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Abstract

In this paper we consider a numerical algorithm for computing functional gains that

define optimal feedback laws for Dirchlét boundary control of parabolic equations. The

focus here is on using non-uniform meshes to improve convergence of finite element

schemes. Since boundary control problems of this type often lead to functional gains

with support near the boundary, uniform meshes are not optimal. Numerical examples

are presented to illustrate the effectiveness of using a non-uniform mesh concentrated

near the boundary.

1 A Boundary Layer Control Problem

We consider a control problem motivated by the viscous Burgers equation

∂

∂t
w(t, x) = µ

∂2

∂x2
w(t, x)− ∂

∂x

[w(t, x)]2

2
, 0 < x < 1, t > 0, (1.1)

with homogenous boundary condition at x = 0

w(t, 0) = 0, (1.2)
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and Dirchlét boundary control at x = 1

w(t, 1) = u(t). (1.3)

The initial condition is given by

w(0, x) = w0(x) (1.4)

where w0(x) ∈ L2(0, 1) and 0 < µ << 1. The problem is motivated by flow control problems

where the control action is located on the walls (boundary) of the flow (see [1] and [7]).

If one linearizes the problem and applies LQR theory (LQG, MinMax, etc.), then the

optimal controllers have the form

uopt(t) = −Kw(t, ·) = −
∫

1

0

k(x)w(t, x)dx,

where k(x) is called the functional gain. In the paper [7] a finite element method on a

uniform mesh was used to compute k(x). Typical convergence of these functional gains is

illustrated in Figure 1 (here µ = 1

60
and a large penalty is placed on the solution near the

boundary).
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Figure 1: Convergence of the Functional Gains

Observe that the functional gain is supported near the boundary and becomes “singular”

at x = 1. Also note that convergence is not achieved even when a large number of elements

is used. Clearly, the form of the functional gain suggests that one might be able to do better

with a non-uniform mesh concentrated near x = 1. We investigate this issue in this paper.
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1.1 The Control Problem

The details of the problem and the theoretical framework may be found in ([7]). Thus,

we briefly describe the problem and outline the results. Let bL = 1 − √
µ and define

q(·) : [0, 1] −→ R by

q(x) =

{

qL, bL ≤ x ≤ 1

qS, 0 ≤ x < bL

, (1.5)

where 0 < qS << qL are positive numbers. For r > 0 and α ≥ 0, we define the cost function

by

Jα(u(·)) =

∫ ∞

0

eαt

{(
∫

1

0

q(x)|w(t, x)|2dx

)

+ |u(t)|2
}

dt. (1.6)

Observe that, since 0 < qS << qL, the cost function places a large penalty on the solution

in the “boundary layer” bL ≤ x ≤ 1. Also, when α > 0 there is an additional performance

requirement (see [2], [3] and [11]).

The boundary control problem for the linearized system is the heat equation

∂

∂t
w(t, x) = µ

∂2

∂x2
w(t, x), 0 < x < 1, t > 0, (1.7)

with homogenous boundary condition at x = 0

w(t, 0) = 0, (1.8)

and Dirchlét boundary control at x = 1

w(t, 1) = u(t). (1.9)

One may formulate this problem as a state space system of the form

d

dt
w(t) = Aw(t) + Bu(t) (1.10)

in a very weak sense (see [13]). If one minimizes Jα(u(·)) defined by (1.6) subject to (1.10),

then it can be shown that the optimal controller has the form

uopt(t) = −Kµ,αw(t, ·) = −
∫

1

0

kµ,α(x)w(t, x)dx, (1.11)

where the kernel k(·) ∈ L2(0, 1) is called the functional gain (see [3] and [4]). We use the

formulation (1.10) to guide the construction of finite element approximations of the linear

control system (1.7)-(1.9) and of the functional gain k(·) ∈ L2(0, 1). A convergence theory

for these approximations may be found in [11] and [13], and several researchers have used

these or similar approximations for a variety of parabolic control problems (see [3], [4], [5],

[6], [11] and [13]). However, we shall focus on the application of non-uniform meshes to

compute these functional gains.
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2 Approximation and Numerical Results

In this section we present a numerical scheme for the boundary control problem (1.7)-(1.9)

discussed in Section 1 above. Since the algorithm is similar to the ones given in [3], [5], [6], [7]

and [13], we will omit the detailed discussion. The primary difference here is the application

of a non-uniform mesh. In particular, we focus on the effect of computing the functional

gains by using a non-uniform mesh in the region bL < x < 1. This mesh is constructed in

such a way that the mesh is finer near the boundary. The non-uniform mesh produces more

accurate approximations for the functional gains while using less elements than required on

a uniform mesh.

2.1 The Approximation Scheme

Here we focus on the case where α = 0 and start with the equation

∫

1

0

wt(t, x)φ(x)dx = [µφx(1)] u(t) + µ

∫

1

0

w(t, x)φxx(x)dx. (2.12)

Observe that if v(·) ∈ H1
0 (0, 1)) and φ(·) ∈ H2(0, 1) ∩H1

0 (0, 1), then

∫

1

0

v(x)φxx(x)dx = −
∫

1

0

vx(x)φx(x)dx.

Therefore, by projecting (2.12) onto any finite element subspace Vh ⊂ H1
0 (0, 1) (see [14],

page 126) one obtains the system

∫

1

0

wh
t (t, x)φ(x)dx = [µφx(1)]u(t)− µ

∫

1

0

wh
x(t, x)φx(x)dx. (2.13)

We seek a wh(t, ·) ∈ Vh ⊂ H1
0 (0, 1)) such that (2.13) holds for all φh(·) ∈ Vh ⊂ H1

0 (0, 1) and

construct a new scheme that is a variation of the schemes found in [3], [13] and [14]. Let

0 = x0 < x1 < x2 < ... < xN+1 = 1 be a partition of [0, 1] and let xL correspond to the

smallest xi in the partition such that bL ≤ xi. Let δxi = xi−xi−1 for i = 1, 2, . . . , N where

N + 1 is the number of elements in the partition of [0, 1]. The refinement is done in such a

way that a fine mesh is obtained near the boundary. The mesh generation algorithm is as

follows:

• Start with a uniform mesh with interval width δx. Choose this partition so that there

are an odd number of nodes greater or equal to bL. Set x1
L = (1− xL)/2.

• The interval [x1
L, 1] is partitioned into subintervals of length δx/2 and the remaining

part of the partition remains unchanged. Set x2
L = (1− x1

L)/2.

• For k ≥ 2, the interval [xk
L, 1] is partitioned into subintervals of length δx/2k and the

remaining part of the partition remains unchanged. Set xk+1

L = (1− xk
L)/2.
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In this short paper we refine the mesh as above manually. However, the goal is to develop

an adaptive algorithm based on automatic mesh refinement.

Let HN
0 ⊂ H1

0 (0, 1) be the N -dimensional finite element space given by

HN
0 =

{

N
∑

i=1

wih
N
i (x) : wi ∈ R, i = 1, 2, . . . , N

}

,

where the basis functions hN
i (x) are defined by

hN
i (x) =







(x− xi−1)/δxi, xi−1 ≤ x ≤ xi

−(x− xi+1)/δxi+1, xi ≤ x ≤ xi+1

0, otherwise

.

Projecting (2.13) onto HN
0 produces the approximate solution wN(t, x) given by

wN(t, x) =
N

∑

i=1

wN
i (t)hN

i (x)

where wN
i (t) ∈ R, i = 1, 2, . . . , N. Thus, the system (2.13) can be represented by the

following finite dimensional system

d

dt
ŵN(t) =

[

AN
]

ŵN(t) + BNuN(t), (2.14)

where ŵN(t) = [wN
1 (t), wN

2 (t), . . . , wN
N (t)]T. Here, for a uniform mesh, [AN ] = [GN ]−1[ÃN ],

BN = [GN ]−1B̃N are the usual finite element matrices with mass matrix [GN ] and stiffness

matrix [ÃN ]. The column vector B̃N has only one non-zero entry.

For the non-uniform mesh, the matrices remain tridiagonal and symmetric and are con-

structed in the following way. Let M k−1 denote that part of the matrix (mass or stiffness

matrix) computed in iteration (k − 1) that correspond to those elements that remained un-

changed in iteration k. Let M k denote the matrix (mass or stiffness matrix) computed in

iteration k for those elements that have been refined in iteration k. The matrices for the

partition associated with the kth iteration are of the form

M =









































...

Mk−1 ... 0
...

. . .
... . . . . . . . . .

... Mii
...

. . . . . . . . .
... . . .

...
...

0 ... Mk

...









































.
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Note that the entry where the two matrices overlap, say Mii, must be re-evaluated. This

entry is associated with the basis function over two non-uniform elements. That is, the last

element of the previous partition that remains unchanged and the first element that has

been refined in the current iteration. In particular, the corresponding global basis function

has the form

hN
i (x) =







(x− xi−1)/δxi, xi−1 ≤ x ≤ xi

−(x− xi+1)/δxi+1, xi ≤ x ≤ xi+1

0, otherwise

,

where δxi+1 = δxi/2.

This scheme was used to compute the functional gains of the systems presented below.

Convergence of the feedback gain operators is provided by the theory in [13] and [14]. This

theory applies to the non-uniform mesh. However, it would be valuable to obtain error

estimates for these methods. This will be the subject of a future paper.

2.2 Numerical Examples

We present three examples to illustrate the benefits of using non-uniform grids to solve for

the functional gains.

Example 1

This is the example illustrated in Figure 1 above. A uniform mesh was used to compute
[

k 1

60
,0

]N

(·) where

uopt(t) = −K 1

60
,0w(t, ·) = −

∫

1

0

k 1

60
,0(x)w(t, x)dx.

Here α = 0, µ = 1

60
, r = .25, qS = 1 and qL = 50

√
µ

= 50
√

60 = 387.298. The boundary layer

thickness is
√

µ = 1√
60

= .1291.

It is important to note that it was necessary to use N = 320 elements in order to produce

“convergent functional gains”. This convergence rate is unlike previous cases (see [3], [5],

[6] and [11]) where convergence usually occurred at a much smaller N . The reason for the

“slow” convergence is twofold. First, the heavy weight placed in the boundary layer causes

the functional gain to be very large near the boundary. Second, since µ = 1

60
is small for

this problem, convergence near the boundary x = 1 requires a fine mesh. As µ −→ 0 this

problem becomes even more difficult.

In Figures 2 and 3 we illustrate how a non-uniform mesh can improve convergence.
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Figure 2: Functional gains using uniform and non-uniform meshes: δx = .0625
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Figure 3: Functional gains using uniform and non-uniform meshes: δx = .0323

To understand the plots we note that N denotes the size of the final system used to compute

[kµ,α]N (·) . In particular, in Figure 3 one can see that a non-uniform mesh using 40 elements

produces the same accuracy as with 320 elements on a uniform mesh.
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Example 2

Here we again use α = 0, µ = 1

60
, r = .25 but set qS = qL = 1. The boundary layer

thickness is
√

µ = 1√
60

= .1291. As seen in Figure 4 this problem produces a functional gain

with support on the entire domain [0, 1]. However, the gain has a sharp slope at x = 1 and as

illustrated in Figure 5, non-uniform meshes again enhance convergence near the controlling

boundary.
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Figure 4: Functional gains with qS = qL = 1 and a uniform mesh
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Figure 5: Functional gains with qS = qL = 1 and non-uniform meshes: δx = .00714

8



Example 3

Here we set µ = 1

600
, α = 0, r = .25 and again place qS = 1 and qL = 50

√
µ

= 50
√

600 =

1224.7. The boundary layer thickness is
√

µ = 1√
600

= .0408. Thus we do the same problem

as in Example 1 but with a lower value for µ. The results show that, as expected, the

non-uniform mesh produces improvements on uniform mesh solutions.
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Figure 6: Functional gains with µ = 1√
600

and a uniform mesh
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Figure 7: Functional gains with µ = 1√
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and non-uniform meshes: δx = .00676
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3 Conclusion

The previous numerical examples serve to demonstrate the potential benefits of employing

non-uniform meshes in solving for functional gains. The observations is based on a priori

knowledge that the functional gains are “singular” near the boundary. These facts point

to the need to develop an adaptive algorithm based on automatic mesh generators. The

development of such adapted algorithms will depend on ones ability to obtain practical error

estimates. This is the subject of on-going research and will appear in a future paper.
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