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Abstract

The present research work deals with the systematic development and implemen-

tation of a practical algorithm for an actuator activation and control policy through

a scheme of moving actuators for systems governed by parabolic partial differential

equations (PDEs). Systems of parabolic PDEs typically describe diffusion and other

transport processes often encountered in a multitude of industrial applications. Under

the proposed algorithmic scheme, one way to view the system under consideration is to

assume that it has multiple actuators and it is desired to activate only one such actuator

during a given time interval while the remaining actuators remain dormant. The same

algorithm can also be applied to a system with a single actuator capable of moving at a

priori selected positions within the spatial domain. Standard state feedback controller

synthesis methods based on linear matrix inequality-techniques (LMIs) are employed

for a finite-dimensional Galerkin approximation of the original distributed parameter

system, and the value of an appropriately selected objective function (performance in-

dex/functional) is explicitly calculated by solving a location-parameterized Lyapunov

matrix equation. On the basis of the aforementioned explicit characterization of the

objective function values, a systematic optimization algorithm can be developed that

offers a transparent guidance policy and optimal switching rules between the various

actuator positions for performance enhancement purposes. An illustrative example

with simulation results of an 1-D diffusion process is included to support the paper’s

theoretical findings and evaluate the performance-enhancing capabilities of the pro-

posed scheme in a typical industrial process such as the one considered in the present

study.

1 Introduction

The role of actuator selection in the overall system performance has been recognized as

an important design component in many control systems, see for example the survey pa-

per by van de Wal and de Jager [25]. The number, type and placement of both ac-

tuator and sensors received considerable attention primarily by researchers working on
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the control of flexible space structures, acoustic cavities and transport-reaction processes

[1, 2, 12, 13, 14, 17, 21, 22, 23, 24]. Using performance or controllability/observability mea-

sures, the actuating and sensing devices were permanently mounted on the host structure,

cavity or chemical reactor according to the optimization measure used. While optimal versus

non-optimal actuator and/or sensor location yielded improved and noticeable performance, it

nonetheless ignored the effects of the spatiotemporal variability of the exogenous inputs in all

the above approaches. For example, in the control of flexible structures or chemical reactors,

time-varying disturbances might enter at different sections of the spatial domain at different

time intervals, and hence an actuator closer to the disturbance would certainly have more

control authority than an actuator far away from the ”local” disturbance. Using this idea

of utilizing ”local” actuators that can have increased authority at different segments of the

spatial domain over different time intervals, we take into account the spatiotemporal variabil-

ity of disturbances and exogenous inputs and propose an actuator switching scheme which

enhances the closed loop performance. From a technical point of view, standard Galerkin

methods are employed that lead to an accurate finite-dimensional approximation of the origi-

nal distributed parameter system, on the basis of which, local state feedback control laws are

derived for a prespecified set of actuator positions using well-known LMI techniques [3, 20].

A physically meaningful quadratic performance functional/index or objective/cost function

is considered, whose value is explicitly calculated and optimized over a short time-horizon via

the solution of an appropriately parameterized Lyapunov matrix equation and with respect

to the set of actuator positions considered above. As time progresses, the above computa-

tional steps are repeated over a sequence of ”time-windows”, giving rise to a transparent

algorithmic procedure that results in a practical guidance policy and ”optimal” switching

rules for the scheme of moving actuators considered. Finally, the proposed algorithm is

evaluated in an illustrative case study, where its performance-enhancing characteristics are

clearly demonstrated through simulation studies.

2 Modeling Equations

We consider the 1-D controlled diffusion equation

∂x

∂t
=

∂

∂ξ

(

κ(ξ)
∂x

∂ξ

)

+ b(ξ)u(t) + d(ξ)w(t),

x(t, 0) = 0 = x(t, `),

x(0, ξ) ∈ L2(0, `),

(2.1)

where x(ξ, t) denotes the state, ξ ∈ Ω = [0, `] ⊂ R is the spatial coordinate, t ∈ [t0,∞) is

the time variable, u(t) denotes the control signal, b(ξ) denotes the spatial distribution of the

actuating device, w(t) the unknown exogenous input signal and d(ξ) the spatial distribution

of the disturbance. The state space in this case is X = L2(0, `) with the standard L2 inner
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product and norm denoted by 〈·, ·〉X and ‖ · ‖X respectively. The control objective is to

choose the signal u ∈ L2([t0,∞); R) so that regulation of the state x(t, ξ) to zero is achieved

while a certain cost functional which penalizes the total energy is minimized. It is assumed

that the spatial distribution of the actuating device is spanned (locally) over a portion of

the spatial domain and is given by

b(ξ0) =







1

2ε
if ξ0 − ε ≤ ξ ≤ ξ0 + ε

0 otherwise.

Notice, that the above approximation for b(ξ) avoids any regularity problems due to the un-

bounded nature of a pointwise (in space) actuator distribution (i.e. a spatial delta function).

Furthermore, one must ensure that the location ξ0 of the actuator is such that approximate

controllability of (2.1) is ensured [4].

The above system can be placed in an abstract setting written as an evolution system

[5, 15, 16]

ẋ(t) = Ax(t) + Bu(t) (2.2)

in the state space X . Indeed, under the above representation the system operator attains

the following form

Aφ =
d

dξ

(

κ(ξ)
d

dξ

)

φ,

with domain

Dom(A) =
{

ψ ∈ L2(0, `)
∣

∣

∣
ψ,
dψ

dξ
are abs. continuous,

d2ψ

dξ2
∈ L2(0, `) andψ(0) = 0 = ψ(`)

}

and the input operator by

Bu(t) = b(ξ)u(t), B ∈ L(R,X ).

Drawing from already established results in the pertinent systems literature [4, 15, 18], a

state feedback controller that would minimize an associated LQR functional of the form

J(x0; u) =

∫

∞

t0

[

〈x,Qx〉X + ru2
]

dt, (2.3)

can be synthesized, where r > 0 is a suitably chosen ”weight-factor” and Q is a coercive

operator. The cost functional (2.3) is finite for a square integrable control input since the

diffusion system in question is optimizable as a consequence of its exponential stabilizability

[4]. In this case one solves the Operator Algebraic Riccati Equation (OARE)

〈Aφ,Pψ〉X + 〈φ,PAψ〉X + 〈Qφ, ψ〉X + 〈PBr−1B∗Pφ, ψ〉X = 0 (2.4)

for φ, ψ ∈ Dom(A). The optimal control signal can be proven to be [4]

u(t) = −r−1B∗Px(t). (2.5)
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and the resulting optimal value of the cost functional is given by

J∗(x0; u) = 〈x(t0),Px(t0)〉X . (2.6)

For a given operator Q and a fixed value of r, one may further enhance the closed loop

performance by finding an optimal location ξa of the actuating device, in the sense of mini-

mizing J∗(x0; u). Usually, there is a finite set of candidate actuator positions and hence one

may optimize the cost value J∗(x0, u) over this set of actuator locations [18]. Going even

further, one may utilize a finite set of m actuating devices placed (or mounted) in ”opti-

mal” locations in the spatial domain, and activate one such a device over a time window

while the remaining (m − 1) devices are kept dormant (or inactive). This procedure may

be repeated over different time intervals. Hence, one arrives at a switched system, where, in

addition to the control signal, the location of the actuating device also changes over a given

time interval. A measure for choosing which actuator is to be activated over a certain time

interval and what the control signal should be for this interval, was initially proposed in

[11, 26] for thermal processes and was later verified experimentally in [19]. The same scheme

was applied to the control of flexible structures in [6, 7, 8, 10]. This scheme is essentially

based on LQR measures and at each time interval, the LQR cost-to-go was re-evaluated for

each of the finite locations of the actuators. The location that yielded the smallest value of

the optimal LQR cost was the one used by the moving actuator. In this scheme, both the

actuator position and feedback gain were changing at each time interval thus imposing a

heavy computational load. It should be noted that while the aforementioned research efforts

dealt with a single actuating device capable of moving at m pre-selected positions in the

spatial domain, they are nonetheless applicable to the current case of having m available

actuators in which only one is active while the remaining (m − 1) remain dormant over a

certain time interval. Variants of this approach were presented in [9] in which LMI’s were

utilized to calculate a common feedback gain that was used in each of the active actuators.

3 Actuator Activation Policy - Switching Rules

In the present section, a new systematic algorithm will be presented through which a prac-

tical actuator guidance policy is realized that activates a single actuator out of m available

ones. In particular, the temporal scheduling pattern and the switching rules between the

occasionally activated actuator and the (m − 1) dormant ones along the system’s spatial

domain are based on transparent optimality criteria that reflect key closed-loop performance

characteristics. It should be emphasized that unlike previous research efforts, the current

algorithm only switches (changes) the actuators while keeping the same feedback gain as it

is computed through standard LMI-based controller synthesis methods [3]. Notice, that the

fundamental difference between the proposed integrated fixed-structure/fixed-gain LMI-based

controller synthesis and actuator switching scheme, and previous approaches [8, 7, 26, 6], lies

in the solution of the infinite-dimensional optimal control problem that inevitably resulted
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in spatiotemporal variations of the feedback gains computed. Thus, irrespective of the ac-

tuator used by the system, the control signal remains the same in the proposed approach,

significantly reducing the computational load associated with a direct computer-aided im-

plementation of the control policy.

Let us now rewrite system (2.1) in its standard state-space dynamic evolution representa-

tion form

ẋ(t) = Ax(t) + B(ξ)u(t), (3.1)

where now the input operator is explicitly parameterized in terms of its location. In the

present study, a finite set of m actuator locations

Θ = {ξ1, ξ2, . . . , ξm} , (3.2)

is considered. Each of the candidate locations ξi ∈ Θ is such that approximate controllability

is guaranteed, i.e. the pair (A,B(ξi)) is approximately controllable for all ξi ∈ Θ. Following

[4], for the case of spatially invariant diffusion processes, one may choose the locations ξi ∈ Θ

such sin(nπξi/`) 6= 0 for n ≥ 1. For each element in Θ, one can find a feedback gain that

is common to all these elements. Specifically, one can solve the following Linear Operator

Inequality

〈(A+ B(ξi)K)φ,Sψ〉X + 〈Sφ, (A+ B(ξi)K)ψ〉X < 0, (3.3)

for φ, ψ ∈ Dom(A) and all ξi ∈ Θ, where K is the unknown common feedback gain. In this

case, one may easily conclude that the feedback control law u(t) = Kx(t) is a stabilizing

pole-placing one irrespective of the actuator used. Equivalently, the closed-loop operator

Ai , A+ B(ξi)K has the desirable eigenspectrum and generates an exponentially stable C0

semigroup for all ξi, i = 1, 2, . . . , m.

The problem under consideration can now be stated as follows:

Problem Statement: For each time interval of fixed length ∆t, develop an actuator guidance

policy and algorithm that uniquely determines which actuator out of the m available ones

will stay active and which ones are to stay dormant. In this case, the control signal will

always be the same and given by u = Kx, where K satisfies (3.3), but the actuating device

will be changing at the beginning of each time interval.

In order to address the problem stated above, the following switching policy for perfor-

mance enhancement is proposed:
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Algorithm: Guidance policy

(1) Solve the location-parameterized Operator Lyapunov Equation

〈Aiφ,P(ξi)ψ〉X + 〈P(ξi)φ,Aiψ〉X = −〈φ,Qψ〉X , φ, ψ ∈ Dom(A) (3.4)

to obtain the m Lyapunov solutions P(ξi) that correspond to each of the actuator

locations ξi.

(2) For each time interval Ik = [tk, tk + ∆t) where k is viewed as the discrete-time in-

dex, identify the actuator that minimizes the cost-to-go quadratic functional reflecting

standard closed-loop performance criteria

J(ξj; tk) =

∫

∞

tk

〈x,Qx〉X dt. (3.5)

Notice, that the value of the above performance index can be explicitly calculated

using the following formula:

J(ξj; tk) = 〈x(tk),P(ξj)x(tk)〉X (3.6)

where P(ξj) is the location-patameterized solution of (3.4) and x(tk) denotes the initial

condition in the interval Ik. Therefore, for the time-interval Ik, the actuator position

ξ∗ that minimizes the cost-to-go functional is given by

ξ∗ = arg min
ξj∈Θ

J(ξj; tk)

= arg min
ξj∈Θ

〈x(tk),P(ξj)x(tk)〉X
(3.7)

and the corresponding actuator that stays active over Ik is uniquely determined.

(3) Steps 1 and 2 are repeated for the next time-interval Ik+1 = [tk+1, tk+1 + ∆t).

Remark 3.1. In the above actuator guidance policy, the durations of each of the time win-

dows Ik, k = 1, 2, . . . , were assumed identical. The value of ∆t was not optimized, but

instead was assumed of constant value that was dictated by hardware considerations and

time constants of the individual systems.

Remark 3.2. The existence of the self-adjoint solution to the m operator algebraic Lyapunov

equations (3.4) is ensured by the exponential stability of the infinitesimal generators Ai,

i = 1, 2, . . . , m and the approximate observability of the pairs (Ai,Q
1

2 ) with Q
1

2 being the

square root of the coercive operator Q [4].
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4 Implementation Aspects of the Proposed Algorithm

The proposed actuator guidance policy, as well as the corresponding switching rules outlined

previously, reflect the flow of key ideas that enabled the formulation and algorithmic treat-

ment of the problem of interest to be realized through the use of an abstract operator-based

language of analysis that is deemed appropriate for distributed parameter systems. From

a practical point of view however, the proposed algorithmic framework needs to be imple-

mented in a more comprehensive manner and with the aid of a computer. Indeed, since the

proposed algorithm requires the solution to an operator Lyapunov equation (3.4) along with

the operator inequalities (3.3), one first approximates the infinite dimensional system (3.1)

using an exponential stabilizability-preserving approximation scheme in order to arrive at a

matrix system

ẋn(t) = Axn(t) +B(ξ)un(t).

The set of linear matrix inequalities (LMIs) corresponding to (3.3)

(A+B(ξi)K)T Σ + Σ (A +B(ξi)K) < 0

are then solved in order to find the finite dimensional aproximation K of the common

feedback gain K. Lastly, the location-parameterized Lyapunov equation

(A +B(ξi)K)T P (ξi) + P (ξi) (A+B(ξi)K) = −Q

is solved for each location ξi ∈ Θ using the finite dimensional representation of (3.7). The

criterion (3.6) for the actuator policy is then replaced by its finite dimensional approximation

Jn(ξj; tk) = (xn(tk))
T P (ξj)x

n(tk),

which along with the finite dimensional control signal un(t) = Kxn(t) comprise the actuator

quidance and control policies implemented in the system.

The above algorithmic scheme provides a practical answer to the actuator guidance policy

problem stated before, leading to an easily implementable set of switching rules between var-

ious actuator locations on the basis of closed-loop performance-related optimality measures.

The performance-enhancing characteristics of the proposed algorithm are illustrated in the

next section’s case study through numerical simulations.

5 Numerical Results

For our numerical investigation, the following PDE is considered

∂x

∂t
= κ

∂2x

∂ξ2
+ b(ξ)u(t) + d1(ξ)w(t) + d2(ξ)w(t−

5

2
) + d3(ξ)w(t+

5

2
).
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Figure 1: Evolution of L2 norm; open loop (dashed), fixed actuator (dotted) and moving

actuator (solid).

As an initial condition, we considered x(0, ξ) = 10 sin(πξ) and a spatially invariant thermal

diffusivity κ = 0.01. Six possible actuator locations were considered at the locations ξi =

(i− 0.345) ∗ `/6, i = 1, 2, . . . , 6. The disturbance was taken as w(t) = 0.005 sin( πt
5
), and the

spatial distributions of the disturbances were given by d1(ξ) = χ[0.2,0.3](ξ), d2(ξ) = χ[0.4,0.6](ξ)

and d3(ξ) = χ[0.8,0.9](ξ), where χ[α,β](ξ) denotes the characteristic function in the interval

[α, β], ie χ[α,β](ξ) = 1 if α ≤ ξ ≤ β and χ[α,β](ξ) = 0 if ξ ∈ [0, `] \ [α, β]. The system was

simulated for tf = 6 seconds and actuator switching was implemented at every tf/10 = 0.6

seconds. Figure 1 depicts the L2(0, `) state norms for the open loop case (dashed), the case

of a fixed actuator (dotted) and the case of a switching actuator (solid). It is observed that

when a switching actuator is utilized, the closed loop performance is enhanced, as this is

revealed by the faster convergence of the state norm to zero. The temperature distribution

is depicted in Figure 2 for two different time instances. One may observe that pointwise-

in-space convergence of the state is improved when a switching actuator is utilized. The

activation sequence is depicted in Figure 3.

6 Concluding Remarks

A new systematic and practical algorithm was developed that results in a transparent moving

actuator guidance policy and a concrete set of switching rules for performance enhancement

of controlled diffusion processes. The proposed approach introduced a comprehensive fixed-

structure/fixed-gain LMI-based controller synthesis method where the control signal remains

the same for all actuator locations, thus significantly reducing the computational load associ-
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Figure 2: Spatial distribution (a) at t = tf/2 and (b) at t = tfm; fixed actuator (dotted)

and moving actuator (solid).

ated with other approaches in the literature.The temporal scheduling pattern and switching

rules between the intermittently activated actuator and the remaining dormant ones was

based on straightforward optimality criteria that reflect key closed-loop performance charac-

teristics. In particular, the value of an appropriately selected performance functional was ex-

plicitly calculated via a location-parameterized Lyapunov matrix equation, and subsequently

optimized with respect to the set of actuator locations. Finally, the performance-enhancing

attributes of the proposed algorithmic framework were illustrated in a representative case

study by conducting numerical simulations.
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