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Abstract

The notion of output-input stability, recently proposed in [2], represents a variant of the
minimum-phase property for general smooth nonlinear control systems. In the spirit of the
input-to-state stability (ISS) philosophy, the definition of output-input stability requires the
state and the input of the system to be bounded by a suitable function of the output and
derivatives of the output, modulo a decaying term depending on initial conditions. The present
work extends this concept to the setting of input/output operators. We show that output-input
stability of a system implies output-input stability of the associated input/output operator, and
that under suitable reachability and observability assumptions, a converse result also holds.

1 Motivation

For systems with inputs, two properties of interest are asymptotic stability under zero inputs and
bounded state response to bounded inputs. It is well known that for linear systems the first property
implies the second one, but for general nonlinear systems this is not the case. The notion of input-
to-state stability (ISS) introduced in [3] captures both of the above properties; it requires that
bounded inputs produce bounded states and inputs converging (or equal) to zero produce states
converging to zero.

Dual concepts of detectability result if one considers systems with outputs. For linear systems,
one of equivalent ways to define detectability is to demand that the state converge to zero along
every trajectory for which the output is identically zero. The notion of output-to-state stability
(OSS) introduced in [4] is a robust version of this property for nonlinear systems and a dual of ISS;
it requires that the state be bounded if the output is bounded and converge to zero if the output
converges to zero.

The present line of work is concerned with the minimum-phase property of systems with both
inputs and outputs. A linear system is minimum-phase if whenever the output is identically zero,
both the state and the input must converge to zero; in the frequency domain, this is characterized
by stability of system zeros. Byrnes and Isidori [1] provided an important and natural extension
of the minimum-phase property to nonlinear systems. According to their definition, the system is
minimum-phase if the zero dynamics—the internal dynamics of the system under the action of an
input that holds the output constantly at zero—are asymptotically stable.

The above remarks suggest that to complete the picture, one should have a robust version of
the last property, which should ask the state and the input to be bounded when the output is
bounded and to become small when the output is small. Such a concept was proposed in the
recent paper [2] under the name of output-input stability. This property is in general stronger
than the minimum-phase property defined in [1]. Output-input stability can be studied with the
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help of the tools that have been developed over the years to study ISS, OSS, and related notions
(such as Lyapunov-like dissipation inequalities); the minimum-phase property, on the other hand,
is investigated using different techniques (such as computation of normal forms and zero dynamics).
This makes output-input stability an appropriate alternative notion to use in those situations where
the minimum-phase property is insufficient or difficult to check.

In this paper we extend the concept of output-input stability to the setting of input/output
operators and study the relationship between output-input stability of a nonlinear system and the
corresponding property of its input/output operator. This work parallels the developments of [3],
where input-to-state stability of input/output operators is defined and related to the ISS property
of state-space systems (see particularly Propositions 3.2 and 7.1 in that paper). The necessary
background and definitions are given in Sections 2 and 3, and the main findings are presented in
Section 4.

2 Preliminaries

Given a pair of integers k ≥ 0 and l > 0 and a subinterval J of [0,∞), we denote by Ck(J, Rl) the
space of all k times continuously differentiable functions w : J → Rl. For example, C0([0,∞), Rl)
is the space of all continuous functions w : [0,∞) → Rl.

Consider the system

ẋ = f(x, u)

y = h(x)
(2.1)

where the state x takes values in Rn, the input u takes values in Rm, the output y takes values in Rp

(for some positive integers n, m, and p), and the functions f and h are smooth (C∞). We restrict
admissible input (or “control”) signals to be locally bounded piecewise continuous. For every initial
condition x(0) and every input u(·), there is a solution x(·) of (2.1) defined on a maximal interval
[0, Tmax), and the corresponding output y(·). An input in Ck([0,∞), Rm) produces an output in
Ck+1([0, Tmax), Rp), with (k + 1)-st derivative

y(k+1)(t) = Hk+1

(
x(t), u(t), . . . , u(k)(t)

)
, t ∈ [0, Tmax) (2.2)

where for i = 0, 1, . . . the functions Hi : Rn × (Rm)i → Rp are defined recursively by the formulas
H0 := h and

Hi+1(x, u0, . . . , ui) :=
∂Hi

∂x
f(x, u0) +

i−1∑
j=0

∂Hi

∂uj
uj+1 (2.3)

(here the arguments of Hi are x ∈ Rn and u0, . . . , ui−1 ∈ Rm). In fact, if y needs to be differentiated
r times before u appears, then an input in Ck([0,∞), Rm) produces an output in Ck+r([0, Tmax), Rp);
see [2] for details.

We let ‖ · ‖J denote the supremum norm of a signal restricted to an interval J ⊂ [0,∞), i.e.,
‖z‖J := sup{|z(s)| : s ∈ J}, where | · | is the standard Euclidean norm. Given an Rl-valued signal
z and a nonnegative integer k, we denote by zk the Rl(k+1)-valued signal

zk := (z1, ż1, . . . , z
(k)
1 , . . . , zl, żl, . . . , z

(k)
l )T
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provided that the indicated derivatives exist.
According to Definition 1 of [2], the system (2.1) is called output-input stable if there exist a

positive integer N , a class KL function1 β, and a class K∞ function γ such that for every initial
state x(0) and every input u ∈ CN−1([0,∞), Rm) the inequality∣∣∣∣(u(t)

x(t)

)∣∣∣∣ ≤ β(|x(0)|, t) + γ(‖yN‖[0,t]) (2.4)

holds for all t in the domain of the corresponding solution. (The continuous differentiability as-
sumption on the input can be weakened if the function HN is independent of uN−1.) The class
of output-input stable systems includes all affine systems in global normal form with ISS internal
dynamics and also all left-invertible linear systems whose transmission zeros have negative real
parts. We refer the reader to [2] for a detailed discussion and applications of output-input stability,
which can be viewed as a generalization of the notion of a minimum-phase linear system.

3 Input/output operators

We now extend the above concept of output-input stability to input/output operators. By an
input/output (I/O) operator we mean a causal mapping

F : Ck([0,∞), Rm) →
⋃

Tmax>0

Ck+r([0, Tmax), Rp) (3.1)

where k is a nonnegative integer and m, r, and p are positive integers. “Causal” means that if
y = F (u), then y(t) does not depend on the values u(s), s > t. Let us call an I/O operator (3.1)
output-input stable if there exist a positive integer N ≤ k + r, a class KL function βu, and a class
K∞ function γu such that for every input u ∈ Ck([0,∞), Rm) and every pair of times t ≥ T in the
domain of the corresponding output y = F (u) we have

|u(t)| ≤ βu(‖yN‖[0,T ), t− T ) + γu(‖yN‖[T,t]). (3.2)

When studying the relationship between state-space systems and the associated I/O operators
from the point of view of output-input stability, we will need to consider input signals obtained
by concatenating two continuous inputs. To this end, we denote by Ĉk([0,∞), Rm) the space of
functions u : [0,∞) → Rm which either belong to Ck([0,∞), Rm) or have a single discontinuity at
some time T , satisfy u(T ) = lims→T+ u(s), and are k times continuously differentiable everywhere
else. Then we can consider a more general I/O operator

F̂ : Ĉk([0,∞), Rm) →
⋃

Tmax>0

Ĉk+r([0, Tmax), Rp) (3.3)

where the space Ĉk+r([0, Tmax), Rp) is defined similarly and the location T of the discontinuity is
assumed to be preserved under the action of F̂ (and if the input is continuous on [0, Tmax), then so
is the output). Let us say that this operator is output-input stable if:

1Recall that a function α : [0,∞) → [0,∞) is said to be of class K if it is continuous, strictly increasing, and

α(0) = 0. If α ∈ K is unbounded, then it is said to be of class K∞. A function β : [0,∞)× [0,∞) → [0,∞) is said to

be of class KL if β(·, t) is of class K for each fixed t ≥ 0 and β(s, t) decreases to 0 as t →∞ for each fixed s ≥ 0.
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1. The restriction of F̂ to Ck([0,∞), Rm) is output-input stable in the sense of the previous
definition.

2. For every input u ∈ Ĉk([0,∞), Rm) with a discontinuity at T and every t ≥ T in the domain
of the corresponding output y = F̂ (u), the inequality (3.2) holds2.

4 Systems and their operators

We now take F̂ to be the I/O operator that describes the input/output mapping of the system (2.1),
with x(0) = 0. We want to understand the relationship between output-input stability of the system
and of the operator.

System → operator

First, suppose that the system (2.1) is output-input stable. As the domain of F̂ , we can take
ĈN−1([0,∞), Rm), so that we have

F̂ : ĈN−1([0,∞), Rm) →
⋃

Tmax>0

ĈN ([0, Tmax), Rp).

Here N is the positive integer that appears in (2.4).

Proposition 1 If the system (2.1) is output-input stable, then the I/O operator F̂ is also output-
input stable.

Proof. Take an input u ∈ ĈN−1([0,∞), Rm), the output y = F̂ (u) ∈ ĈN ([0, Tmax), Rp), and a
pair of times (T, t) satisfying 0 ≤ T ≤ t < Tmax, where T coincides with the discontinuity of u if
one exists and is arbitrary otherwise. By time invariance, (2.4) implies

|u(t)| ≤ β(|x(T )|, t− T ) + γ(‖yN‖[T,t]).

Applying (2.4) again, this time to x(T−) = x(T ), and recalling that x(0) = 0, we obtain

|u(t)| ≤ β(γ(‖yN‖[0,T )), t− T ) + γ(‖yN‖[T,t]).

Therefore, (3.2) holds with βu(s, t) := β(γ(s), t) and γu := γ, hence F̂ is output-input stable.

Remark 1 A natural question to ask is whether output-input stability of an I/O operator F of
the form (3.1) automatically implies output-input stability of the extended operator F̂ . We do not
know the answer to this question in general, although some positive results can be obtained for
I/O operators associated with certain classes of state-space systems.

2The vector yN (T ) is to be interpreted as lims→T+ yN (s).
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Operator → system

Obtaining a converse result is more interesting. Suppose that F̂ is output-input stable. We take
the domain of F̂ to be ĈN−1([0,∞), Rm), where N is the positive integer that appears in (3.2). We
impose the following two assumptions on the system (2.1).
Assumption 1 (strong finite-time observability with output derivatives). There exist a number ε >

0 and two class K∞ functions α1 and α2 such that for every x(0), every input u ∈ CN−1([0,∞), Rm),
and every t ∈ [0, Tmax−ε), where [0, Tmax) is the maximal interval of existence of the corresponding
solution of (2.1), we have

|x(t)| ≤ α1(‖u‖[t,t+ε]) + α2(‖yN‖[t,t+ε]). (4.1)

Remark 2 In contrast with the strong observability property considered in [3], finite time intervals
are used here. On the other hand, (4.1) is weaker in the sense that the right-hand side contains
derivatives of the output. Alternative definitions of observability can also be explored in this
context; cf. Remark 4 below.

Assumption 2 (reachability with bounded overshoot). There exists a class K∞ function α3 such
that for each ξ ∈ Rn\{0} it is possible to find a time T > 0 and a control input u ∈ CN−1([0, T ), Rm)
which steers the system (2.1) from state 0 at time t = 0 to state ξ at time t = T in such a way that
the corresponding output y satisfies

‖yN‖[0,T ) ≤ α3(|ξ|). (4.2)

Remark 3 Under appropriate conditions, this property can be derived from a strong reachability
property of the kind considered in [3]. Namely, assume that there exists a class K∞ function α4 such
that for each ξ ∈ Rn\{0} it is possible to find a time T > 0 and a control input u ∈ CN−1([0, T ), Rm)
which steers the system (2.1) from state 0 at time t = 0 to state ξ at time t = T and satisfies

‖uN−1‖[0,T ) ≤ α4(|ξ|). (4.3)

Assume also that h(0) = 0 and that the system (2.1) is K-stable in the sense that for some γ ∈ K
(can take γ ∈ K∞ with no loss of generality) we have

‖x‖[0,t] ≤ γ(‖u‖[0,t]) (4.4)

along all solutions of (2.1). Then, combining (4.3) and (4.4) and using the formulas (2.2) and (2.3),
we can arrive at (4.2). This simplifies if N is such that yN is independent of the derivatives of u,
because then we can replace (4.3) by

‖u‖[0,T ) ≤ α4(|ξ|)

thus recovering the strong reachability condition imposed in [3].

Take an arbitrary ξ ∈ Rn. If ξ = 0, let T = 0. Otherwise, by Assumption 2 we can find
a time T > 0 and an input in CN−1([0, T ), Rm) which steers the system (2.1) from state 0 at
time t = 0 to state ξ at time t = T so that the inequality (4.2) holds. Apply an arbitrary
input in CN−1([T,∞), Rm) for t ≥ T , and denote the concatenated input signal by u. Note that
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u ∈ ĈN−1([0,∞), Rm). Let y be the resulting output, and take an arbitrary t ∈ [T, Tmax− ε) where
ε is provided by Assumption 1. The inequalities (3.2) and (4.2) give

|u(t)| ≤ βu(α3(|ξ|), t− T ) + γu(‖yN‖[T,t]). (4.5)

Moreover, we conclude from (4.5) that

‖u‖[t,t+ε] ≤ βu(α3(|ξ|), t− T ) + γu(‖yN‖[T,t+ε]).

Combined with (4.1), this yields

|x(t)| ≤ βx(|ξ|, t− T ) + γx(‖yN‖[T,t+ε]) (4.6)

where
βx(s, t) := α1(2βu(α3(s), t)), γx(s) := α1(2γu(s)) + α2(s).

By time invariance, the inequalities (4.5) and (4.6) imply that for every x(0) and every input
u ∈ CN−1([0,∞), Rm) the solution of (2.1) satisfies the inequalities

|u(t)| ≤ β(|x(0)|, t) + γ(‖yN‖[0,t]) (4.7)

|x(t)| ≤ β(|x(0)|, t) + γ(‖yN‖[0,t+ε]) (4.8)

for all t ∈ [0, Tmax − ε), where β(s, t) := max{βu(α3(s), t), βx(s, t)} and γ(s) := max{γu(s), γx(s)}.
We summarize as follows.

Proposition 2 If the I/O operator F̂ is output-input stable and Assumptions 1 and 2 hold, then
the system (2.1) has the properties expressed by the inequalities (4.7)–(4.8).

Remark 4 Note that, due to the presence of “non-causal” ε in (4.8), we do not exactly recover
output-input stability of (2.1). This difference would disappear if we strengthened Assumption 1
by requiring that x can be bounded in terms of the instantaneous values of the output and its first
N derivatives. This new assumption would be rather restrictive, though.
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