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Abstract

This contribution presents a Lie-group based approach for the accessibility and the
observability problem of dynamic systems described by a set of implicit ordinary dif-
ferential equations. It is shown that non-accessible or non-observable systems admit
Lie-groups acting on their solutions such that distinguished parts of the system remain
unchanged. The presented methods use the fact that the dynamic system may be iden-
tified with a submanifold in a suitable jet-bundle. Therefore, a short introduction to
this theory, as well as its application to systems of differential equations is presented.

1 Introduction

This contribution deals with dynamic systems that are described by a set of ne nonlinear

ordinary implicit differential equations of the type

f ie
(
t, z, d

dt
z
)

= 0 , ie = 1, . . . , ne (1.1)

in the independent variable t and the dependent variables zαz , αz = 1, . . . , nz. Of course,

this class of systems contains explicit systems like

d
dt

xαx = fαx (t, x, u) , αx = 1, . . . , nx (1.2)

or DAE-systems (differential algebraic equation)

d
dt

xαx = fαx (t, x, u) , αx = 1, . . . , nx

0 = fαs (t, x, u) , αs = nx + 1, . . . , ne .
(1.3)

If we consider the coordinates (t, x) of (1.2) as local coordinates of a smooth manifold E
with dim E = nx + 1, then it is easy to see that equation (1.2) defines a submanifold of the

tangent bundle T (E) and that this submanifold is parametrized by the input u ∈ U ⊂ Rnu .
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This geometric picture is not valid any more for (1.3). Descriptor-systems in the dependent

variables zαz , αz = 1, . . . , nz like

∑nz

αz=1
nαe

αz
(t, z) d

dt
zαz = mαe (t, z) , αe = 1, . . . , ne (1.4)

are a generalization of (1.3). If one takes the coordinates (t, z) of (1.4) again as local coordi-

nates of a smooth manifold E , then (1.4) defines a linear subspace of the cotangent bundle

T ∗ (E). This geometric picture allows us to extend many design methods, well known for

explicit systems (e.g. see [1], [2]) to descriptor-systems like (1.4), e.g. see [7].

Obviously, the system (1.1) is a generalization of (1.4), and its natural geometric picture

is that of a submanifold of the first jet bundle J (E) of E . In an exemplary fashion we solve

the observability and accessibility problem for systems like (1.1). Of course, the presented

mathematical machinery can be applied to other problems like input-to-output, input-to-

state linearization, optimal control problems, etc. Several solutions for the descriptor case

can be found in [7].

This contribution is organized as follows. The next section summarizes some mathematical

facts concerning jet-bundles and Lie-groups, since all investigations of this contribution are

based on these concepts. Section 3 presents the application of the Lie-group analysis to

explicit systems like (1.3). The implicit case is treated in Section 4. Finally, this contribution

closes with some conclusions.

2 Some Mathematical Basics

Lie-groups and their invariants offer well proven methods for the investigation of differential

equations. Additionally, many of these methods are implemented in powerful computer

algebra systems. Since we consider a dynamic system as a submanifold in a suitable jet-

bundle, we give a short introduction to fibered manifolds and jet-bundles in the following

subsection. Subsection 2.2 presents some basics of the theory of transformation groups.

Formal integrability of systems of differential equations will be treated in Subsection 2.3.

Already here the reader is referred to the four books [3], [4], [5], [6] and the references

therein, where he will find more details on these topics and many things more. Therefore,

we will suppress all citations in the following three subsections.

2.1 Jet-Bundles

A smooth fibered manifold is a triple (E , π,B) with the total manifold E the base B and a

smooth surjective map π : E → B. The set π−1 (x) = Ex is called the fiber over x. We confine

all our considerations to the finite dimensional case with dim E = p + q, dimB = p, where

we may introduce locally adapted coordinates (xi, uα) such that xi, i = 1, . . . , p denote the

independent variables and uα, α = 1, . . . , q denote the dependent variables. We use Latin

indices for the independent and Greek indices for the dependent variables.
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A section σ is a map σ : B → E such that π ◦ σ = idB is met for points, where σ is

defined. The identity map on B is denoted by idB. The tangent-bundle (T (M) , τT ,M) or

the cotangent-bundle (T ∗ (M) , τ ∗T ,M) of a manifold M are well known examples of fibered

manifolds. We write

σ = ai∂i and ω = aidxi

for sections of T (M) and T ∗ (M) with functions ai, ai defined on M. If the map π and the

base-manifold B are clear, we write E instead of (E , π,B). Furthermore, we use the Einstein

convention for sums, whenever the range of the index i follows from the context.

Let f be a smooth section of (E , π,B). We write

∂k

∂j1
1 · · · ∂jp

p

fα = ∂Jfα , ∂i =
∂

∂xi

for a k-th order partial derivative of fα with respect to the independent coordinates with

the ordered multi-index J = j1, . . . , jp and k = #J =
∑p

i=1 ji. We will use the abbreviations

1k = j1, . . . , jp, ji = δik and J + J̄ = j1 + j̄1, . . . jp + j̄p. Let (xi, uα) be adapted coordinates of

E . The first prolongation j1 (f) = j (f) of f is the map j (f) : x → (xi, fα (x) , ∂if
α (x)). One

can show that the first jet-bundle J1 (E) = J (E) of E is that manifold that contains all first

prolongations of sections of E and that respects the transition rules for first order derivatives.

An adapted coordinate system (xi, uα) of E induces the adapted system
(
xi, uα, uα

1i

)
for

J (E) with the pq new coordinates uα
1i

. Now, J (E) admits the two maps π : J (E) → B
and π1

0 : J (E) → E with π
(
xi, fα (x) , fα

1i
(x)

)
= x and π1

0

(
xi, fα (x) , fα

1i
(x)

)
= (xi, fα (x))

such that (J (E) , π,B), as well as (J (E) , π1
0, E) are fibered manifolds. Let us consider a

section f of (J (E) , π1
0, E). It is easy to see that f is the prolongation of a section σ of E ,

iff j (π1
0 (f)) = f or in coordinates ∂if

α − fα
1i

= 0 is met. Therefore, (J (E) , π1
0, E) contains

sections that are not the prolongation of sections of E .

Analogously to the first jet-bundle J (E) of a manifold E , we define the nth jet-bundle

Jn (E), the manifold that contains the nth prolongation of sections f of E given by jn (f) (x) =

(x, f (x) , ∂Jf (x)), #J = 1, . . . , n and that respects the transition rules for partial derivatives

up to the order n. The adapted coordinates (x, u) induce the system
(
xi, u(n)

)
and u(n) = uα

J ,

α = 1, . . . , q, #J = 0, . . . , n for Jn (E). Again, one can define the maps π : Jn (E) → B
and πn

m : Jn (E) → Jm (E), m = 1, . . . , n − 1 with π (jn (f) (x)) = x and πn
m (jn (f) (x)) =

jm (f) (x) such that (Jn (E) , π,B) and (Jn (E) , πn
m, Jm (E)) are fibered manifolds. To simplify

certain formulas later on, we set J0 (E) = E .

Let (E , π,B) be a fibered manifold with adapted coordinates (xi, uα), then we may intro-

duce special vector fields di on T (J∞ (E)), the so called total derivatives with respect to the

independent coordinates xi, given by

di = ∂i + uα
J+1i

∂J
α , ∂J

α =
∂

∂uα
J

. (2.5)

Let f : Jk (E) → R be a real valued smooth function and let σ be a section of E , then we

have

dif ◦ jk+1σ = ∂if
(
jkσ

)
. (2.6)
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The dual objects to the fields π∞n,∗di ∈ Jn+1 (E) are called contact forms. A basis of these

1-forms ωα
J ∈ T ∗Jn+1 (E) is given by

ωα
J = duα

J − uα
J+1i

dxi , #J ≤ n . (2.7)

Let us consider the two fibered manifolds (E , π,B),
(Ē , π̄, B̄)

with adapted coordinates

(x, u), (x̄, ū). A bundle-morphism is a map (ψ, Ψ) : E → Ē that respects the bundle structure

or meets π̄ ◦ Ψ = ψ ◦ π with ψ : B → B̄, Ψ : E → Ē . If the inverse of (ψ, Ψ) is smooth,

then we call (ψ, Ψ) a bundle-diffeomorphism. If ψ is a diffeomorphism, then we can prolong

(ψ, Ψ) to a map j (ψ, Ψ) : J (E) → J
(Ē)

that is given in adapted coordinates by

ūᾱ
1j̄

= (diΨ
α)

(
∂̄j̄

(
ψ−1

)i ◦ ψ
)

with ∂̄j̄ =
∂

∂x̄j̄

and ψ−1 ◦ ψ = idB . (2.8)

Now, it is straightforward to see that j∗ (ψ, Ψ) : T (J (E)) → T (
J

(Ē))
maps the fields π∞0 di

to span
{
π∞0 d̄i

}
and that j∗ (ψ, Ψ) : T ∗J

(Ē) → T ∗J (E) maps contact forms ωα to span {ω̄α}.
These properties single out maps J (E) → J

(Ē)
that are prolongation of bundle-morphisms

(ψ, Ψ).

2.2 Invariants and Lie-Groups

A Lie-group is a smooth manifold G that is also a group. Its members meet the laws of a

group such that the composition and inversion map are smooth. A transformation group,

which acts on a manifold M with local coordinates x, is a Lie-group G together with a

smooth map Φ : G ×M→M such that

Φe (x) = x , Φg◦h (x) = Φg ◦ Φh (x) , x ∈M
is met with the neutral element e of G and the composition g ◦ h, g, h ∈ G. A function

I : M→ R is called an invariant I of the transformation group Φ, iff

I (x) = I (Φg (x)) , ∀g ∈ G (2.9)

is met. Obviously, the sets Nc = {x ∈M | I (x) = c}, c ∈ R fulfill the relations Φ (Nc) ⊂
Nc. If the relations above are met only in a neighborhood of e, then we call Φ a local

transformation group.

Of special interest are groups Φε with one real parameter ε ∈ R and the commutative

composition law +. From (2.9) it follows

v (I) = lim
ε→0

1

ε
(I (Φε (x))− I (x)) (2.10a)

v = vi∂i , vi (x) = ∂εΦε (x)|ε=0 , (2.10b)

i.e. Φε generates the vector field v ∈ T (M) and v (I) = 0 is the infinitesimal condition

for I to be an invariant of Φε. Of course, it is well known that the field v generates the

one-parameter Lie-group Φε at least locally.
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Let (E , π,B) be a fibered manifold with adapted coordinates (xi, uα) and let Φε,

Φε : E × R→ E (2.11)

be a one-parameter Lie-group with the real parameter ε. The group (2.11) generates the

field v,

v = X i (x, u) ∂i + Uα (x, u) ∂α , (2.12)

see (2.10b). One can prolong (2.11) to a map j (Φε) : J (E) × R → J (E) by (2.8), which is

a very laborious task in general. Fortunately, the first prolongation j (v) ∈ T (J (E)) of the

field v of (2.12) can be determined in a straightforward way, since j (v) is given by

j (v) = v + Uα
J ∂J

α , #J = 1 , (2.13)

where the functions Uα
J follow from

j (v) (π∞0 (di)) ∈ span {π∞0 (di)} or j (v) (ωα) ∈ span {ωα} (2.14)

with di from (2.5) and ωα from (2.7).

2.3 Formal Integrability

Let us consider the fibered manifold (E , π,B) with adapted coordinates (xi, uα), i = 1, . . . , p,

α = 1, . . . , q and the equations

f r
(
x, u(n)

)
= 0, r = 1, . . . , l (2.15)

in the adapted coordinates
(
x, u(n)

)
of Jn (E). We assume that the set (2.15) defines a regular

submanifold

Sn ⊂ Jn (E) . (2.16)

Obviously, a section σ of E is a solution of (2.15), iff jn (σ) (x) ∈ Sn or f r (jnσ (x)) = 0 is

met. The manifold Sn gives a true geometric picture of the system (2.15).

Again, we may define the two maps, prolongation jn : Jm (E) → Jn+m (E) and projection

πn
m : Jn (E) → Jm (E) for systems like (2.16). One obtains the projection πn

m (Sn) of Sn in

adapted coordinates simply by elimination of the dependent variables uα
J , m < #J ≤ n from

(2.15). We assume that πn
m (Sn) describes a regular submanifold at least locally. The first

prolongation j (Sn) ⊂ Jn+1 (E) of Sn denoted by S1
n is simply the solution set of

f r
(
x, u(n)

)
= 0 , dif

r
(
x, u(n)

)
= 0

with the total derivatives di from (2.5). The r-times repeated prolongation will be denoted

by Sr
n.

Repeated prolongation and projection of the system (2.16) leads to πn+r+s
n+r (Sr+s

n ) ⊆ Sr
n

with r, s ≥ 0 in general. The system (2.16) is called formally integrable, iff Sr
n is a regular
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submanifold of Jn+r (E) and πn+r+s
n+r (Sr+s

n ) = Sr
n is met for all r, s ≥ 0. Here, three facts

are worth mentioning: 1) There exists no test for general systems (2.15) with respect to

formal integrability that terminates reliable after a finite number of steps; 2) The determi-

nation of the formally integrable system for systems of the Frobenius type (linear PDEs) is

straightforward. 3) The Lie-group method requires formally integrable systems.

3 Explicit Systems

Let us consider the system

xαx
1 = fαx (t, x, u) , αx = 1, . . . , nx (3.17a)

yαy = cαy (t, x, u) , αy = 1, . . . , ny (3.17b)

with the state x, the input u = (uαu) ∈ U ⊆ Rnu and the output y ∈ Y ⊆ Rny . The variables

(t, x, u) are locally coordinates of a fibered manifold E with t as the local coordinate of the

base B. Obviously, the equation (3.17a) defines a regular submanifold S1 ⊂ J1 (E). The

explicit system (3.17a) may also be considered as the field fe,

fe = ∂1 + fαx∂αx + uαu
k+1∂

k
αu

, k = 0, . . . ,∞ (3.18)

on J∞ (E).

3.1 Observability

Let us assume, we can find a one-parameter Lie-group Φε : E → E with parameter ε such

that it acts only on the state x of (3.17a) and that the functions c of (3.17b) are invariants

of Φε or

(t, x̄, u) = Φε (t, x, u) , cαy = cαy ◦ Φε (3.19)

is met. Then the system (3.17a, 3.17b) is not observable. Because of (2.12) and (2.13) we get

for the infinitesimal generator of v ∈ T (E) of Φε and its first prolongation j (v) ∈ T (J1 (E)),

v = Xαx∂αx (3.20a)

j (v) = v + d1 (Xαx) ∂1
αx

, (3.20b)

see (2.14). Applying the fields (3.20a, 3.20b) to (3.17a, 3.17b) we get

j (v) (xαx
1 − fαx) = d1 (Xαx)−Xβx∂βxf

αx = 0 (3.21a)

v (cαy) = Xβx∂βxc
αy = 〈dcαy , X〉 = 0 . (3.21b)

Now, we have only to check, whether the system (3.17a) and (3.21a, 3.21b) admits a non

trivial solution for v. The first prolongation and projection to E yields

d1 (〈dc,X〉)|E = 〈fe (dc) , X〉 = 〈dfe (c) , X〉 .

The reiteration leads to the well known criteria for observability, see e.g. [1], [2].
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3.2 Accessibility

Let us consider the set of one-parameter Lie-groups Φε acting on the dependent variables

(x, u) and let Φε be a member of this set, then we find for its infinitesimal generator v the

expressions

v = Xαx∂αx + Uαu∂αu (3.22a)

j (v) = v + d1 (Xαx) ∂1
αx

+ d1 (Uαu) ∂1
αu

(3.22b)

because of (2.12, 2.13, 2.14). Let us assume that the set above contains for any choice of U

a subset of groups that own a common invariant I (t, x), then obviously, the system (3.17a)

is not strongly accessible. Because of (2.10a, 2.10b) I and v must meet the relations

v (I) = 〈ω, v〉 = 0 , dI = ω + ∂1Idt , ω = ωβxdxβx . (3.23)

Applying the field (3.22b) to (3.17a) we get

j (v) (xαx
1 − fαx) = d1 (Xαx)−Xβx∂βxf

αx − Uαu∂αuf
αx = 0 .

From d1 〈ω, v〉 = 〈d1ω, v〉+ 〈ω, d1v〉 and (3.23) we derive

(d1 (ωβx) + ωαx∂βxf
αx) Xβx + ωαx∂αuf

αxUαu = 0 .

Now, the conditions above imply that this relation holds for every choice of U and X.

Therefore, we must have

d1 (ωβx) = −ωαx∂βxf
αx (3.24a)

0 = 〈ω, bαu〉 , bαx
αu

= ∂αuf
αx (3.24b)

Whether the equations (3.17a), (3.24a, 3.24b) admit a nontrivial solution, requires the deter-

mination of the formally integrabel systems. The first prolongation and projection of (3.24b)

to E leads to

d1 (〈ω, bαu〉)|E = 〈ω, fe (bαu)〉 .

because of (3.18) and (3.24a). Again, reiteration yields the well known results concerning

strong accessibility, e.g. see [1], [2]. Of course, we have also to meet

dω ∧ dt = 0 . (3.25)

If the system (3.17a) is weakly accessible, then there exists a group with infinitesimal

generator w such that

〈dxαx − fαxdt, v〉 = 0 (3.26)

is met. A special solution is v = fe with fe from (3.18). Therefore, the invariant I from

(3.23) must meet also the condition

v (I) = 0 .
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4 Implicit Systems

Let us consider the system

0 = f ie (t, z, z1) , ie = 1, . . . , ne (4.27a)

yαy = cαy (t, z) , αy = 1, . . . , ny (4.27b)

of ne nonlinear implicit ordinary differential equations of first order with the output y. The

variables t, zαz , αz = 1, . . . , q, ne ≤ q are local coordinates of a fibered manifold (E , π,B),

where t denotes the coordinate of the base. We assume that (4.27a) defines a regular sub-

manifold S1 ⊂ J (E). It is worth mentioning that S1 has an intrinsic meaning opposite to

the equations (4.27a). Under some conditions, we may assume that also the system

fαx (t, z, z1) = 0 , αx = 1, . . . , nx (4.28a)

fαs (t, z) = 0 , αs = nx + 1, . . . , ne (4.28b)

defines S1 and additionally that the functions of the set {d1f
αs , fαx} are functionally inde-

pendent with respect to z1 on S1. It is easy to see that the set {fαs , d1f
αs , fαx} is formally

integrable. It is shown in [8], how one determines the system (4.28a), if it is possible, corre-

sponding to (4.27a, 4.27b). Additionally, one can prove (see [8]) that there exists a bundle

diffeomorphism ϕ : E → Ē ,

z̄αx = ϕαx (t, z) , αx = 1, . . . , nx

z̄αs = ϕαs (t, z) = fαs , αs = nx + 1, . . . , ne

z̄αu = ϕαu (t, z) , αu = ne + 1, . . . , q

(4.29a)

zαz = ψαz (t, z̄) , (4.29b)

such that the system (4.28a, 4.28b) can be rewritten as

f̄αx (t, z̄x, z̄x
1 , z̄s, z̄u, z̄u

1 ) = 0 , z̄s = z̄s
1 = 0 (4.30)

f̄αx ◦ j1ψ = 0 , f̄αx = fαx − eαx
αs

d1f
αs (4.31)

and such that the functions of the set
{
d1f̄

αx
}

are functionally independent with respect to

zx
1 . Here, the abbreviations z̄x, z̄s, z̄u, etc. indicate the set of variables z̄αx , z̄αs , z̄αu , etc. By

construction, the functions f̄αx fulfill the conditions ∂1
αs

f̄αx = 0 where (4.28b) is met. Now,

one solves (4.30) with respect to z1 and gets finally the system

z̄αx
1 = gαx (t, z̄x, z̄u, z̄u

1 ) , z̄s = z̄αs
1 = 0 . (4.32)

It is worth mentioning that the first derivatives of the input may appear.

Since one can transform the formally integrable system (4.28a, 4.28b) into (4.32), it is left

to extend the well known test for accessibility and observability to systems like (4.32). That

can be done in a straightforward manner. But the construction of (4.32) requires numerical

methods in general. Although the map ϕ of (4.29a) can be found by symbolic methods, the

determination of its inverse ψ (4.29a) requires numerical methods in general. Therefore, the

next two subsections show, how one can perform the test with respect to observability and

accessibility without the use of (4.29b).
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4.1 Observability

Let us take a look back at the construction of the Lie-group (3.19). The whole approach

depends only on the construction of its infinitesimal generator v. Let us consider the field v

and its first prolongation j (v) ,

v = Zαz∂αz , j (v) = v + d1 (Zαz) ∂1
αz

(4.33)

that acts on the dependent variables only. To restrict the action of v to the state, we simply

have to add the relations
v (ϕαs) = 〈dϕαs , v〉 = 0

v (ϕαu) = 〈dϕαu , v〉 = 0
(4.34)

with the functions ϕαs , ϕαu from (4.29a). Now, it is straightforward to transfer the con-

struction of the Lie-group (3.19) from the explicit case to the implicit one, we simply have

to add the relations

j (v) (fαx (t, z, z1)) = 0 (4.35)

v (cαy) = 〈dcαy , v〉 = 0 (4.36)

with the fields from (4.33). Finally, one has to check by repeated prolongation of (4.36) and

projection by (4.28a, 4.28b, 4.35), whether there exists a non trivial solution for v. Here,

one has to deal with nonlinear equations in contrast to the explicit case. Nevertheless, as a

result the observability problem for implicit systems of the type (4.28a, 4.28b) is solved.

4.2 Accessibility

A short look back at the accessibility analysis shows that the approach depends on the

construction of the invariants I of (3.23) of a suitable set of Lie-groups with infinitesimal

generators v from (3.22a). Since the functions ϕαs of (4.29a) must be invariants of the group

action, we get the relations

v (ϕαs) = 0 , j (v) (d1ϕ
αs) = d1 〈dϕαs , v〉 = 0

v = Zαz∂αz , j (v) = v + d1 (Zαz) ∂1
αz

.
(4.37a)

Now, we must look for additional invariants I that meet

v (I) = 〈ω, v〉 = 0 , dI = ω + ∂1Idt , ω = ωβxdϕβx + ωβsdϕβs (4.38)

for any admissible field v. The application of the field j (v) to (4.28a) yields

j (v) (fαx) = eβx
γx

d1 〈dϕγx , v〉+ eβx
γs

d1 〈dϕγs , v〉+ eβx
γu

d1 〈dϕγu , v〉
+dβx

γx
〈dϕγx , v〉+ dβx

γs
〈dϕγs , v〉+ dβx

γu
〈dϕγu , v〉 = 0

(4.39)
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for suitable functions eβx
γx

, eβx
γs

, eβx
γu

, dβx
γx

, dβx
γs

, dβx
γu

defined on J (E). Using the same technique

like in the explicit case, we derive the relations

d1ωγx = ωαx ê
αx
βx

dβx
γx

(4.40a)

0 = 〈ω, bγu〉 , bγu = êαx
βx

eβx
γu

∂αx (4.40b)

0 =
〈
ω, b1

γu

〉
, b1

γu
= êαx

βx
dβx

γu
∂αx (4.40c)

analogously to (3.24a, 3.24b) with
〈
dϕβx , ∂αx

〉
= δβx

αx
,

〈
dϕβs , ∂αx

〉
=

〈
dϕβu , ∂αx

〉
= 0 and

êαx
βx

eβx
γx

= δαx
γx

. Finally, one has to check by repeated prolongation of (4.40b, 4.40c) and

projection by (4.28a, 4.28b, 4.40a), whether there exists a non trivial solution for ω. Also

here, one has to deal with nonlinear equations. It is worth mentioning that the invariants

of (4.38) are not the only possible choice. Since also the first time derivatives of the input

appear, one may ask for invariants that depend also on the input u. Therefore, we rewrite

(4.39) as

d1

(〈dϕαx , v〉+ êαx
βx

eβx
γu
〈dϕγu , v〉) + êαx

βx
eβx

γs
d1 〈dϕγs , v〉 − d1

(
êαx

βx
eβx

γu

) 〈dϕγu , v〉
+êαx

βx
dβx

γx

(〈dϕγx , v〉+ êγx
ηx

eηx
γu
〈dϕγu , v〉) + êαx

βx
dβx

γs
〈dϕγs , v〉

+
(
êαx

βx
dβx

γu
− êαx

βx
dβx

γx
êγx

ηx
eηx

γu

) 〈dϕγu , v〉 = 0

and apply the same procedure like above to derive the relations

d1ωγx = ωαx ê
αx
βx

dβx
γx

(4.42a)

0 = 〈ω, bγu〉 , bγu =
(
êαx

βx
eβx

γu
− êαx

βx
dβx

γx
êγx

ηx
eηx

γu
− d1

(
êαx

βx
eβx

γu

))
∂αx . (4.42b)

Again, one has to to check by repeated prolongation of (4.42b) and projection by (4.28a,

4.28b, 4.42a), whether one can find a non trivial solution for ω. Also here, one has to

deal with nonlinear equations. Nevertheless, this approach solves the problem of strong

accessibility for implicit systems.

5 Conclusions

The goal of this contribution is to demonstrate that Lie-groups are an efficient tool for the

investigation of dynamic systems described by nonlinear ordinary differential equations. It

was shown that this approach reproduces the well known results concerning accessibility and

observability of explicit systems in a straightforward manner, but additionally, it works also

for implicit formally integrable systems. It turns out that the prolongation and projection of

systems are the main operation for performing the tests. In the case of DAEs or descriptor-

systems linear algebra is sufficient, whereas for general implicit systems one has to deal with

nonlinear equations. This fact requires new symbolic or numerical algorithms to overcome

this problem, at least for problems of practical interest.
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