → R≥0 and a function κ : A≥0 → R≥0 given by

c(ξ) =
1

2
min
j
e〈bj ,ρ(ξ)〉 and κ(A) = k min{aij : aij 6= 0, i, j = 1, . . . ,m}

such that, given any matrix A ∈ A≥0 and any element x̄ ∈ EA,+:

∇V (x, x̄) fA(x) ≤ −κ(A) c(x̄) Ψ(x, x̄), (4.10)

for all x ∈ Rn>0.
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Lemma 4.3 Let P ⊂ E and K ⊂ A≥0 be compact sets. Then there exists a continuous

positive definite function α : R≥0 → R≥0, α = αP,K, such that, given any pair x̄ ∈ P , A ∈ K
with x̄ ∈ EA,+,

∇V (x, x̄) fA(x) ≤ −α(V (x, x̄))

for all x ∈ Rn>0 ∩ Sx̄.

Proof. Let c : Rn≥0 → R≥0 and κ : A≥0 → R≥0 be the functions given in Lemma 4.2. We will

show that the following function, defined from R≥0 to R≥0 is positive definite:

α(r) = inf{κ(A) c(x̄) Ψ(x, x̄) : A ∈ K, x̄ ∈ P, x ∈ Cr ∩ Sx̄}

where

Cr = {x ∈ Rn≥0 : V (x, x̄) = r, x̄ ∈ P}.

First, we show that Cr is a compact subset of Rn≥0. (a) Closed: let xk be a sequence in Cr
converging to a point x ∈ Rn≥0. We must show that x ∈ Cr. For each xk there exist x̄k ∈ P
with V (xk, x̄k) = r. Since P is compact, the sequence {x̄k} has a converging subsequence,

x̄kl → x̄. By continuity of V , V (xkl , x̄kl) → V (x, x̄), hence V (x, x̄) = r. So x ∈ Cr as

wanted. (b) Bounded: let x ∈ Cr. Then ν1,P (|x− x̄|) ≤ r for all x̄ ∈ P , which implies

|x| ≤ ν−1
1,P (r) + |x̄|. So, with M = max{|x̄| : x̄ ∈ P}, Cr is contained in the closed ball of

radius ν−1
1,P (r) +M centered at the origin.

Next show that the set

C̃r = {(x, x̄) : x̄ ∈ P, x ∈ Cr ∩ Sx̄}

is also compact: since it is clearly a subset of the compact set Cr×P , it is enough to show that

C̃r is closed. Given a sequence of points (xk, x̄k) ∈ C̃r converging to a point (x, x̄) ∈ Cr × P ,

we need to show that also x ∈ Sx̄. But, by definition of a class we have

〈vi, xk − x̄k〉 = 0, ∀ i = 1, . . . , n−m+ 1,

and by continuity it follows that 〈vi, x− x̄〉 = 0 for all such i, that is, x belongs to the class

Sx̄, as wanted.

It is clear r = 0 implies C̃r = {(x̄, x̄) : x̄ ∈ P}, so α(0) = 0. The functions κ(·) and c(·)
will have strictly positive minimum values on the compact sets K and P , respectively.

Now, we take any r > 0 and show that inf{Ψ(x, x̄) : (x, x̄) ∈ C̃r} is positive. To get

a contradiction, assume that this infimum is zero for some r > 0. Then there exists an

infinite sequence (xk, x̄k) such that Ψ(xk, x̄k) → 0. Since C̃r is compact, there exists a

comverging subsequence: (xkl, x̄kl)→ (x0, x̄0) ∈ C̃r. Then Ψ(x0, x̄0) = 0 and by Lemma 4.1,

x0 ∈ E0 ∪ EA0 ,+ for some A0 ∈ A≥0. But, under the no boundary equilibrium assumption,

E0 ∩ Sx̄ = ∅ for all x̄. So, by uniqueness of the positive equilibrium in each class, x0 = x̄0

which implies r = V (x0, x̄0) = 0 and contradicts r > 0. Thus, α(r) > 0 whenever r > 0.
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Finally, by construction, α satisfies: κ(A) c(x̄) Ψ(x, x̄) ≥ α(V (x, x̄)) for all x̄ ∈ P , all

A ∈ K and all x ∈ Sx̄, and in particular, for all x ∈ Rn>0 ∩ Sx̄. Without loss of generality

we may assume that α is continuous – otherwise, one can always construct another positive

definite function α̃, continuous, and satisfying α(r) ≥ α̃(r), for all r. This finishes the proof.

Corollary 4.1 Given any compact sets P ⊂ E and K ⊂ A≥0, there exists a function β̃ =

β̃P,K of class KL such that for any pair x̄ ∈ P , A ∈ K and all q ∈ Rn>0 with x̄ = x̄(q,A)

|x(t, q,A)− x̄(q,A)| ≤ β̃(|q − x̄(q,A)| , t),

for all t ≥ 0.

Proof. Pick any compact sets P ⊂ E and K ⊂ A≥0 and let α be the positive definite function

given by Lemma 4.3. Consider the initial value problem

ẏ ≤ −α(y), y(0) = y0.

where y0 ∈ Rn≥0. Then by a comparison result such as Lemma 4.4 of [6], there exists a

function β = βα of class KL such that y(t) ≤ β(y0, t), for all t ≥ 0. Using the functions

ν1 = ν1,P , ν2 = ν2,P ∈ K∞ define β̃(r, t) = ν−1
1 (β(ν2(r), t)) which is again a KL function and

depends only on P and K.

Now, pick any x̄ ∈ P and A ∈ K. Let q ∈ Rn>0 be such that x̄ = x̄(q,A). Recall that

x(t, q,A) is the unique solution of the initial value problem ẋ = fA(x), x(0) = q, and we

know that x(t, q,A) ∈ Sx̄ for all t ≥ 0.

Define y(t) := V (x(t, q,A), x̄(q,A)). From Lemma 4.3 the function y(t) satisfies, for all

t ≥ 0, ẏ ≤ −α(y), y(0) = V (q, x̄(q,A)). Therefore, recalling property (ii) of V , we have

ν1(|x(t, q,A)− x̄(q,A)|) ≤ V (x(t, q,A), x̄(q,A)) ≤ β(ν2(|q − x̄(q,A)|), t)

for all t ≥ 0. This finishes the proof of the Corollary.

Lemma 4.4 Let s0 > 0 be any real number. Given any compact sets P ⊂ E and K ⊂ A≥0,

and given any compact set of initial conditions Q0 ⊂ Q(P,K), there exists T = TK,Q0,s0 > 0

such that, for every x̄ ∈ P , A ∈ K and q ∈ Q0 with x̄ = x̄(q,A), the following hold

|x(t, q,A)− x̄(q,A)| ≤ 1

|hi(x(t, q,A)− hi(x̄(q,A)| ≤ s0,

for all t ≥ T and all i = 1, . . . , p.

Proof. Let P ⊂ E, K ⊂ A≥0 and Q0 ⊂ Q(P,K) be given compact sets. Let β̃ be the KL
function given in Corollary 4.1. Put

M = max
q∈Q0,A∈K

|q − x̄(q,A)| ,
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and let T1 = T1(M) be so that β̃(M, t) ≤ 1 for all t ≥ T1. Consider the closed ball

B1 = {x ∈ Rn : |x| ≤ 1 + max
x̄∈P
|x̄| } (4.11)

and let c1 be a Lipschitz constant for the function h in the set B1. Next, pick T = TK,Q0,s0 ≥
T1, so that β̃(M, t) ≤ s0

c1
, for all t ≥ T .

Now, pick any x̄ ∈ P , A ∈ K and q ∈ Q0 with x̄ = x̄(q,A). For all t ≥ T1, from

Corollary 4.1 it follows that |x(t, q,A)− x̄(q,A)| ≤ β̃(M, t) ≤ 1 and so x(t, q,A) ∈ B1 for all

t ≥ T1.

We then have, using the fact that h is Lipschitz on B1,

|hi(x(t, q,A))− hi(x̄(q,A))| ≤ c1 |x(t, q,A)− x̄(q,A)| ≤ c1β̃(M, t) ≤ s0

for all t ≥ T , which finishes the proof.

5 Proof of Theorem 2.1

Given a chemical network characterized by matrices B as in Section 1 and A0 ∈ A≥0, let C

be such that the system Σ(A0): ẋ = fA0(x), y = h(x) is detectable. We will next show that

ż = fA0
(z) + C ′(h(x)− h(z)) provides an A0-robust observer for Σ(A0).

Consider the system ż = fA0(z) + C ′(u− h(z)) and let β = βA0 ∈ KL and ϕ = ϕA0 ∈ K∞
be as in Proposition 2.1.

Pick any compact sets P ⊂ E and K ⊂ A≥0 that have property P0, so A0 ∈ K and x̄0 =

x̄(x0, A) for some x0 ∈ Rn>0. Let β̃ = β̃P,K ∈ KL be as in Corollary 4.1, and ζ = ζP,K ∈ K
as in Corollary 3.1. Pick any compact subset Q0 ⊂ Q(P,K) and let T = TK,Q0,x̄0 be the

number given by Lemma 4.4, when s0 = 1
7

min1≤i≤p h(x̄0).

Pick any A ∈ K (A0-type) and any q ∈ Q0 with x̄(q,A) ∈ P . Consider the extended

system ẋ = fA(x), ż = fA0(z) + C ′(h(x) − h(z)) and let (x(t, q,A), z(t)) be its solution at

time t, with initial condition (q, z(0)). Lemma 4.4 (with s0 = 1
7

min1≤i≤p h(x̄0)), together

with part (c) of property P0 and triangle inequality, imply

|hi(x(t, q,A)− hi(x̄0)| ≤
10

21
hi(x̄0)

for all t ≥ T , and all i = 1, . . . , p. Let θ = 20/21 and observe that h(x(t, q,A)) ∈ Uθ for all

t ≥ T . Applying Proposition 2.1 with u(t) ≡ h(x(t+ T, q,A)) and z(T ) as initial condition,

yields

|z(t)− x̄0| ≤ β(|z(T )− x̄0| , t) + ϕ(‖h(x(·, q, A))− h(x̄0)‖T )

for all t ≥ T .

Now, using the triangle inequality

|z(t)− x(t, q,A)| ≤ |z(t)− x̄0|+ |x̄0 − x̄(q,A)|+ |x̄(q,A)− x(t, q,A)|
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together with the ISS estimate, Corollary 3.1 and Corollary 4.1 obtain

|z(t)− x(t, q,A)| ≤ β(|z(T )− x̄0| , t) + β̃(|q − x̄(q,A)| , t) + ϕ(‖h(x(·, q, A))− h(x̄0)‖T )

+ζ(‖A0 −A‖F) + ζ(|x0 − q|)
for all t ≥ T .

Let c1 be a Lipschitz constant of the function h on the closed ball B1 (defined in (4.11).

Note that x(t, q,A) ∈ B1 for t ≥ T and also P ⊂ B1. Then, since ϕ is K∞, we have

ϕ(‖h(x(·, q, A))− h(x̄0)‖T ) ≤ ϕ(c1‖x(·, q, A)− x̄0‖T )

≤ ϕ(2c1 ‖x(·, q, A)− x̄(q,A)‖T ) + ϕ(2c1 ‖x̄(q,A)− x̄0‖T ).

Using Corollary 3.1 once more,

ϕ(2c1 ‖x̄(q,A)− x̄0‖T ) ≤ ϕ(4c1 ζ(|x0 − q|)) + ϕ(4c1 ζ(‖A0 −A‖F))

and renaming the functions ϕ(2c1r) → ϕ(r) and ϕ(4c1ζ(r)) + ζ(r) → ζ(r) (note that

ϕ(4c1ζ(·)) is still of class K and depends on K and P ), the desired estimate for the dif-

ference |z(t)− x(t, q,A)| follows.
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