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Abstract

The present report indicates an array of reachability problems relevant for non-
standard target problems of control. The problems are solved through dynamic op-
timization techniques for systems with nonintegral costs. This leads to new types
of generalized Hamilton-Jacobi-Bellman-type equations in the general case and allows
treatment through duality methods of convex analysis and minmax theory in the linear
case.

Introduction

Among the principle problems of control theory is the one of reachability - the description

of the domains in the state space that are reachable with available controls within the pre-

assigned constraints on the controlled process. The last notion was used to solve “classical”

problems in optimal control and differential games ([8], [3], [9]). However, recent activities

in the field of advanced automation and navigation as well as in scientific computation have

promoted new interest in this problem, [10], [13]. A particular question is whether a certain

target set or group of sets representing, for example a safety (unsafe) zone or configuration

could be reached (or avoided) by a controlled system despite the acting constraints. The

posed question is obviously not an optimization problem. However we indicate here some

optimization techniques that gives some answers to the question.

This report concentrates on controlled systems subjected to nonstandard functional opti-

mality criteria which produce value functions that allow to define backward reach sets which

are actually the solvability sets for various target problems, as well as “forward” reachability

sets. Rather than introducing reach sets for given instances of time, the interest here is in

sets reachable at some instances of time with state constraints true either for some instances

or for the whole time interval. It formulates an array of various reachability problems and

indicates related optimization problems that produce value functions whose level sets are

the desired reach sets. It then introduces some equations for such value functions that grasp
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the required properties. These equations are of the generalized Hamilton-Jacobi-Bellman

type and allow to treat classes of problems with nonsmooth parameters and solutions. For

linear systems explicit formulas for the value functions are given in terms of duality relations

of nonlinear analysis. (Such explicit solutions are mostly confined to convex optimization

problems, however they are also availabl for some types of nonconvex problems with com-

plementary convex constraints).

A direct calculation of value functions and possibly nonconvex reach sets through either exact

HJB equations or through duality relations is complicated. For linear systems a parametrized

sequence of HJB equations may be suggested which approximate the exact ones and allows

to avoid calculation of viscosity solutions. The level sets for such approximate equations

could produce ellipsoids whose intersections allow to externally approximate convex reach

sets and whose unions allow to internally approximate the nonconvex reach sets. However,

this ia topic for further investigation wiyhin the approaches of [4] - [7]. The reachability

schemes indicated here are beyond those indicated in paper [4].

1 The system

Consider a controlled system described by an ordinary differential equation:

ẋ = f(t, x, u), (1.1)

which in particular can be linear,

ẋ = A(t)x+B(t)u+ C(t)v(t), t0 ≤ t ≤ τ, (1.2)

Here x ∈ IRn is the state , u ∈ IRm is the control, with f(t, x, u) continuous in all the variables

and satisfying conditions of uniques and extendability of solutions for all starting points and

all t ≥ t0, whatever be the measurable function v(t) and the control u(t) restricted by hard

bounds

u(t) ∈ P(t), t ≥ t0. (1.3)

where P(t) is a compact set-valued function, continuous in t in the Hausdorff metric. We

also require set f(t, x,P(t)) = F (t, x) to be convex and compact and differential inclusion

(DI)

ẋ ∈ F (t, x)

to have a solution extendable within the intervals under consideration. The tube of solutions

to the latter DI that start at set X∗ at time τ is denoted as X(t, τ,X∗). This is the “reach

set” of system (1.1).
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For linear systems we require the n × n matrix function A(t) with n × p and n × q matrix

functions B(t), C(t) to be continuous and P(t) to be convex. Next are the topics discussed

in this paper.

2 The target problems

In this section we present some target problems together with closely related problems of

reachability analysis.

Denote x[t] = x(t, τ, x∗) to be the system trajectory which starts from position {τ, x∗}, x∗ ∈
IRn, M = {x ∈ IRn : ϕ1(z) ≤ 1} to be the the target set and Y(t) = {x ∈ IRn : ϕ(t, x) ≤ 1} to

be the state constraint. In the sequel ϕ(t, x), ϕ1(x) are assumed continuous in the respective

variables and closed convex in x.

Problem 2.1. Given time θ and functions ϕ(t, x), ϕ1(x), find W1[τ ] - the set of points x,

such that

W1[τ ] = {x∗ : ∃u(·)∀t ∈ [τ, θ] x[t] ∈ Y(t)x[θ] ∈M.}

Here W1[τ ] = {x : V1(τ, x∗) ≤ 1} is a level set of the value function

V1(τ, x∗) = min
u

max{max
t
{ϕ(t, x[t])|t ∈ [τ, θ]}, ϕ1(x[θ])} |u(t) ∈ P(t), t ∈ [τ, θ], x[τ ] = x∗}.

W1[t] is the backward reach set relative to M under state constraints Y(t), namely, the set

of points {x∗} for each of which there exists a control u(t) which steers the system to M
under state constraint Y(t).

If ϕ(t, x) ≡ ϕ1(x), then Y(t) ≡M, and W1[τ ] is the set of points x∗ for each of which there

exists a controlled trajectory x[t] ∈M,∀t ∈ [τ, θ].

Problem 2.2. Given time θ and functions ϕ(t, x), ϕ1(x), find W2[τ ] - the set of points x,

such that

W2[τ ] = {x ∈ IRn : ∀u(·)∀t ∈ [τ, θ] x[t] ∈ Y(t)x[θ] ∈M}.

Here W2[τ ] = {x : V2(τ, x∗) ≤ 1} is a level set of the value function

V2(τ, x∗) = max
u

max{max
t
{ϕ(t, x[t])|t ∈ [τ, θ]}, ϕ1(x[θ])} |u(t) ∈ P(t), t ∈ [τ, θ], x[τ ] = x∗}.

This is the set of points from which all the controlled trajectories reach setM at time θ and

also satisfy the state constraint Y(t).
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If ϕ(t, x) ≡ ϕ1(x), then Y(t) ≡ M, and W1+[τ ] is the set of points for each of which the

reach tube without state constraint X(t, τ, x∗) ∈M,∀t ∈ [τ, θ].

Problems 3.1 and 3.2 respectively reflect the properties of weak and strong invariance of the

corresponding backward reach sets relative to the equation under consideration and the state

constraints.

Problem 2.3. Given time θ, and functions ϕ(t, x), ϕ1(x), find W3[τ ] - the set of points x∗,

such that

W3[τ ] = {x∗ ∈ IRn : ∃u(·)∃t ∈ [τ, θ] x[t] ∈ Y(t)x[θ] ∈M}.

Here W3[τ ] = {x : V3(τ, x) ≤ 1} is a level set of the value function

V3(τ, x) = min
u

max{min
t
{ϕ(t, x[t])|t ∈ [τ, θ]}, ϕ1(x[θ])} |u(t) ∈ P(t), t ∈ [τ, θ], x[τ ] = x∗}.

This is the set of points such that each controlled trajectory reaches setM and also satisfies

the state constraint Y(t) for some instant t ∈ [τ, θ]. If ϕ(t, x) ≡ ϕ1(x), then Y(t) ≡M, and

W3[τ ] is the set of points x∗ for each of which there exists a controlled trajectory x[t] ∈M,

for some t ∈ [τ, θ]. This is the union ∪{X(t, τ, x∗)|t ∈ [τ, θ]} of reach sets without state

constraints.

Problem 2.4. Given time θ and functions ϕ(t, x), ϕ1(x), find W4[τ ] - the set of points x,

such that

W4[τ ] = {x ∈ IRn : ∀u(·),∃t ∈ [τ, θ] x[t] ∈ Y(t)x[θ] ∈M}.

Here W4[τ ] = {x : V4(τ, x) ≤ 1} is a level set of the value function

V4(τ, x∗) = max
u

max{min
t
{ϕ(t, x[t])|t ∈ [τ, θ]}, ϕ1(x[θ])} |u(t) ∈ P(t), t ∈ [τ, θ], x[τ ] = x∗}.

If ϕ(t, x) ≡ ϕ1(x), then Y(t) ≡ M, and W4[τ ] is the set of points for each of which each of

the controlled trajectories x[t] ∈M, for some t ∈ [τ, θ].

Problems 3.3 and 3.4 respectively reflect the weak and strong possibilities of reaching the

target set at some instant of time within the interval [τ, θ].

The sets W1,W2,W3,W4 are the possible types of backward reach sets or solvability sets

for target problems. Other possible options for such problems are beyond the scope of the

present paper. Note that in general, for a linear system (1.1), the sets W1,W2 are closed

convex, while W3,W4 are closed, but need not be convex.

A similar array of target problems is connected with forward reachability. In the forthcoming

problems 3.5− 3.8 we denote x[t] = x(t, t0, x
∗) . The properties of function ϕ0(x) are similar

to ϕ1(x).
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Problem 2.5. Given time θ and functions ϕ(t, x), ϕ0(x), find the value function

V5(θ, x) = min
u

max{max
t
{ϕ(t, x[θ]), ϕ0(x∗)|t ∈ [t0, θ] u(t) ∈ P(t), x[θ] = x}}.

Here X1[θ] = {x : V5(θ, x) ≤ 1} is the set of points for each of which there exists a controlled

trajectory which starts at time t0 from a certain x∗ ∈ X0 = {x∗ : ϕ0(x∗) ≤ 1} and ensures

x[t] ∈ Y(t),∀t ∈ [t0, θ]. It is the conventional reach set under state constraints.

Problem 2.6. Given time θ and functions ϕ(t, x), ϕ0(x), find the value function,

V6(θ, x) = max
u

max{max
t
{ϕ(t, x[t], φ0(x∗)|t ∈ [τ, θ] u(t) ∈ P(t), x[θ] = x}.

Here X2[θ] = {x : V6(θ, x) ≤ 1} is the set of points x such that ∀u ∃x∗ the respective

trajectory x[t] ∈ Y(t),∀t ∈ [t0, θ] and x[θ] = x. If X0 is a singleton, then X1+[t] is the reach

tube without state constraints and X1+[t] ⊆ Y(t) for all t ∈ [t0, θ].

Problem 2.7. Given time θ, and functions ϕ(t, x), ϕ0(x), find the value function,

V7(θ, x) = min
u

max{{min
t
{ϕ(t, x[t]| t ∈ [τ, θ]}, ϕ0(x∗)} u(t) ∈ P(t), x[θ] = x}.

Here X3[t] = {x : V7(t, x) ≤ 1} is the set of points for which there exists a control u(·) and

a starting point x∗ ∈ X0 such that the respective trajectory x[t] ∈ Y(t) for some t ∈ [t0, θ]

and x[θ] = x.

Problem 2.8. Given time t0 ≤ θ and functions ϕ(t, x), ϕ0(x), find the value function,

V8(θ, x) = max
u

max{min
t
{ϕ(t, x[t])|t ∈ [t0, θ], ϕ0(x∗)} u(t) ∈ P(t), x[θ] = x}.

Here X4[θ] = {x : V8(θ, x) ≤ 1} is the set of points x such that for each control u(·) there

exists a vector x∗ ∈ X0 which ensure that the respective trajectory x[t] ∈ Y(t), for some

t ∈ [t0, θ] and x[θ] = x.

Note that in general, for a linear system (1.1), the sets X1, X2 are closed convex, while X3, X4

are closed, but need not be convex.

The given array of problems may also include backward reachability for linear systems under

complementary convex constraints. Here is an example of a reach-evasion set.

Problem 2.9. . Given time θ and functions ϕ(t, x), ϕ0(x), find W [τ ] - the set of points x∗,

such that

W [τ ] = {x∗ ∈ IRn : ∃u(·),∃t ∈ [t0, θ] x[t] ∈ Y(t), x[θ] ∈M}.
where Y denotes the closure of the open complement of closed convex set Y and W [t] = {x∗ :

V(t, x∗) ≥ 1} is the complement of the open level set {x : V(t, x∗) < 1} of the value function

V(τ, x∗) = max
u

min{min
t
{ϕ(t, x[t])|t ∈ [τ, θ]},−ϕ1(x[θ])+2} |u(t) ∈ P(t), t ∈ [τ, θ], x[τ ] = x∗}.
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Here W [τ ] is the set of points for each of which there exists a controlled trajectory x[t] ∈
Y(t), ∀t ∈ [τ, θ] and x[θ] ∈M. Therefore, it is the set of points from which it is possible to

avoid the domain intY(t) for all t while reaching the target set M (which is assumed to lie

beyond Y(θ) :M∩Y(θ) = ∅). In general W [τ ] is a nonconvex set.

3 Solution methods. The HJB Equations

In the general case the respective value functions may be calculated through the generalized

HJB equation. We shall indicate such equations for problems 3.1, 3.5.

Suppose ϕ0(x) = d2(x,X0), ϕ1(x) = d2(x,M), ϕ(t, x) = d2(x,Y(t)). Starting with prob-

lem 3.5, denote V5(t, x) = V5(t, x|V5(t0, x
0)), emphasizing the dependence of V5(t, x) on the

boundary condition V5(t0, x
0) = ϕ0(x).

Theorem 3.1. Value function V5(t, x) satisfies the principle of optimality, which has the

semigroup form:

V5(τ, x|V5(t0, x
0)) = V5(τ, x|V5(t, ·|V5(t0, ·)), (3.1)

with t0 ≤ t ≤ τ .

This property is established through a conventional argument [1] and its consequence is a

similar property for respective reach sets. Relation (3.1) yields the following “forward” HJB

equation.

Denote

H(t, x, V, u) = Vt(t, x) + (Vx(t, x), f(t, x, u)).

Then the HJB equation is

V5t(t, x) + max
u

(V5x, f(t, x, u)) = 0, (3.2)

when V5(t, x) 6= ϕ(t, x) and

max
u
{min{H(t, x, V5, u),H(t, x, ϕ, u)}|u ∈ P(t)}} = 0, , (3.3)

when V5(t, x) = ϕ(t, x).The boundary condition is

V5(t0, x) = max{ϕ(t0, x), ϕ0(t0, x)}

.
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Here Vt, Vx stand for the partial derivatives of V (t, x), if these exist. Otherwise (3.2), (3.3) is

a symbolic relation for the generalized HJB equation which has to be described in terms of

subdifferentials, Dini derivatives or their equivalents. However the typical situation is that

V is not differentiable. The treatment of equations (3.2), (3.3)then involves the notion of

generalized “viscosity” solutions for this equation or their equivalents, [1],[12].

Similarly, if we deal with Problem 3.1, we will have a “backward” HJB equation for V1(t, x),

namely,

V1t(t, x) + min
u

(V1x, f(t, x, u)) = 0, (3.4)

when V1(t, x) 6= ϕ(t, x) and

min
u
{max{H(t, x, V1, u),H(t, x, ϕ, u)}|u ∈ P(t)}} = 0, , (3.5)

when V1(t, x) = ϕ(t, x).The boundary condition is

V1(t0, x) = max{ϕ(θ, x), ϕ1(θ, x)}

.

Taking Problem 3.2 we will have

V2t(t, x) + max
u

(V2x, f(t, x, u)) = 0, (3.6)

when V2x(t, x) 6= ϕ(t, x) and

max
u
{max{H(t, x,V2x, u),H(t, x, ϕ, u)}|u ∈ P(t)}} = 0, , (3.7)

when V2(t, x) = ϕ(t, x).The boundary condition is

V2(t0, x) = max{ϕ(θ, x), ϕ1(θ, x)}

.

Finally we indicate the HJB equation for Problem 3.9. Then

V(t, x) + min
u

(Vx, f(t, x, u)) = 0, (3.8)

when V(t, x) 6= ϕ(t, x) and

min
u
{min{H(t, x,Vx, u),H(t, x, ϕ, u)}|u ∈ P(t)}} = 0, , (3.9)
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when V(t, x) = ϕ(t, x).The boundary condition is

V(t0, x) = min{ϕ(θ, x),−ϕ1(θ, x) + 2}.

The HJB equations for the other problems of Section 3 are produced in a similar way. They

follow from respective versions of the Principle of Optimality. The calculation of solutions

to these equations in the general case is not simple and requires additional investigation.

However, in the case of linear systems the value functions V1 − V8,V may be described

through duality relations of convex analysis and related branches of optimization theory.

4 Solution Methods. Duality Techniques of Optimiza-

tion Theory

In this section we indicate solution methods to the problems of this paper for the case of

linear systemswhere the value functions could be found through the techniques of convex

analysis, semidefinite programming and minmax theory, [2], [11]. We describe an example

- the formula for calculating V(τ, x) which allows to find the reach-evasion set. This shows

the type of relations encountered here.

Suppose y = Nx, z = Mx, y ∈ IRm, z ∈ IRq, ϕ(x) = (y,Ny), ϕ1(x) = (z − m,M(z −
m)), N = N′ > 0, M = M′ > 0, Λ(t) is a nondecreasing scalar function of unit variation on

[τ, θ], l(t) is a continuous m-vector function from a compact class of such functions defined

on the same interval, s[t] = s(t, θ, p|Λ(·), l(·)) is the solution to the generalized equation

ds′ = −s′A(t)dt− l′(t)NβdΛ(t), s′(θ) = −αp′M,

set P(t) = E(0, P (t)) is an ellipsoid with center 0 and shape matrix P = P ′ > 0, symbol

ρ(q|P) = max{(q, u)|u ∈ P} stands for the support function of convex compact set P , so

that ρ2(q|E(0, P )) = (q, P−1q), α, β > 0, α + β = 1. Then

V(τ, x) =

= max
l(·)

min
Λ(·)

min
p

min
α,β
{s′[τ ]x+

∫ θ

τ

(s′[t]B(t)P−1(t)B′(t)s[t])1/2 + s′[t]v(t))dt+

−α
∫ θ

τ

l′(t)N−1l(t)dΛ(t) + β(p′M−1p) + 2β}.

The level set W [τ ] of this function is nonconvex. In contrast with this property the value

function

V1(t, x) =
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= max
l(·)

max
Λ(·)

max
p

min
α,β
{s′[τ ]x−

∫ θ

τ

(s′[t]B(t)P−1(t)B′(t)s[t])1/2 + s′[t]v(t))dt−

−α
∫ θ

τ

l′(t)N−1l(t)dΛ(t)− β(p′M−1p)}.

for Problem 1 has a convex level set.

The problems of this section allow ellipsoidal approximations to the reach sets under dicus-

sion having in view approximations of convex reach sets by intersections of ellipsoids and

nonconvex reach sets by unions of ellipsoids along the framework of papers [4] - [7].

5 Conclusion

This paper presents the basics of optimization techniques for nonstandard target and reach-

ability problems motivated by new trends in automation and navigation. The solutions are

given in the form of generalized HJB equations or, in the linear case, in the form of duality

relations of convex analysis and minmax theory.
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