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Abstract

The need for real-time control of a physical system necessitates controllers that are low
order. We compare two methods for obtaining such controllers, for systems that are modeled
by partial differential equations. The first is the standard technique of balanced realization
followed by truncation. The second, LQG balancing, can be thought of as balancing based on
the controller, and was discussed for systems modeled by ordinary differential equations by
Jonckheere and Silverman. Extensions to PDE systems have been established by Curtain. In
this work, we compare the designs for the one-dimensional linear Klein-Gordon Equation.

1 Introduction

The need for practical, robust, real-time controllers for physical systems presents a challenge, espe-
cially when the problem at hand is modeled by a partial differential equation (PDE). The standard
techniques for robust controller design for PDE systems in the state space yield controllers that
are inherently large-scale, and thus a reduction in size must take place at some point. Traditional
methods to obtaining lower order controllers involve reducing the model from that for the PDE,
and then applying a standard control design technique. We term such approaches as “reduce-then-
design”. In several recent papers [5, 17, 21, 22, 23], the proper orthogonal decomposition (POD)
has been applied to obtain reduced order models. Another commonly used technique is balanced
realization and truncation (see for example [24]), which is one of the techniques that we will apply
in this paper.

In [3], it was argued that reduce-then-design methods may have an inherent weakness in that
some of the essential “physics” in the PDE model may be lost in model reduction. Consequently,
more robustness is demanded from the low order controller. In an attempt to capture characteristics
of the PDE controller before the reduction step, an alternative to reduce-then-design was suggested
in [2, 3] that involved using the POD for controller reduction. Here, we consider a second balancing
technique which may accomplish the same effect. This method is called LQG balancing and was
established for large-scale systems of ordinary differential equations in [16]. Recently, Curtain has
extended these results to PDE systems [7].

In this paper, we compare balanced realization and truncation with LQG balanced realization
and truncation, by formally applying both methods to the Klein-Gordon equation. In Section 2,
we present an overview of the linear-quadratic-Gaussian (LQG) compensator-based feedback con-
troller design. In Section 3, we outline the two balancing techniques. In Section 4, we present our
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example problem and numerical results which include a comparison of performance and robust-
ness properties of the closed loop systems. We conclude with some future directions in Section
5.

2 LQG Feedback Control Design

Assume a PDE model for a physical system of interest, given in abstract form as

_x(t) = Ax(t) +Bu(t); x(0) = x0 (1)

wherex(t) is the state of the system in Hilbert spaceX, andu(t) is the control in Hilbert spaceU .
In addition, we assume a state measurement,y(t) in Hilbert spaceY , of the form

y(t) = Cx(t): (2)

We shall denote the state space system given by (1) and (2) as�(A;B;C). Associated with this
system is the transfer function given byG(s) = C(sI � A)�1B whereG(s) : U ! Y . We
note that althoughG(s) is the unique transfer function for�(A;B;C), there are many state space
systems that would give rise toG(s). This observation provides a rationale for balancing, and will
be discussed further in the next section.

One method to derive a compensator-based controller is via the solution to the LQG control
problem. This solution provides a state estimate,xc(t), and control,u(t), that are given by the
equations

_xc(t) = Acxc(t) + Fy(t) xc(0) = xc0 (3)

u(t) = �Kxc(t): (4)

Design of a controller entails determiningAc; F andK that produce a stable closed loop system
�

_x
_xc

�
=

�
A �BK
FC Ac

� �
x
xc

�
;

�
x(0)
xc(0)

�
=

�
x0
xc0

�
: (5)

Under conditions of stabilizability of(A;B) and detectability of(A;C) (see for example, [6, 9,
12]), the operatorsAc; F andK can be obtained by the solution of two algebraic Riccati equations

A��+�A� �BB��+ C�C = 0 (6)

AP + PA� � PC�CP +BB� = 0: (7)

Once the solutions of the control Riccati equation,�, and the filter Riccati equation,P , are ob-
tained, then

K = B��

F = PC (8)

Ac = A�BK � FC:
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For certain PDEs, the control law can be written in integral form as

u(t) = �Kxc(t) =

Z



k(s)xc(t; s)ds; (9)

for spatial variables 2 
 (see for example [19]). The kernel of the integral is called a functional
gain and is important for several reasons. First, gains can be computed off-line and stored, so that in
computation of the control, the gain is multiplied by the state estimate and numerically integrated.
In addition, research has been done involving reduced order controllers and sensor design based
on information in the functional gains in [4, 3, 11, 18, 20]. It was noted in [1, 4, 3] that a reduce-
then-design approach based on POD reduction of the model followed by control design can yield
finite dimensional approximations of the functional gains that do not converge. In our numerical
example, we will examine gains from the two balancing methods.

In order to compute the PDE controller, an approximation scheme for which convergence is
known is applied to (1), (2). In the case of a finite element scheme with basis of dimensionN
(whereN !1 yields the PDE system), the approximating system is given by

_xN (t) = ANxN(t) +BNuN(t); xN(0) = xN0 (10)

yN(t) = CNxN (t): (11)

A finite dimensional compensator for the approximating system can then be obtained by solving
the Riccati equations (see [12])

_xNc (t) = AN
c x

N
c (t) + FNy(t); xNc (0) = xNc0 (12)

uN(t) = �KNxNc (t): (13)

Then combining equations (10), (11), (12) and (13) yields the finite dimensional approximation to
the closed loop system given by

�
_xN

_xNc

�
=

�
AN �BNKN

FNCN AN
c

� �
xN

xNc

� �
xN (0)
xNc (0)

�
=

�
xN0
xNc0

�
: (14)

Throughout this paper, we assume thatN is large enough so that the behavior of the approximat-
ing system has converged to the behavior of the PDE model. We refer to this large-scale finite
dimensional approximation as thefull-order systemand use the notation�(AN ; BN ; CN) to de-
note corresponding approximation in (10), (11). We denote the closed loop system matrix for the
full order system as

A =

�
AN �BNKN

FNCN AN
c

�
:

Note that an implementation problem exists at this point, in that a full order compensator will
not offer real time control for most physical problems. For this reason, reduced order compensators
need to be considered. As discussed in the introduction, one way to obtain a low order compensator
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is to perform model reduction followed by control design. We can think of the reduced order model
as

_xq(t) = Aqxq(t) +Bquq(t); xq(0) = xq0 (15)

yq(t) = Cqxq(t): (16)

whereq << N . By solving (6), (7) withAq, Bq, andCq, we obtain the low order compensator
and control law

_xqc(t) = Aq
cx

q
c(t) + F qy(t); xqc(0) = xqc0

uq(t) = �Kqxqc(t):
(17)

To simulate the performance of the low order compensator, we apply it to the full order system
in (10), (11); that is, we simulate the closed loop system

�
_xN (t)
_xqc(t)

�
=

�
AN �BNKq

F qCN Aq
c

� �
xN (t)
xqc(t)

�
;

�
xN(0)
xqc(0)

�
=

�
xN0
xqc0

�
: (18)

In this paper, to form the low order system in (15), (16), we will use balanced realization and
truncation, and LQG balanced realization and truncation. For notational purposes, let the closed
loop system matrix

�
AN �BNKq

F qCN Aq
c

�
(19)

be denoted byAT for balanced truncation andricAT for LQG balanced truncation. We discuss
these truncation methods in the following section.

3 Balanced Realizations and Truncation

Balanced realization and truncation is a common procedure that can be found in standard refer-
ences on control, e.g., [9] for PDE systems. It is based on the premise that a low order approxi-
mation to�(A;B;C) could be obtained by eliminating any states that are difficult to control and
to observe. Then, the reduced order system, denoted by�(Aq; Bq; Cq) whereq << N , is used as
described above to obtain the approximate solutions�q; P q to the algebraic Riccati equations (6),
(7), and the correspondingKq; F q; Aq

c.
To identify controllable and observable states, we consider the controllability Gramian

LB =
R
1

0
eAtBB�eA

�tdt (20)

and the observability Gramian

LC =
R
1

0
eA

�tC�CeAtdt: (21)
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The reachable states are reflected byLB and the observable states byLC . A difficulty in eliminating
states based uponLB andLC is that these Gramians are realization dependent. That is, one can
choose two systems�(A1; B1; C1) and�(A2; B2; C2) that both give rise to transfer functionG(s),
but have different Gramians. Thus, if a realization was sought which led to few controllable states
(therefore many states to truncate), that realization may have many observable states (therefore few
states to truncate) and vice versa. This apparent dilemma is addressed by thebalanced realization,
in which states that are difficult to control coincide with states that are difficult to observe. In this
particular realization,

LB = LC = diag(�1; �1; : : : ; �n; : : : ); �1 � �2 �; � � � ;� �n � � � � � 0

where�i =
p
�i(LBLC) are the Hankel singular values and are realization invariant.

The following theorem from [8, 13, 14] and others gives conditions for existence of the Grami-
ans.
Theorem: If �(A;B;C) is exponentially stable, then the controllability and observability Grami-
ans,LB; LC , exist and are the unique positive definite solutions to the Lyapunov equations

ALB + LBA
�0�BB�

A�LC + LCA = �C�C:

If LB; LC exist, then there exists a similarity transformationT that gives rise to the balanced
state space system which we denote as�(Abal; Bbal; Cbal) = �(TAT�1; TB; CT�1). The ordering
of the Hankel singular values gives information on the states that are insignificant with regard to
both controllability and observability of the system. In particular, we write

Abal =

�
A11 A12

A21 A22

�
Bbal =

�
B1

B2

�
Cbal =

�
C1 C2

�

where theAbal; Bbal; Cbal are partitioned so that the states corresponding to theq most “significant”
Hankel singular values are given by the truncated system�(A11; B1; C1). The corresponding re-
duced transfer function isGr(s) = C1(sI �A11)

�1B1, and the truncation error can be represented
as

jjG(s)�Gr(s)jj1 � 2
1X

i=q+1

�i:

Note that for infinite dimensional (PDE) systems, convergence of this quantity is an issue that must
be considered (see [7]).

The following algorithm can be used to find the balancing transformationT .

� ComputeLB; LC from �(A;B;C).

� SinceLB is symmetric positive definite, the Cholesky decomposition yieldsLB = R�R.

� R�LCR = U�2U� where�2 = diag(�i)
1

i=1 andU is unitary.

� DefineT = �
1

2U�R. It follows that(T�1)�LCT
�1 = � = TLBT

�.
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Balanced realization and truncation is a rather standard technique and has been used with fa-
vorable results. However, our goal is to utilize information regarding the closed loop design for
the PDE system (which we determine through computation of the full order system with largeN )
in our reduced order controller. To do this, we turn to LQG balancing.

Just as the Hankel singular values are invariant with respect to system realization, so are the
Riccati singular values, given by�i =

p
�i(�P ), [16]. As �; P are based on the PDE system

which includes the physics before model reduction takes place, it is reasonable to conjecture that
that reduction based on the Riccati singular values would result in a low order model that contains
information that is important for the PDE controller. To accomplish LQG balancing, the balancing
algorithm described above is applied to�; P , and truncation is based upon the Riccati singular
values, keeping the states which correspond to theq largest values,f�ig

q
i=1.

4 Klein-Gordon Equation and Numerical Results

To study the effects of regular and LQG balancing, the linear Klein Gordon equation (KGL) is
used as an example. Taking the constants velocity of light in a vacuum and~ to be one and adding
a damping term,!t, to ensure stabilizability, the KGL equation can be written as

!tt(t; x) + !t(t; x)� !xx(t; x) +m2!(t; x) =
Pr

i=1 bi(x)ui(t);

!(0; x) = !10(x) _!(0; x) = !20(x);

!(t; 0) = 0 = !(t; L)

(22)

wherem is the rest mass,L is the length of the spatial domain,t is time,fui(t)gri=1 are controls,
andfbi(x)gri=1 are control input functions. The KGL equation is a relativistic wave equation which
arises in quantum mechanics; it is a momentum equation used when there is a need to describe
phenomena at high energies [15].

Using PDE theory, the KGL equation can be written as a system in abstract form as in (1), (2).
To formulate the full order approximation in (10), (11), a Galerkin finite element scheme is applied
with linear splines. The weak form of the KGL equation in (22) is given by

Z L

0

�!(t; x) (x)dx = �

Z L

0

!0(t; x) 0(x)dx�m2

Z L

0

!(t; x) (x)dx

�

Z L

0

_!(t; x) (x)dx +

Z L

0

rX
i=1

ui(t)bi(x) (x)dx

for all !(t);  � H1
0 (0; L). We approximate!(t; x) by !N(t; x) =

PN�1
i=1 !N

i (t)'N
i (x), where

f'N
i g

N�1
i=1 are piecewise linear basis functions; ranges overf'N

i g
N�1
i=1 . For the purpose of defining

fbig
r
i=1, we create a partition of[0; L] asfxigri=1 wherexi = i�L=r. We then choose the functions

bi to be defined by

bi(x) = e�(x�x
�

i
)2 for xi�1 � x � xi; where x�i =

xi�1 + xi
2

:

We defineBi =
R L

0
bi(x)'j(x)dx for i = 1; : : : ; r, j = 1; : : : ; N � 1. Additionally, we assume

there are four averaged measurements—two each of position and velocity. This creates the4 �

6



(N � 2) dimensional matrixCN given by

CN =

2
666666664

h
2=L

R L=2

0
'N
i (t; x)dx

iN�1
i=1

0h
2=L

R L

L=2
'N
i (t; x)dx

iN�1
i=1

0

0
h
2=L

R L=2

0
'N
i (t; x)dx

iN�1
i=1

0
h
2=L

R L

L=2
'N
i (t; x)dx

iN�1
i=1

3
777777775

DefiningvN(t; x) = _!N(t; x), we obtain the system corresponding to (10), (11)

�
_!N(t)
_vN(t)

�
=

�
0 I

�M�1K �m2I �I

��
!N(t)
vN(t)

�
+

�
0 � � � 0

M�1B1 � � � M�1Br

�264
u1(t)

...
ur(t)

3
75 (23)

�
y1(t)
y2(t)

�
= CN

�
!N(t)
vN(t)

�
; (24)

where

M =

�Z L

0

'N
i (x)'

N
j (x)dx

�N�1
i;j=1

and K =

�Z L

0

'N 0

i (x)'N 0

j (x)dx

�N�1
i;j=1

are the mass and stiffness matrices, respectively. We now apply the ideas presented above for
balanced realizations and truncation to design a reduced order controller.

4.1 Numerical Results

In the KGL equation (22), the mass of the particle is specified to be .01 while the damping constant
is set at .1. For the finite element approximation, the number of subintervals is chosen to be
N = 100, on a spatial interval of lengthL = 10. Four control input functions are specified, that
is, r = 4. There are two functional gains for this control problem, one for position and one for
velocity. They are shown in Figure 1.

We now apply both balancing techniques to the system given in (23), (24). Recall that for
balancing, this requires computing the Gramians, and for LQG balancing, computing the solutions
to the Riccati equations. Figure 2 shows the Hankel singular values found through balancing
around the Gramians on the left and the Riccati singular values found through balancing around
the Riccati operators on the right.

To form the reduced order systems, we chose to truncate the full order systems withq =
10. With these two reduced systems—one from balancing and one from LQG balancing (see
equations (15), (16) )—we compute the two corresponding LQG compensators (in (17)) by solving
the Riccati equations. We can then form the two closed loop systems, according to (18) usingAT

from balancing andricAT from Riccati balancing.
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Figure 1: Full Order Functional Gains for Position (left) and Velocity (right), (ordered top to
bottom within each plot)
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Figure 2: Hankel Singular Values (left) and Riccati Values (right)
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As a first step in our comparison of these two closed loop systems with the full order closed
loop system in (14), we compute the functional gains corresponding to the reduced compensator
designs. The gains for the controller found through regular balancing can be found in Figure 3;
those for the controller found through LQG balancing are in Figure 4. Again the position gains are
on the left, and the velocity gains are on the right.
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Figure 3: Reduced Order Functional Gains for Position (left) and Velocity (right) using Regular
Balancing, (ordered top to bottom within each plot)
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Figure 4: Reduced Order Functional Gains for Position (left) and Velocity (right) using LQG
Balancing, (ordered top to bottom within each plot)

We observe that there is little difference in the three sets of gains, which leads us to conclude
that for this example, both balancing methods can preserve characteristics of the functional gains
from the full order compensator. This is an improvement over previously reported results for some
reduce-then-design methods [1, 3, 4].

To simulate the performance of the closed loop systems, the initial conditions are taken to be

!(0; x) = sin(x) _!(0; x) = cos(x): (25)

The result of simulating the uncontrolled system (ui(t) = 0), is depicted in Figure 5. The
solution displays the type of wave behavior with damping effects as would be expected. Simulating
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the full order closed loop system requires an initial condition for the state estimate. To represent
an error in the initial estimate,xNc (0) is taken to be0:75 � xN(0). Figure 5 shows the behavior of
the state when the full order controller is applied. A plot of the four components of the controller
u(t) = �Kxc(t) is given in Figure 6.

Figure 5: Uncontrolled State (left) and State with Full Order Compensator (right)
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Figure 6: Controller (ordered top to bottom)

The reduced order compensator performances from the two balancing techniques are shown in
Figure 7. It is difficult to make any conclusive statements about the two behaviors, other than they
do show more rapid damping than does the uncontrolled system. They do not show, however, as
rapid a damping in the oscillations as does the system with the full order compensator.

To investigate robustness of the closed loop systems, we compute the stability radii ofA, AT

andricAT . The stability radius gives the smalles perturbation that destabilizes the closed loop
systems, [10].The results are summarized in Table 1. We note that the closed loop system with the
largest stability radius, i.e., the most robust closed loop system, is that given byricAT .
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Figure 7: Reduced Order Compensator Performance via Balanced Truncation (left) LQG Balanced
Truncation (right)

System Matrix Stability Radius
A 1:198360� 10�9

AT 4:529261� 10�7

ricAT 7:008909� 10�5

Table 1: Stability Radii

5 Future Work

This paper contains preliminary numerical investigations into the application of LQG balancing
and truncation to a PDE system for low-order compensator design. Research into the method
continues on many fronts. On the theoretical side, Curtain and others are extending the LQG
balancing technique to Min-Max control design which will allow more flexibility in choice of
controlled outputs and disturbance inputs. Camp and King are investigating other PDE systems for
which the two approaches may show more pronounced differences in the results. At this point, we
remain optimistic that the LQG balancing provides a way to utilize information from the infinite
dimensional controller in the reduction steps.
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