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Abstract

This paper addresses inclusion of behaviors and its verification. It is shown that

verifying inclusion of frequency domain behaviors defined by polynomial frequency

domain equalities and inequalities amounts to proving emptiness of some basic semial-

gebraic sets. A semidefinite programming relaxation method for solving this problem

is outlined. Some applications are given to illustrate the use of the concepts.

1 Introduction

There has been a widespread research on behavioral systems theory in the recent years. As

one of the paradigms in systems and control, the behavioral approach puts the emphasis on

behaviors of systems, i.e., collections of possible trajectories. This is in contrast to operator

theoretic approaches, which treat systems as signal processors with clear partition between

input and output signals. The behavioral approach is for example treated in the seminal

paper [7], and also in [3].

The significance of behavior inclusion has been recognized as early as [6], in the context of

most powerful unfalsified models. It has also appeared recently in relation to implementable

behaviors [8]. One behavior is included in another behavior if all possible trajectories of

the former are also possible trajectories of the latter. Conditions for some special cases

of behavior inclusion have been presented in [4], for behaviors that admits rational kernel

representations, and also in [5], in relation to the H∞ optimal control problem.

In the present paper, we consider behaviors that can be described by polynomial frequency

domain equalities and inequalities, with possibly some parametric dependence. Through

the use of inequalities and parameters, it is possible to describe behaviors of systems with

parametric and linear time invariant dynamic uncertainty. Our results show that verifying

behavior inclusion can be performed by proving that some basic semialgebraic sets are empty.

The semidefinite programming relaxation methods introduced in [2] can be used for this

purpose. This paper is concluded by application examples on robust controller verification,

and model verification and selection. In particular, we elucidate on the behavior inclusion

interpretations of these problems.
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2 On Frequency Domain Behaviors

Consider a linear time invariant differential system, whose behavior restricted to the L2-space

is described by

B = {w ∈ Ln
2 (R) | R(

d

dt
)w(t) = 0},

where Ln
2 (R) denotes the space of functions mapping R to Cn that are square integrable,

R[ξ] is an m× n matrix of polynomials in the indeterminate ξ, and w is assumed to satisfy

the differential equations above in the weak sense (cf. [3, Chapter 2]). For any w ∈ B, the

Fourier transform ŵ ∈ L̂n
2 (jR) exists. Moreover, it satisfies

R(jω)ŵ(jω) = 0

for all ω ∈ R. Therefore, to the same system we can associate the frequency domain behavior

B̂ = {ŵ ∈ L̂n
2 (jR) | R(jω)ŵ(jω) = 0}.

By considering behaviors on Ln
2 (R) and L̂n

2 (jR), we get the following property: for any
w ∈ B, there exists a corresponding ŵ ∈ B̂, which can be obtained using the Fourier

transform; and conversely for any ŵ ∈ B̂ we can use the inverse Fourier transform to obtain

the corresponding w ∈ B. We have an isomorphism between the time domain and the

frequency domain behaviors, and therefore inclusion of time domain behaviors is equivalent

to inclusion of frequency domain behaviors.

Remark 2.1. Implicit in the definition of frequency domain behavior is the assumption that

two functions are considered the same, if they only differ on a set of measure zero. This

is due to the fact that when we apply the inverse Fourier transform to such functions, we

will get the same time domain signal. Similar thing applies to the definition of time domain

behavior as well.

Next, we step further by adding parameters and frequency domain inequalities in the

definition of behavior, i.e., we consider behaviors defined by

B̂(a) = {ŵ ∈ L̂n
2 (jR) | R(jω, a)ŵ(jω) = 0, ŵ(jω)∗Πi(jω, a)ŵ(jω) ≥ 0, i = 1, 2, ..., k},

where the parameters a ∈ Rp are assumed to be in a basic semialgebraic set A, whereas

R(jω, a), Πi(jω, a) are polynomial matrices in (jω, a), and in addition Πi(jω, a) = Πi(jω, a)∗

for all i = 1, ..., k. By basic semialgebraic set we mean a set that is described by polynomial

equalities and inequalities

A = {a ∈ Rp | pi1(a) = 0, pi2(a) ≥ 0, pi3(a) 6= 0, where pi1 , pi2 , pi3 are real scalar

polynomials in a; i1 = 1, ..., `1; i2 = 1, ..., `2; i3 = 1, ..., `3}. (2.1)

Our rationale for adding parameters and frequency domain inequalities is as follows:
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• the dependence of the behavior on a may represent parametric uncertainties in the

model.

• the frequency domain inequalities ŵ(jω)∗Πi(jω, a)ŵ(jω) ≥ 0 can be used for represent-

ing dynamic uncertainties in our model, or characterizing some signal properties. As we

will see in Section 4, this inequality may also represent some performance specifications

for robust performance analysis.

Given two behaviors B̂1(a), B̂2(a) and their respective R1, Π1i , R
2, Π2i , the problem of

interest is to check if we have the behavior inclusion

B̂1(a) ⊆ B̂2(a) ∀a ∈ A. (2.2)

In most cases, we will be interested in B̂2 that does not depend on a. In this case, the

condition above will be equivalent to B̂1 ⊆ B̂2, where B̂1, which is given by

B̂1 =
⋃

a∈A

B̂1(a) = {ŵ ∈ L̂n
2 (jR) | ∃a ∈ A such that R1(jω, a)ŵ(jω) = 0,

ŵ(jω)∗Π1i (jω, a)ŵ(jω) ≥ 0},

may represent the aggregate behavior of an uncertain system.

At this point we want to emphasize that the signal spaces in the behaviors we are con-

sidering must be the same. Not only that, the signals in one behavior must represent the

same physical quantities as the signals in the other behavior. For example, it does not make

sense to compare full behaviors B̂1,f (a) and B̂2,f (a) of systems with latent variables, where

the latent variables in one behavior are not compatible with the latent variables in the other,

even if their manifest variables represent the same physical quantities. In this case, we should

first project the full behaviors to the manifest variable space in order to obtain the manifest

behaviors B̂1,m(a) and B̂2,m(a), and only after that can we check inclusion of the manifest

behaviors B̂1,m(a) ⊆ B̂2,m(a). The projection is done e.g. by elimination of latent variables.

In general, checking inclusion of projections of two sets is a harder problem, even on finite

dimensional spaces. In this paper we will not deal with that issue, and we only consider

behaviors whose latent variables can be easily eliminated.

Remark 2.2. It is actually sufficient to perform the elimination of latent variables as men-

tioned above only on the second behavior B̂2,f (a), to obtain B̂2,m(a). This manifest behav-

ior can then be lifted to the signal space of B̂1,f (a), and we can verify the behavior in-

clusion B̂1,f (a) ⊆ B̂2,m,`(a), where B̂2,m,`(a) is the result of the lifting. If the inclusion

holds, then inclusion of the manifest behaviors is also true, because B̂1,m(a) ⊆ B̂2,m(a) iff

B̂1,f (a) ⊆ B̂2,m,`(a). See also Section 4.1 (e.g. equations (4.10) and (4.11)) and Section 4.2.

Now, with respect to B̂1(a) in (2.2), we associate the following set:

B1 = {(z, ω, a) ∈ Cm × Rp+1 | a ∈ A, R1(jω, a)z = 0, z∗Π1i (jω, a)z ≥ 0, i = 1, 2, ..., k1},
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and similarly with B̂2(a),

B2 = {(z, ω, a) ∈ Cm × Rp+1 | a ∈ A, R2(jω, a)z = 0, z∗Π2i (jω, a)z ≥ 0, i = 1, 2, ..., k2}.

Then we have the following result.

Proposition 2.1. Inclusion (2.2) holds if

B1 ⊆ B2. (2.3)

Proof. We will show that B̂1(a) * B̂2(a) for some a implies B1 * B2. Assume that there

exists a ∈ A and ŵ ∈ L̂n
2 (jR) such that ŵ ∈ B̂1(a) but ŵ /∈ B̂2(a). Then there exists

W ⊆ R, such that for any ω ∈ W , ŵ(jω) does not satisfy at least one of the equalities and

inequalities that define B̂2(a). On the other hand, since ŵ ∈ B̂1(a), ŵ(jω) will satisfy the

defining equalities and inequalities of B̂1(a) for all ω ∈ W . Now choose any ω0 ∈ W and let

z = ŵ(jω0). Then (z, ω0, a) ∈ B1 but (z, ω0, a) /∈ B2, thus B1 * B2.

We would like to note that in general (2.3) is not a necessary condition for (2.2). This is

shown by a simple example below.

Example 2.1. Consider the following behaviors:

B̂1 = {ŵ ∈ L̂12(jR) | (jω)ŵ(jω) = 0}
B̂2 = {ŵ ∈ L̂12(jR) | ŵ(jω) = 0}

(which corresponds to d
dt
w(t) = 0 and w(t) = 0). It is clear that B1 = {(z, ω) | (jω)z = 0} *

B2 = {(z, ω) | z = 0}, yet B̂1 ⊆ B̂2 since ŵ(jω) ∈ B̂1 can only differ from zero at ω = 0, and

is therefore in the same equivalence class as the zero function (cf. Remark 2.1). In fact, the

time domain behaviors of d
dt
w(t) = 0 and w(t) = 0 restricted to the L2-space are the same.

However, in many cases such degeneracy does not occur, and (2.3) will be a necessary

condition for (2.2). This happens for example when B̂1 is defined only by frequency domain

equalities and R1(jω, a) has full rank for all ω and a.

3 Proving Set Inclusion

It has been shown in the previous section that verifying behavior inclusion in the frequency

domain (2.2) amounts to proving set inclusion (2.3). By imposing the requirements that A

is a basic semialgebraic set and the R’s and Π’s are polynomials, the problem reduces to the

problem of proving inclusion of basic semialgebraic sets, for which deterministic algorithmic

methods exist. Among them are quantifier elimination based methods and a recently devel-

oped semidefinite programming relaxation approach [2]. In this section we will focus on the

latter approach.
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By writing the complex vector z as z = zR + j zI and expressing the real and imaginary

parts of R1(jω, a)z = 0, R2(jω, a)z = 0 separately, it is clear that B1 and B2 are isomorphic

via a common mapping to two subsets of R2m+p+1 that are described by scalar polynomial

equalities and inequalities. With a slight abuse of notation, let us also denote these subsets

by B1, B2, and assume that they are given by

B1 = {(zR, zI , ω, a) | R̃1j1(zR, zI , ω, a) = 0, Π̃1j2(zR, zI , ω, a) ≥ 0, pi1(a) = 0, pi2(a) ≥ 0,

pi3(a) 6= 0, ∀j1, j2, i1, i2, i3},

B2 = {(zR, zI , ω, a) | R̃2j3(zR, zI , ω, a) = 0, Π̃2j4(zR, zI , ω, a) ≥ 0, pi1(a) = 0, pi2(a) ≥ 0,

pi3(a) 6= 0, ∀j3, j4, i1, i2, i3},

where R̃1j1 , Π̃
1
j2
, R̃2j3 , and Π̃

2
j4
are real scalar polynomials, and pi1(a) = 0, pi2(a) ≥ 0, pi3(a) 6= 0

are from (2.1). Although not written explicitly here, we assume that we keep track of the

indices.

Before presenting a sufficient and necessary condition for B1 ⊆ B2, let us introduce the

following sets. For each j3, define Fj3 as

Fj3 = B1 ∩ {(zR, zI , ω, a) | R̃2j3(zR, zI , ω, a) 6= 0},

and similarly for each j4, define Gj4 as

Gj4 = B1 ∩ {(zR, zI , ω, a) | Π̃2j4(zR, zI , ω, a) < 0}.

Using these notations, we get the following result.

Proposition 3.1. B1 ⊆ B2 iff

Fj3 = ∅,

Gj4 = ∅,

for all j3, j4.

Proof. We leave it to the reader to verify that

B1 ∩B2 = (
⋃

j3

Fj3) ∪ (
⋃

j4

Gj4).

The proposition follows immediately since B1 ⊆ B2 iff B1 ∩B2 = ∅.

The previous proposition indicates clearly the importance of set emptiness verification.

Now we will give a brief outline of a semidefinite programming based relaxation method for

checking if a basic semialgebraic set is empty. Readers are referred to [2] and references

therein for a more thorough account. From this point onward we assume that x ∈ Rn and

that all polynomials are real. First, we have the following definition of sum of squares.
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Definition 3.1. A polynomial p(x) is a sum of squares if it can be written as p(x) =
∑

qi(x)
2

for some polynomials qi(x).

Testing if a polynomial is a sum of squares can be performed using semidefinite program-

ming and the so-called “Gram matrix” method. In particular, write the polynomial as

p(x) = q(x)TZq(x), where q(x) is some appropriately chosen set of monomials in x. If Z

is positive semidefinite, then p(x) is a sum of squares. Thus checking if a polynomial is a

sum of squares amounts to finding Z ≥ 0 that at the same time satisfies the equation above.

This is equivalent to the feasibility problem of a linear matrix inequality (LMI) with affine

constraints.

Next, from polynomial algebra we have the subsequent definitions.

Definition 3.2. Given a finite set of polynomials {pi(x)}, the ideal generated by {pi(x)},

which is denoted by I(pi), is

I(pi) =

{

∑

i

aipi | ai are polynomials for all i

}

Definition 3.3. Given a finite set of polynomials {pi(x)}, the multiplicative monoid gen-

erated by {pi(x)}, which is denoted by M(pi), is the set of finite products of elements pi,

including the empty product (the identity).

The following is an equivalent characterization of a cone generated by a finite set of poly-

nomials in the polynomial ring.

Definition 3.4. Given a finite set of polynomials {pi(x)}, the cone generated by {pi(x)},

which is denoted by P (pi), is

P (pi) =

{

a+
k

∑

j=1

bjqj | a, bj are sums of squares, qj ∈M(pi) for j = 1, ..., k

}

All these definitions are used in the Positivstellensatz, a central result from real algebraic ge-

ometry. The theorem provides a characterization of infeasibility certificates for real solutions

of systems of polynomial equalities and inequalities.

Theorem 3.1 (Positivstellensatz). Let fj, gk, h` be finite sets of polynomials in x. Then

the following properties are equivalent:

1. The set

{x ∈ Rn | fj(x) ≥ 0, gk(x) 6= 0, h`(x) = 0, ∀j, k, `} (3.4)

is empty.

2. There exist f ∈ P (fj), g ∈M(gk), h ∈ I(h`) such that

f + g2 + h = 0. (3.5)
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It has been recently shown that Positivstellensatz refutations (i.e., f , g, h that satisfy

(3.5)) can be computed using hierarchies of semidefinite programming. The idea is to choose

a degree bound for the polynomials, and then affinely parameterize a family of candidate

f and h. This converts the problem into the feasibility problem of some LMIs with affine

constraints. This is summarized by the following theorem.

Theorem 3.2 ([2]). Consider a basic semialgebraic set of the form (3.4). Then the search

for bounded degree Positivstellensatz refutations can be done using semidefinite programming.

If the set is empty and the degree bound is chosen to be large enough, then the semidefinite

programs will be feasible, and the refutations can be obtained from its solution.

The crucial property that will allow us to use this results in the behavior inclusion problem

is the fact that Fj3 and Gj4 in Proposition 3.1 are basic semialgebraic sets of the form

(3.4). Thus the test for their emptiness can be performed by a hierarchy of semidefinite

programming relaxations.

Remark 3.1. To fully understand our set inclusion test, it is instructive to consider the

simple case of sets defined only by linear inequalities, i.e., polyhedral sets. It is well known

that containment of polyhedra can be verified by solving a finite number of linear programming

problems. These linear programs are exactly what our approach would provide as a first

order relaxation, with the convexity properties of polyhedra guaranteeing that this first order

relaxation actually provides the exact solution.

4 Applications

In this section we provide some examples of problems in control theory that can be interpreted

as behavior inclusion problems. Some concepts from the input-output paradigm are still

present in our discussion, because the original problems are cast in that setting. Yet the

behavior inclusion interpretations are free from those concepts. Readers are referred to [1]

for the background of the problems.

4.1 Verification of Robust Controllers

Suppose that we have an uncertain system with parametric and dynamic linear time invariant

(LTI) uncertainties as shown in Figure 1. The parametric uncertainty is represented by the

parameters a ∈ A in the description of the LTI differential system G, whereas the dynamic

uncertainty is represented by ∆ ∈ ∆. The system G defines a relation between the signals

as follows:

G(jω, a)
[

p̂(jω) q̂(jω) û(jω) ŷ(jω) ŵ(jω) ẑ(jω)
]T
= 0. (4.6)

We also assume that the uncertainty set ∆ defines the following relation between p and q:
[

p̂(jω)

q̂(jω)

]∗

Π∆(jω)

[

p̂(jω)

q̂(jω)

]

≥ 0. (4.7)
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G(a)

∆

C

p

q

w

z

y

u

Figure 1: Controller verification problem. The figure depicts the to-be-controlled system G

with parametric uncertainty a ∈ A and dynamic linear time invariant uncertainty ∆ ∈∆, in

interconnection with the controller C. It is of interest to know whether or not the controlled

system satisfies some given performance specifications on (w, z).

For example, with n and d being scalar polynomials, Π∆(jω) can be

Π∆(jω) =

[

|n(jω)|2I 0

0 −|d(jω)|2I

]

,

which is used to specify a frequency weighted norm bound

‖q̂(jω)‖ ≤

∣

∣

∣

∣

n(jω)

d(jω)

∣

∣

∣

∣

‖p̂(jω)‖, ∀ω ∈ R.

The controller verification problem can now be stated as follows. Suppose that a controller

C has been designed for this system, which relates u and y via

C(jω)

[

û(jω)

ŷ(jω)

]

= 0. (4.8)

We would like to know if in the presence of uncertainties, the controlled system satisfies the

performance specification ΠP , i.e., if the quadratic form
[

ŵ(jω)

ẑ(jω)

]∗

ΠP (jω)

[

ŵ(jω)

ẑ(jω)

]

≥ 0. (4.9)

is satisfied. Different specifications are stated by choosing different ΠP . For example,

ΠP =

[

I 0

0 −I

]

is used for the specification that the L2-gain from w to z is not greater than one.

We will now show how the behavior inclusion interpretation is brought into picture. Define

the first behavior, B̂1, as

B̂1 =
⋃

a∈A

{(p̂, q̂, û, ŷ, ŵ, ẑ) ∈ L̂n
2 (jR) | (4.6), (4.7), (4.8) are satisfied}. (4.10)
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Figure 2: Model verification problem. The model on the left is the original model, which has

the manifest behavior B̂m. The model on the right is the simplified model, with the manifest

behavior B̂m
s . We want to check if B̂

m ⊆ B̂m
s .

Next, use the performance specification (4.9) to define the second behavior. By its own, this

frequency domain inequality defines a behavior in the (ŵ, ẑ)-space. However, we can easily

lift it to the same space we use for B̂1. Namely, we define

B̂2 = {(p̂, q̂, û, ŷ, ŵ, ẑ) ∈ L̂n
2 (jR) | (4.9) is satisfied}. (4.11)

Then the controller verification problem can be interpreted as the problem of testing whether

or not B̂1 ⊆ B̂2. The machineries presented in the previous sections can be used to verify

this inclusion. It is obvious that we can also generalize the problem to the case where there

are more than one quadratic forms used in the uncertainty descriptions or performance

specifications.

A related but harder problem is the controller synthesis problem: design a controller C such

that the behavior of the controlled system B̂1 is contained in B̂2. With uncertainties present

in the system, this problem in nonbehavioral settings has lead to the µ-synthesis problem,

which is solved heuristically using the so-called D-K iterations. However, a solution to the

synthesis problem for systems with uncertainties is still far from obvious, and the applicability

of the methods in the previous sections to this problem still needs to be investigated.

4.2 Model Verification and Selection

Suppose that we have an LTI system with parametric and dynamic uncertainties as shown

in Figure 2. This defines the “original” behavior

B̂ =
⋃

a∈A

{(p̂, ŵ) ∈ L̂
np+nw

2 (jR) | G(jω, a)

[

p̂(jω)

ŵ(jω)

]

= 0,

[

p̂(jω)

ŵ(jω)

]∗

Πi

[

p̂(jω)

ŵ(jω)

]

≥ 0,

i = 1, 2, ...,m}, (4.12)

with its corresponding manifest behavior

B̂m = {ŵ ∈ L̂nw

2 (jR) | ∃p̂ ∈ L̂
np

2 (jR) such that (p̂, ŵ) ∈ B̂}. (4.13)
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Assume further that by some means, a “simplified” behavior

B̂s = {(p̂s, ŵ) ∈ L̂
nps
+nw

2 (jR) | Gs(jω)

[

p̂s(jω)

ŵ(jω)

]

= 0,

[

p̂s(jω)

ŵ(jω)

]∗

Πs
i

[

p̂s(jω)

ŵ(jω)

]

≥ 0,

i = 1, 2, ...,ms}, (4.14)

with its corresponding manifest behavior B̂m
s have been given to us. Simple description here

is characterized by the use of low order differential equations, simple dynamic uncertainty

description, no parametric uncertainty, etc. The question in the model verification problem

can now be stated as follows: Is the second behavior a good representation of the first

behavior, in the sense that B̂m ⊆ B̂m
s ?

The aforementioned question is of importance in control theory, because for the purpose of

analysis and synthesis the original model corresponding to B̂m is often replaced by another

model B̂m
s that is more tractable. Then one would very much like to have B̂m ⊆ B̂m

s .

Implications of this inclusion are quite obvious. For example, a controller that is synthesized

for B̂m
s to meet some design specifications will also satisfy the same specifications for B̂m,

since B̂m ⊆ B̂m
s .

When two behaviors B̂m
s1 and B̂

m
s2 of the same complexity class are given, it is also natural to

ask if one of them is more powerful than the other. This is the essence of the model selection

problem. The first behavior is more powerful than the other if the inclusion B̂m
s1 ⊆ B̂

m
s2 is

satisfied, in addition to B̂m ⊆ B̂m
s1. Certainly a more powerful model is desirable, since its

use will reduce the conservatism in system analysis or design.

The questions of model verification and selection as mentioned above can be addressed

using the methods presented in this paper. However, as mentioned in Remark 2.2 and the

paragraph preceding it, the inclusion can be verified provided the latent variables p̂s can

be eliminated from B̂s to obtain B̂
m
s . If that holds, we can lift B̂

m
s to the (p̂, ŵ)-space and

then check if B̂ ⊆ B̂`
s, where B̂

`
s is the result of the lifting. This is similar to what we did in

Subsection 4.1 (cf. (4.11)).

Related to these problems is the model reduction problem, which can be interpreted as

the problem of finding a behavior with simple representation B̂m
s for a given behavior B̂

m,

such that B̂m ⊆ B̂m
s . Unfortunately this is a harder problem, presumably in the same

complexity class as the controller synthesis. Although many results for systems without and

with uncertainties have been reported in the literature, the solution to this problem is still

far from complete. Similar to the case of the controller synthesis problem, the applicability

of the methods presented in this paper to the model reduction problem is still a subject of

future research.

5 Conclusions

Issues related to behavior inclusion in the frequency domain have been addressed in this

paper. Parametric dependence and frequency domain inequalities, in addition to frequency
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domain equalities, are used for defining behaviors. This enables us for example to describe

behaviors of uncertain systems, and to define criteria for robust performance analysis.

It is further shown that verifying inclusion of behaviors in the frequency domain amounts

to proving inclusion of basic semialgebraic sets. In turn, this is equivalent to the problem of

proving that some basic semialgebraic sets are empty, for which a semidefinite programming

relaxation method exists.

Two application examples, taken from the robust control and modelling domains, have been

given to illustrate the relevance of the behavioral inclusion viewpoint. While the analysis

questions are tractable using the machineries presented here, further research is still needed

on synthesis related questions.
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