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Abstract

In this paper we introduce a concept of stochastic observability for a class of linear
stochastic systems subjected both to multiplicative white noise and Markovian jump-
ing. The definition of stochastic observability adopted here extends to this framework
the definition of uniform observability of a time varying linear deterministic system.
By several examples we show that the concept of stochastic observability introduced
in this paper is less restrictive than those introduced in some previous papers.

Also we show that the concept of stochastic observability introduced in this paper,
does not imply always the stochastic detectability as it would be expected.
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1 Introduction

Both the observability property and controlability property of a linear system plaied a crucial

role in solving a wide class of control problems. Here we recall that starting with the pioneer

paper of Kalman [7], the observability and controlability properties provide sufficient con-

ditions guaranteeing the existence of the stabilizing solution of a matrix Riccati differential

equation which is connected with the linear quadratic problem and filtering problem [12, 13].

In stochastic framework the concept of stochastic observability was introduced in order to

provide conditions which guarantee the existence of the stabilizing solutions of the matrix

Riccati differential equations of stochastic control [9]. For the linear systems subjected to

Markovian jumping some definitions of stochastic observability were introduced in [8, 6].

In this paper we introduce the concept of stochastic observability for a class of linear

stochastic systems subjected both to multiplicative white noise and Markovian jumping. The

definition of stochastic observability adopted here extends to this framework the definition

of uniform observability of a time varying linear deterministic system [7, 1]. By several

examples we show that the concept of stochastic observability introduced in this paper is

less restrictive than those introduced by [8] and [6].

Also we show that the concept of stochastic observability introduced in this paper, does

not imply always the stochastic detectability as it would be expected. Finally we show that
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the stochastic observability introduced here guarantees the positivity of the observability

Gramian (if it exists) and additionaly any positive solution of corresponding Riccati equation

is stabilizing as it happens in deterministic case.

2 Stochastic observability

Consider the system:

dx(t) = A0(η(t))x(t)dt +
r∑

k=1

Ak(η(t))x(t)dwk(t) (2.1)

y(t) = C0(η(t))x(t) (2.2)

x(t) ∈ Rn, y ∈ Rp, w(t) = (w1(t) ... wr(t))
∗, t ≥ 0 is a standard Wiener process on a given

probability space (Ω,F ,P); η(t), t ≥ 0 is a right continuous homogenous Markov chain, with

the state space set D = {1, 2, ..., d} and the probability transition matrix P (t) = eQt, t >

0, Q = [qij] with
∑d

j=1 qij = 0, i ∈ D, qij ≥ 0, i �= j (see[2]).

Throughout this paper assume that {w(t)}t≥0 and {η(t)}t≥0 are independent stochastic

processes, and P{η(0) = i} > 0 for all i ∈ D. For each t0 ≥ 0 and x0 ∈ Rn, x(t, t0, x0) stands

for the solution of (2.1) with initial condition x(t0, t0, x0) = x0. (For precise definition of the

solution see [5, 11]).

Let Φ(t, t0) be the fundamental matrix solution of (2.1). That is the j-th column of Φ(t, t0)

is x(t, t0, ej), j = 1, 2, ..., n, where ej = (0 0 ...0 1 0 ... 0)∗ being vector of canonic basis of

Rn.

Now we are able to introduce the definition of stochastic observability.

Definition 2.1 We say that the system (2.1)-(2.2) is stochasticaly observable, or the triple

(C0, A0, A1, ..., Ar; Q) is observable if there exist β > 0, τ > 0 such that

E[

∫ t+τ

t

Φ∗(s, t)C∗
0(η(s))C)(η(s))Φ(s, t)ds|η(t) = i] ≥ βIn, (2.3)

i ∈ D, (∀)t ≥ 0, E[·|η(t) = i] being the conditional expectation with respect to the event

η(t) = i.

Sometimes we shall write (C0,A; Q) is observable instead of (C0, A0, A1, ..., Ar; Q) is ob-

servable.

Remark 2.1

a) In the particular case D = {1} and Ak = 0 1 ≤ k ≤ r the inequality (2.3) reduces to the

well known definition of uniform observability for a time varying linear deterministic system

(see e.g. [7, 1]).
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b) If D = {1} the equations (2.1)-(2.2) become

dx(t) = A0x(t)dt +
r∑

k=1

Akx(t)dwk(t) (2.4)

y(t) = C0x(t). (2.5)

In this case (2.3) is

E[

∫ t+τ

t

Φ∗(s, t)C∗
0C0Φ(s, t)ds] ≥ βIn (2.6)

for all t ≥ 0, Φ(s, t) being now the fundamental matrix solution of (2.4).

c) In the case d ≥ 2, Ak(i) = 0, 1 ≤ k ≤ r, i ∈ D, (2.1)-(2.2) reduce to

ẋ(t) = A0(η(t)) (2.7)

y(t) = C0(η(t))x(t) (2.8)

and in this case if (2.3) holds with Φ(s, t) standing for the fundamental matrix solution of

(2.7) we say that the triple (C0, A0; Q) is observable.

3 Some auxiliary results

3.1 Liapunov type operators and exponential stability

Let Sn ⊂ Rn×n be the space of symmetric matrices and Sd
n = Sn ⊗ Sn ⊗ ... ⊗ Sn (d factors).

Let L : Sd
n → Sd

n be defined by

(LX)(i) = A0(i)X(i) + X(i)A∗
0(i) +

r∑

k=1

Ak(i)X(i)A∗
k(i) +

d∑

j=1

qijX(j) (3.9)

(∀) i ∈ D, X = (X(1) ... X(d)) ∈ Sd
n. The operator L will be termed as the Liapunov type

operator defined by the system (A0, A1, ..., Ar; Q).

It is easy to see that the adjoint operator L∗ is given by

(L∗X)(i) = A∗
0(i)X(i) + X(i)A0(i) +

r∑

k=1

A∗
k(i)X(i)Ak(i) +

d∑

j=1

qijX(j) (3.10)

L0 : Sd
n → Sd

n is the linear operator obtained from (3.1) taking Ak(i) = 0, 1 ≤ k ≤ r, i ∈ D.

Consider the linear differential equation on Sd
n

d

dt
S(t) = LS(t) (3.11)

and set eLt the linear evolution operator defined on Sd
n by (3.3).
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The following result was proved in [3] in a more general setting.

Proposition 3.1

a) eLtX ≥ eL0tX ≥ 0, eL
∗tX ≥ eL

∗
0tX ≥ 0, (∀) X = (X(1) X(2) ...X(d)) ∈ Sd

n, X(i) ≥
0, i ∈ D, t ≥ 0.

b) [eL
∗(t−s)X](i) = E[Φ∗(t, s)X(η(t))Φ(t, s)|η(s) = i] (∀), t ≥ s > 0, i ∈ calD, X =

(X(1) X(2) ... X(d)) ∈ Sd
n.

Definition 3.1 We say that the zero solution of the equation (2.1) is mean square exponen-

tially stable (MSES for shortness), or that the system (A0, A1, ....Ar; Q) is stable if there exist

α > 0, β > 0 such that

E[|x(t)|2] ≤ βe−αt|x(0)|2, (∀)t ≥ 0, x(0) ∈ Rn.

The following result provides necessary and sufficient conditions for the MSES of the zero

solution of (2.1).

Theorem 3.1 The following are equivalent:

(i) The solution x(t) = 0 of the equation (2.1) is MSES.

(ii) limt→∞ E[|x(t)|2] = 0 for any solution x(t) of (2.1).

(iii) The eigenvalues of the operator L are located in the half plane Re λ < 0.

(iv) There exists H = (H(1) H(2) ... H(d)) ∈ Sd
n with H(i) > 0, i ∈ D, such that the

equation

LX + H = 0

has a solution X = (X(1) ... X(d)), X(i) > 0, i ∈ D.

(v) There exists H as before such that the equation

L∗X + H = 0

has a solution X = (X(1) ... X(d)), X(i) > 0, i ∈ D.

(vi) There exists X = (X(1) ... X(d)), X(i) > 0 such that L∗X < 0.

For detailed proof see [3].

3.2 Stochastic detectability

Definition 3.2 We say that the system (2.1)-(2.2) is stochasticaly detectable, or that the

triple (C,A; Q) is detectable if there exist L = (L(1) L(2) ... L(d)), L(i) ∈ Rn×p such that

the zero solution of the equation

dx(t) = (A0(η(t)) + L(η(t))C0(η(t)))x(t)dt +
r∑

k=1

Ak(η(t))x(t)dwk(t)

is MSES. L will be termed stabilizing injection.
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Proposition 3.2 The following are equivalent:

(i) The triple (C0,A; Q) is detectable.

(ii) The system of linear equations

A∗
0(i)X(i) + X(i)A0(i) + C∗

0(i)Γ∗(i) + Γ(i)C0(i) +
r∑

k=1

A∗
k(i)X(i)Ak(i) +

d∑

j=1

qijX(j) + In = 0 (3.12)

has a solution X = (X(1) ... X(d)) ∈ Sd
n, Γ = (Γ(1) ... Γ(d)), X(i) > 0, Γ(i) ∈ Rn×p, i ∈ D.

(iii) The linear matrix inequality

A∗
0(i)X(i) + X(i)A0(i) + C∗

0(i)Γ∗(i) + Γ(i)C0(i) +
r∑

k=1

A∗
k(i)X(i)Ak(i) +

∑

j=1

dqijX(j) < 0 (3.13)

has a solution X = (X(1) X(2) ... X(d)) ∈ Sd
n, Γ = (Γ(1) Γ(2) ... Γ(d)), X(i) > 0, Γ(i) ∈

Rn×p, i ∈ D. Moreover, if (X, Γ), X > 0 is a solution of (3.4), then L = (L(1) L(2) ... L(d)),

L(i) = X−1(i)Γ(i) provides a stabilizing injection.

4 Main results

Based on Proposition 3.1 (b) we obtain:

Proposition 4.1 The following are equivalent:

(i) The system (2.1)-(2.2) is stochastically observable.

(ii) There exists τ > 0 such that

∫ τ

0

eL
∗sC̃ds > 0 (4.14)

C̃ = (C̃(1) ... C̃(d)), C̃(i) = C∗
0(i)C0(i), i ∈ D.

(iii) There exists τ > 0 such that X0(τ) > 0, where X0(t) is the solution of the problem

with initial value

d

dt
X0(t) = L∗X0(t) + C̃, X(0) = 0. (4.15)

Proof. (i) ↔ (ii) follows from Proposition 3.1 (b). Since

X0(t) =

∫ t

0

eL
∗(t−s)C̃ds =

∫ t

0

eL
∗sC̃ds, t ≥ 0

it follows that (iii) ↔ (ii). The proof is complete.
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Further from Porposition 4.1 and Proposition 3.1 (a) we obtain:

Proposition 4.2 The following hold:

(i) If for each i ∈ D, the pair (C0(i), A0(i)) is observable (in deterministic sense) then the

triple (C0, A0; Q) is observable.

(ii) If (C0, A0; Q) is observable, then (C0,A; Q) is observable.

Proposition 4.3 Let X0(t) be the solution of the problem with initial value (4.2). If there

exists τ > 0 such that X0(τ) > 0 then X0(t) > 0 for all t > 0.

Proof. For each t > 0, we write the representation

X0(t) = (X0(t, 1), X0(t, 2), ..., X0(t, d)) =

∫ t

0

eL
∗(t−s)C̃ds.

Since eL
∗(t−s) : Sd

n → Sd
n is a positive operator, we deduce that X0(t) ≥ 0, for all t ≥ 0.

Moreover if t ≥ τ we have X0(t) ≥ X0(τ), therefore if X0(τ) > 0, we have X0(t) > 0

for all t ≥ τ . It remains to show that X0(t) > 0, 0 < t < τ . To this end we show that

detX0(t, i) > 0, 0 < t < τ, i ∈ D. Indeed, since detX0(t, i) = det
{∫ t

0
eL

∗(t−s)C̃ds)(i)
}

, we

deduce that t → detX0(t, i) is an analytic function.

The set of its zeros on [0, τ ] has no accumulation point. In this way it will follow that there

exist τ1 > 0 such that detX0(t, i) > 0 for all t ∈ (0, τ1]. Invoking again the monotonicity of

the function t → X0(t) we conclude that X0(t) > 0 for all t ≥ τ1, and the proof ends.

Remark 4.1 From Proposition 4.1 and Proposition 4.3 it follows that the stochastic

observability for the system (2.1)-(2.2) may be checked by using a numerical procedure to

verify the positivity of the solution X0(t) through an enough long interval of time.

Proposition 4.4 The triple (C0,A;Q) is observable if and only if does not exist τ > 0, i ∈
D and x0 � =0 such that

E
[
|y(t, 0, x0)|2|η(0) = i

]
= 0

(∀) t ∈ [0, τ ] where y(t, 0, x0) = C0(η(t))x(t, 0, x0), x(t, 0, x0) being the solution of (2.1)

having the initial condition x(0, 0, x0) = x0.

The next result provide a sufficient condition assuring the stochastic observability. Its

proof may be found in [10].

Proposition 4.5 The triple (C0,A; Q) is observable if for every i ∈ D, rank M(i) = n,

where

M(i) = [C∗
0(i), A∗

0(i)C
∗
0(i), . . . , (A∗

0(i))
n−1C∗

0(i),

qi1C
∗
0(1), . . . , qidC

∗
0(d), A∗

1(i)C
∗
0(i), . . . , A∗

r(i)C
∗
0(i)] .

In the following examples, the stochastic observability used in this paper is compared with

other types of stochastic observability, for example the one introduced in [6] and [8]. We also
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show that the stochastic observability used in this paper doesn’t imply always the stochastic

detectability as we would expected.

Example 1 The case of a system subjected to Markovian jumping with d = 2, n = 2, p = 1.

Take

A0(1) = A0(2) =

[
α 0

0 α

]

C0(1) = [1 0] , C0(2) = [0 1] , Q =

[
−q q

q −q

]
, α ∈ R, q > 0.

It is obvious that the pairs (C0(1), A0(1)), (C0(2), A0(2)) are not observable in the deter-

ministic sense. Therefore this system is not stochastically observable, in the sense of [8, 6].

We shall show that this system is stochastically observable in the sense of Definition 2.1.

To this end we use the implication (iii) =⇒ (i) in Proposition 4.1. We show that there

exists τ > 0 such that X1(τ) > 0, X2(τ) > 0, where Xi(t), i = 1, 2 is the solution of the

Cauchy problem:

d

dt
Xi(t) = A∗

0(i)Xi(t) + Xi(t)A0(i) +
2∑

j=1

qijXj(t) (4.16)

+C∗
0(i)C0(i),

Xi(0) = 0, i = 1, 2.

From the representation formula

(X1(t), X2(t)) =

∫ t

0

eL
∗
0(t−s)C̃ds

it follows that Xi(t) ≥ 0 for all t ≥ 0.

Therefore it is sufficient to show that there exists τ > 0 such that detXi(τ) > 0.

Set Xi(t) =

(
xi(t) yi(t)

yi(t) zi(t)

)
, i = 1, 2. After some simple cmputations we have detXi(t) =

xi(t)zi(t) − y2
i (t) = xi(t)zi(t) = x̃(t)z̃(t), t ≥ 0 where

x̃(t) =
1

2

∫ t

0

[eαs + e(2α−q)s]ds

z̃(t) =
1

2

∫ t

0

[e2αs − e2(α−q)s]ds.

For detail see [4].

It is easy to see that for every α ∈ R, q > 0 we have limt→∞ x̃(t)z̃(t) > 0.

Remark 4.2 Let us consider the system of type (2.1)-(2.2) with n = 2, d = 2, p = 1, r = 1

and A0(1) = A0(2) = αI2, C0(1) = (1 0), C0(2) = (0 1), A1(i) a 2 × 2 arbitrary matrix,
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Q =

[
−q q

q −q

]
, α ∈ R, q > 0. Combining the conclusion of Example 1 with Proposition

4.2 (ii) it follows that the system (C0, (A0, A1); Q) is observable.

Example 2 The stochastic observability does not imply always stochastic detectability.

Let us consider the system subjected to Markovian jumping with d = 2, n = 2, p = 1,

A0(1) = A0(2) =
q

2
I2, C0(1) = [1 0] , C0(2) = [0 1] , Q =

[
−q q

q −q

]
. (4.17)

From the previous example we conclude that the system (C0, A0; Q) is observable. Invoking

(i) ⇔ (ii) from Proposition 3.2 we deduce that if the system (4.4) would be stochastically

detectable, then would exist the matrices X(i) > 0 and Γ(i) =

[
γ1(i)

γ2(i)

]
, i = 1, 2 which

verify the following system of linear equations:

A∗
0(i)X(i) + X(i)A0(i) + Γ(i)C0(i) + C∗

0(i)Γ∗(i) +
2∑

j=1

qijX(j) + I2 = 0, i = 1, 2

which implies I2 +

[
2γ1(1) γ2(1)

γ2(1) 0

]
< 0 which is a contradiction.

Example 3 Let us consider the stochastic system (2.1)-(2.2) with n = 2, d = 2, r =

1, p = 1, A0(1) = A0(2) = αI2, C0(1) = [1 0] , C0(2) = [0 1] , A1(1) = βI2, A1(2) is a

2×2 arbitrary matrix, Q =

[
−q q

q −q

]
, α ∈ R, β ∈ R, q > 0 which satisfy 2α−q+β2 = 0.

¿From Remark 4.2 it follows that the above system is stochastically observable. As in the

previous example based on equivalence (i) ↔ (ii) from Proposition 3.2 we may show that it

is not stochastically detectable (see citepreprint01 for details).

The following two results show that the stochastic observability defined in this paper

guarantees the positivity of the observability gramian and the fact that all semipositive

solutions of the Riccati equations are stabilizing solutions as in the deterministic case. The

proofs are omitted for shortness and may be found in [10].

Proposition 4.6 Assume that (C0, A0, . . . , Ar; Q) is observable and the algebraic equation

on Sd
n

L∗X + C̃ = 0 (4.18)

has a solution X̃ ≥ 0.

Then :

(i) The system (A0, A1, . . . , Ar; Q) is stable.

(ii) X̃ > 0.

(iii) The equation (4.5) has a unique positive semidefinite solution.
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Let us consider the following system of general algebraic Riccati equations:

A∗
0(i)X(i)+X(i)A0(i)+

r∑

k=1

A∗
K(i)X(i)Ak(i)+

∑

j=1

dqijX(j)−(X(i)B0(i) +

r∑

k=1

A∗
k(i)X(i)Bk(i))(D

∗(i)D(i) +
r∑

k=1

B∗
k(i)X(i)Bk(i))

−1(B∗
0(i)X(i) +

r∑

k=1

B∗
k(i)X(i)Ak(i)) + C∗

0(i)C0(i) = 0 (4.19)

where Ak(i), C0(i) are as in (2.1)-(2.2) and Bk(i), D(i) are n×m and p×m given matrices.

Such algebraic equations are closly related to the linear quadratic optimization problem for

a linear stochastic system subjected both to Markovian jumping and multiplicative white

noise (see [4, 10] for details).

The following result is proved in [10].

Proposition 4.7 If (C0,A; Q) is observable then any semipositive solution of the system

(4.6) is a stabilizing solution.
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