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Abstract

This paper presents a parameterization method of stabilizing controllers that needs smaller number

of parameters than previous. The result in this paper will not assume the existence of the coprime

factorizability and not employ the Youla parameterization.

1 Introduction

Once the existence of the doubly coprime factorization comes to be known, it is easy to parameter-

ize all stabilizing controllers by Youla parameterization (also called Youla-Kučera-parameteriza-

tion)[2, 10, 14, 15, 16]. On the other hand, some models of control systems do not know whether

or not a stabilizable plant in the class always has its doubly coprime factorization. The multidi-

mensional systems with structural stability is one of such models[5, 4]. Further it is known that

there are models such that some stabilizable plants do not have coprime factorizations[1].

In order to parameterize the stabilizing controllers of such models, the author has recently

presented a parameterization method that can be applied even to the plant that has no doubly

coprime factorization[7]. However the method needs a large number of parameters.

The objective of this paper is to present an alternative parameterization method of stabilizing

controllers without the coprime factorizability that needs smaller number of parameters than pre-

vious. The result obtained in this paper is a unification of Youla parameterization and the method

given in [7].

The approach we use in this paper is the coordinate-free approach[11, 12, 13]. The coordinate-

free approach is a factorization approach[2, 15] without the coprime factorizability.



2 Coordinate-Free Approach

First we briefly introduce the notion we use, that is, the coordinate-free approach.

Sule in [12, 13] presented a theory of the feedback stabilization of multi-input multi-output

strictly causal plants over commutative rings with some restrictions. This approach to the stabi-

lization theory is called “coordinate-free approach”[11] in the sense that the coprime factorizability

of transfer matrices is not required.

Let R denote an unspecified commutative ring. The total ring of fractions of R is denoted

by F(R); that is, F(R) = {n/d |n, d ∈ R, d: nonzerodivisor}.

We consider that the set of stable causal transfer functions is a commutative ring. Throughout

the paper, the set of stable causal transfer functions is denoted by A. The total ring of fractions

of A is denoted by F(A) or simply F ; that is, F(A) = F = {n/d |n, d ∈ A, d: nonzerodivisor}.

This is considered as the set of all possible transfer functions. Let Z be a prime ideal of A with

Z 6= A such that Z includes all zerodivisors. Define the subsets P and Ps of F(A) as follows:

P = {a/b ∈ F | a ∈ A, b ∈ A\Z}, Ps = {a/b ∈ F | a ∈ Z, b ∈ A\Z}.

Then every transfer function in P (Ps) is called causal (strictly causal). Analogously, if every

entry of a transfer matrix is in P (Ps), the transfer matrix is called causal (strictly causal).

Matrices A and B over R are right- (left-)coprime over R if there exist matrices X and Y

over R such that XA + Y B = E (AX + BY = E) holds. Further, an ordered pair (N, D)

of matrices N and D over R is said to be a right-coprime factorization over R of P if (i) D is

nonsingular over R, (ii) P = ND−1 over F(R), and (iii) N and D are right-coprime over R. As

the parallel notion, the left-coprime factorization over R of P is defined analogously.

Let Mr(X) denote the R-module generated by rows of a matrix X over R. Let X = AB−1 be

a matrix over F(R), where A, B are matrices over R. It is known that Mr([ A
t Bt ]t) is unique

up to an isomorphism with respect to any choice of fractions AB−1 of X (Lemma 2.1 of [9]).

Therefore, for a matrix X over R, we denote by TX,R the module Mr([ A
t Bt ]t).

The stabilization problem considered in this paper follows that of Sule in [12], and Mori and

Abe in [9], who consider the feedback system Σ [14, Ch.5, Figure 5.1] as in Figure 1. For further

details the reader is referred to [9, 12, 14]. Throughout the paper, the plant we consider has m

inputs and n outputs, and its transfer matrix, which is also called a plant itself simply, is denoted

by P and belongs to Fn×m. We can always represent P in the form of a fraction P = ND−1

(P = D̃−1Ñ), where N ∈ An×m (Ñ ∈ An×m) and D ∈ Am×m (D̃ ∈ An×n) with nonsingular D
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Figure 1: Feedback system Σ.

(D̃).

For P ∈ Fn×m and C ∈ Fm×n, a matrix H(P, C) ∈ F (m+n)×(m+n) is defined as

H(P, C) :=

[
(En + PC)−1 −P (Em + CP )−1

C(En + PC)−1 (Em + CP )−1

]
(1)

provided that det(En + PC) is a nonzerodivisor of A. This H(P, C) is the transfer matrix from

[ ut
1 ut

2 ]t to [ et
1 et

2 ]t of the feedback system Σ. If (i) det(En+PC) is a nonzerodivisor of A and

(ii) H(P, C) ∈ A(m+n)×(m+n), then we say that the plant P is stabilizable, P is stabilized by C,

and C is a stabilizing controller of P . In the definition above, we do not mention the causality of

the stabilizing controller. However, it is known that if a causal plant is stabilizable, there exists

a causal stabilizing controller of the plant[9].

Another matrix W (P, C) ∈ (F)m+n is defined as

W (P, C) :=

[
C(En + PC)−1 −CP (Em + CP )−1

PC(En + PC)−1 P (Em + CP )−1

]
(2)

provided that det(En + PC) is a nonzerodivisor of A. This W (P, C) is the transfer matrix from

[ ut
1 ut

2 ]t to [ yt
1 yt

2 ]t of the feedback system Σ. It is well known that H(P, C) is over A if and

only if W (P, C) is over A.

3 Previous Result

The parameterization of stabilizing controllers that does not require the coprime factorizability of

the plant was originally given in [7]. Here we briefly outline this parameterization. Let H be the

set of H(P, C)’s with all stabilizing controllers C. This set H and all stabilizing controllers are

obtained as in the following way. Let H0 be H(P, C0), where C0 is a stabilizing controller of P .



Let Ω(Q) be a matrix defined as follows:

Ω(Q) := (H0 −

[
En On×m

Om×n Om×m

]
)Q(H0 −

[
On×n On×m

Om×n Em

]
) + H0 (3)

with a stable causal and square matrix Q of size m + n. Then we have the identity

H = {Ω(Q) |Q is stable causal and Ω(Q) is nonsingular} (4)

(Theorems 4.2 and 4.3 of [7]). Hence any stabilizing controller has the following form:

− [ Om×n Em ] Ω(Q)−1

[
En

Om×n

]
, (5)

provided that Ω(Q) is nonsingular.

The parameterization above is given by parameter matrix Q without the coprime factorizability

of the plant. Nevertheless, this needs (m + n)2 parameters even if the plant has a doubly coprime

factorization. Recall that if we can use Youla parameterization, then the size of parameter matrix is

mn. This means that there may exist unnecessary parameters in the parameterization above. The

result of this paper will be to eliminate such unnecessary parameters.

4 Doubly Coprime Factorizability of the Stabilized Closed Feed-

back System

We state here the key results of the new parameterization. Recall first the following result[9].

Proposition 4.1 (Proposition 4.1 of [9]) Suppose that P and C are matrices over F . Suppose

further that det(En + PC) is a unit of F . Then TH(P,C),A ' TP,A ⊕ TC,A holds.

If C is a stabilizing controller of P , then the matrix H(P, C) is over A, so that TH(P,C),A is

free. Thus by Proposition 4.1, TP,A ⊕ TC,A is also free. This leads that the plant Diag(C, P ) has

a right-coprime factorization over A. The analogous statement holds for left-coprime factorization

as well. From these observations, we give the following proposition.

Proposition 4.2 Suppose that C0 ∈ Fm×n is a stabilizing controller of the plant P ∈ Pn×m. Then

P1 := Diag(C0, P ) has both right- and left-coprime factorizations over A.



Proof. Let

N1 = Ñ1 =

[
C0(En + PC0)

−1 −C0P (Em + C0P )−1

PC0(En + PC0)
−1 P (Em + C0P )−1

]
,

D1 =

[
(En + PC0)

−1 −P (Em + C0P )−1

C0(En + PC0)
−1 (Em + C0P )−1

]
, Y1 = Ỹ1 =

[
O En

−Em O

]
,

D̃1 =

[
(Em + C0P )−1 −C0(En + PC0)

−1

P (Em + C0P )−1 (En + PC0)
−1

]
, X1 = X̃1 =

[
En O

O Em

]
.

Note here that the matrices above are over A. Using them, we have P1 = N1D
−1
1 = D̃−1

1 Ñ1,

Ỹ1N1 + X̃1D1 = Em+n, Ñ1Y1 + D̃1X1 = Em+n. Hence (N1, D1) and (D̃1, Ñ1) are right- and

left-coprime factorizations of P1, respectively. 2

As a derivative of Proposition 4.2, we immediately have following proposition, which becomes

the key idea of the new parameterization.

Proposition 4.3 A plant P ∈ Pn×m is stabilizable if and only if there exists a transfer function

F ∈ Fm′×n′

with 0 ≤ m′ ≤ m and 0 ≤ n′ ≤ n such that plant Diag(F, P ) has both right- and

left-coprime factorizations over A. (If m′ = n′ = 0, Diag(F, P ) is considered as P .)

A remarkable feature of the proposition above is that if a plant is stabilizable, in order to make

a block diagonal with the plant, the size of the transfer matrix we need is at most m by at most n.

5 New Parameterization of Stabilizing Controllers

Now we give a parameterization of stabilizing controllers.

Let P be a stabilizable causal plant of Pn×m. Further, as in Proposition 4.3, let F ∈ Fm′×n′

with m′ ≤ m and n′ ≤ n be a transfer matrix such that the plant P1 := Diag(F, P ) has both right-

and left-coprime factorizations over A ((a) of Figure 2). From the stabilizing controllers of the

plant Diag(P, F ), we will obtain all the stabilizing controllers of the original plant P .

Suppose that P1 = N1D
−1
1 = Ñ−1

1 D̃1 ∈ F (m′+n)×(m+n′), where

Ỹ1N1 + X̃1D1 = Em+n′ , Ñ1Y1 + D̃1X1 = Em′+n,

and N1, D1, Ñ1, D̃1, Y1, X1, Ỹ1, X̃1 are matrices over A. Suppose further that C10 is a stabilizing

controller of P1 such that C10 = X̃−1
1 Ỹ1 = Y1X

−1
1 .

Then all stabilizing controllers of the plant P1 is parameterized with parameter matrices R, S ∈



A(m+n′)×(m′+n) as follows[6]:

(X̃1 − RÑ1)
−1(Ỹ1 + RD̃1), (6)

(Y1 + N1S)(X1 − D1S)−1. (7)

Let C1 be an arbitrary stabilizing controller of P1 with a parameter matrix R ∈ A(m+n′)×(m′+n) as

(6), that is, C1 = (X̃1 − RÑ1)
−1(Ỹ1 + RD̃1). Then W (P1, C1) is expressed as follows:

W (P1, C1) =

[
C1(Em′+n + P1C1)

−1 −C1P1(Em+n′ + C1P1)
−1

P1C1(Em′+n + P1C1)
−1 P1(Em+n′ + C1P1)

−1

]

=

[
D1(Ỹ1 + RD̃1) D1(X̃1 − RÑ1) − Em+n′

N1(Ỹ1 + RD̃1) N1(X̃1 − RÑ1)

]
.

For a moment, let us proceed graphically with the block diagrams in Figure 2. The block

diagram of the feedback system consisting of P1 and C1 is as in (b) of Figure 2. Decompose the

stabilizing controller C1 as follows:

[
C111 C112

C121 C122

]
:= C1,

where C111 ∈ Fn′×m′

, C112 ∈ Fn′×n, C121 ∈ Fm×m′

, C122 ∈ Fm×n. Consider now the following

matrix

[
Om×n′ Em Om×m′ Om×n

On×n′ On×m On×m′ En

]
W (P1, C1)




Om′×n Om′×m

En On×m

On′×n On′×m

Om×n Em


 . (8)

Note that this matrix is the transfer matrix from [ u12 u22 ]t to [ y12 y22 ]t in (c) of Figure 2. Let

CNew = C122 − C121(Em′ + FC111)
−1FC112 ∈ Fm×n. (9)

Using this CNew, (c) of Figure 2 can be rewritten as (d) of the figure. This is a feedback sys-

tem of P and CNew. Hence CNew is a new stabilizing controller of the plant P . One can check

straightforwardly but tediously that the matrix of (8) is equal to W (P, CNew), that is,

W (P, CNew) =

[
Om×n′ Em Om×m′ Om×n

On×n′ On×m On×m′ En

]
W (P1, C1)




Om′×n Om′×m

En On×m

On′×n On′×m

Om×n Em


 . (10)



Having the observation above, we are now ready to present the main result of this paper. To

state it, we provide some notations. Let W(P ;R) denote the set of W (P, C)’s such that C is an

R-stabilizing controller of P and S(P ;R) the set of all R-stabilizing controllers. Then the set

W(P ;R) is given as {W (P, C) |C ∈ S(P ;R)}. Conversely, once we obtain W(P ;R), it is also

easy to obtain the set S(P ;R) as follows:

S(P ;R) = {W11(En − W21)
−1 |

[
W11 W12

W21 W22

]
∈ W(P ;R), En − W21 is nonsingular},

where W11 ∈ Rm×n, W12 ∈ (R)m, W21 ∈ (R)n, W22 ∈ Rn×m (subject to P ∈ F(R)n×m). This

implies that obtaining S(P ;A) and obtaining W(P ;A) are equivalent to each other.

Now we can state the main result of this paper.

Theorem 5.1 Suppose that P ∈ Pn×m is a stabilizable plant and that F ∈ Fm′×n′

with m′ ≤ m

and n′ ≤ n is a transfer matrix such that P1 := Diag(F, P ) has both right- and left-coprime

factorizations over A. Let (N1, D1) and (Ñ1, D̃1) be right- and left-coprime factorizations of P1

over A, respectively. Further let

Ψ(R) =

[
Om×n′ Em Om×m′ Om×n

On×n′ On×m On×m′ En

]
(11)

×

[
D1(Ỹ1 + RD̃1) D1(X̃1 − RÑ1) − Em+n′

N1(Ỹ1 + RD̃1) N1(X̃1 − RÑ1)

]



Om′×n Om′×m

En On×m

On′×n On′×m

Om×n Em


 .

Then

W(P ;A) = {Ψ(R) | R ∈ A(m+n′)×(m′+n), Em′+n − N1(Ỹ1 + RD̃1) is nonsingular }. (12)

The matrix function Ψ(·) of (11) is similar with Ω(·) of [7].

Proof. The existence of the matrix F is known by Proposition 4.3. We prove this proposition by

showing “⊃” and “⊂” of (12).

“⊃”. For any stabilizing controller C1 of P1, one can construct a stabilizing controller CNew of P

such that (10) holds, as in Figure 2. Thus, for any parameter matrix R such that Em′+n − N1(Ỹ1 +

RD̃1) is nonsingular, there exists a stabilizing controller CNew of P such that Ψ(R) = W (P, CNew).

“⊂”. Let C0 be a stabilizing controller of P . By Theorem 3.3 of [9], F is stabilizable. Let CF be a

stabilizing controller of F . Then obviously Diag(CF , C0) is a stabilizing controller of Diag(F, P ).



Hence there exists an R such that

W (P1, Diag(CF , C0)) =

[
D1(Ỹ1 + RD̃1) D1(X̃1 − RÑ1) − Em+n′

N1(Ỹ1 + RD̃1) N1(X̃1 − RÑ1)

]

In this case, Ψ(R) = W (P, C0) holds. 2

We remark that the number of parameters of the parameter matrix R is (m + n′) × (m′ + n).

Since n′ ≤ n and m′ ≤ m hold, the number of parameters is decreased by comparing with the

previous result in Section 3.

In addition to Theorem 5.1, the author has the following conjecture, which is not proved yet,

as its derivative.

Conjecture 5.1 Let P , m′, n′ N1, D1, Ñ1, D̃1 be the same as Theorem 5.1. Suppose that C0 is a

stabilizing controller of P . Then

W(P ;A) (13)

= {

[
W11 W12

W21 W22

]
:= W (P, C0) +

[
Om×n′ Em Om×m′ Om×n

On×n′ On×m On×m′ En

] [
D1

N1

]
R [ D̃1 −Ñ1 ]

×




Om′×n Om′×m

En On×m

On′×n On′×m

Om×n Em


 | R ∈ A(m+n′)×(m′+n), En − W21 is nonsingular }

(W11 ∈ Am×n, W12 ∈ (A)m, W21 ∈ (A)n, W22 ∈ An×m).

6 Relationship with the previous results

The result of the previous section can reduce to the previous results, that is, Youla parameterization

and the result given in [7].

Youla parameterization

Suppose that plant P has both right- and left-coprime factorizations. Then n′ and m′ in Proposi-

tion 4.3 are zero. Then it is easy to see that the right hand side of (13) is just a Youla parameteriza-

tion.



Result of [7]

Suppose that the plant P ∈ Pn×m is stabilizable and C0 a stabilizing controller of P . By Propo-

sition 4.2, this C0 can be F of Proposition 4.3. Let us consider that F := C0. Then the right hand

side of (13) is expressed as

W (P, C0) + (W (P, C0) +

[
O Em

O O

]
)R(−W (P, C0) +

[
O O

En O

]
).

Let W (P, C) be the matrix expression above. Then H(P, C) is obtained as follows from W (P, C)

(cf. [14, p.102]):

H(P, C) = Em+n −

[
O En

−Em O

]
W (P, C) (14)

= (H(P, C0) −

[
En On×m

Om×n Om×m

]
)Q(H(P, C0) −

[
On×n On×m

Om×n Em

]
) + H(P, C0)

(14) is same as (3).

7 Related Works

Recently the author in [8] has given the parameterization method of all stabilizing controllers

which requires only one of right-/left-coprime factorizations. The relationship between the results

of this paper and [8] should be investigated. The author considers that Proposition 4.3 may have

some relation to the result of [8].
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(a) New plant P1 := Diag(F, P ).
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(b) New plant P1 and its stabilizing controller C1.
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(c) Relocating the components of P1 and C1.
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(d) Original plant P and its newly obtained stabilizing controller CNew.

Figure 2: Construction of a stabilizing controller of the plant.
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