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Abstract

New algorithms for Toeplitz and Toeplitz-plus-Hankel are presented that are in
the spirit of the “split” algorithms of Delsarte/Genin. It is shown that the split al-
gorithms are related to ZW-factorizations like the classical algorithms are related to
LU-factorizations. Special attention is paid to skewsymmetric Toeplitz, centrosymmet-
ric Toeplitz-plus-Hankel and general Toeplitz-plus-Hankel matrices.

1 Introduction

In this paper we consider linear systems Mnf = b, where Mn is a nonsingular Toeplitz

matrix Mn = [ aj−k ]nj,k=1 or Toeplitz-plus-Hankel matrix Mn = [ aj−k + hj+k−1 ]nj,k=1. It is

well known that linear systems with such a coefficient matrix can be solved with O(n2) or less

computational complexity compared with O(n3) for a general system. In the corresponding

procedures two types of algorithms are used: Levinson-type and Schur-type. The Schur-type

algorithms produce, in principle, an LU-factorization of the matrix and the Levinson-type

algorithm an LU-factorization (actually UL-factorization) of the inverse.

There are three different possibilities to apply Levinson- and Schur-type algorithms for

solving linear systems with a structured coefficient matrix: 1. via inversion formulas, 2. via

factorization and back substitution, and 3. by direct recursion.

P. Delsarte and Y. Genin showed in [2] and [3] that in the Levinson and Schur algorithms

for the solution of real symmetric Toeplitz systems the number of multiplications can be

reduced by about 50% if the symmetry properties of the matrix are exploited properly. The

resulting algorithms are referred to as “split” algorithms. The split Levinson algorithm for

symmetric Toeplitz matrices has been further studied and improved in [13], [14] and [15].

These improvements are, in principle, also contained in [6], in which a general splitting

approach is discussed and applied to centrosymmetric Toeplitz-plus-Hankel matrices.

In the present paper we propose split algorithms for three classes of matrices: 1. skewsym-

metric Toeplitz matrices, 2. centrosymmetric Toeplitz-plus-Hankel matrices, and 3. general

Toeplitz-plus-Hankel matrices. Besides this we are aiming to show that:

1. There are split algorithms for skewsymmetric Toeplitz matrices that are even more

efficient than their symmetric counterparts. This was observed in our paper [12].
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2. In a similar way as the classical Schur and Levinson algorithms lead to LU-factorization

of the matrix and its inverse, split algorithms lead to a ZW-factorization of the matrix

and its inverse. This was first noticed by C.J. Demeure [4].

3. Split algorithms are not only useful for matrices with symmetry properties. In partic-

ular, they are convenient to exploit the Toeplitz-plus-Hankel structure. A. E. Yagle

[17] mentioned this for the first time.

Let us point out that the algorithms we discuss are not always “split” in the sense that sym-

metric and skewsymmetric parts are treated separately. Nevertheless, we use this attribute

for historical reasons.

Notations. Throughout the paper, let F be a field and ek stands for the kth vector in

the standard basis of Fn . Jn denotes the n× n matrix of the counteridentity,

Jn =

 0 1

. .
.

1 0

 .

A vector u ∈ Fn is called symmetric if Jnu = u and skewsymmetric if Jnu = −u. An n× n

matrix A is called centrosymmetric if JnAJn = A.

For a matrix A = [ aij ], let A(t, s) denote the bivariate polynomial

A(t, s) =
∑
i,j

aijt
i−1sj−1.

A(t, s) is called generating function of A. This also applies to column vectors, i.e. if u =

(ui)
n
i=1, then u(t) =

∑n
i=1 uit

i−1.

Throughout the paper, Tn will denote a skewsymmetric Toeplitz matrix,

Tn = [ ai−j ]ni,j=1, a−i = −ai,

Mn will denote a general nonsingular Toeplitz-plus-Hankel matrix,

Mn = [ ai−j + hi+j−1 ]ni,j=1,

and Cn will denote a centrosymmetric nonsingular Toeplitz-plus-Hankel matrix.

2 Inversion Formulas

We present formulas for the inverses of matrices belonging to the classes under investigation.

These formulas indicate which vectors have to be computed by a fast algorithm.

2.1. Skewsymmetric Toeplitz Matrices. We consider a nonsingular skewsymmetric

Toeplitz matrix Tn, its principal sections Tk = [ ai−j ]ki,j=1, and a skewsymmetric extension
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Tn+1 = [ ai−j ]n+1
i,j=1. Clearly, n must be even and Tn−1 and Tn+1 have kernel dimension 1. Let

un−1 span the kernel of Tn−1 and un+1 the kernel of Tn+1. It can be shown that un−1 and un+1

are symmetric vectors. We normalize these vectors by assuming that [ an−1 . . . a1 ]un−1 = 1

and that the first component of un+1 equals 1.

Theorem 2.1. The inverse of Tn can be expressed in terms of un−1 and un+1 via

T−1
n (t, s) =

un+1(t)sun−1(s)− tun−1(t)un+1(s)

1− ts
. (2.1)

There are many possibilities to transform equality (2.1) into a matrix representation. The

simplest way is to multiply T−1
n from the right and the left by a discrete Fourier transfor-

mation. This leads to representations of T−1
n that involve only diagonal, permutation, and

Fourier matrices (see [10]). The same is true for the forthcoming inversion formulas.

With the help of the matrix representations it is possible to find the solution of a linear

system with O(n log n) operations, since matrix-vector multiplication can be carried out with

this complexity if FFT is used.

2.2. General Toeplitz-plus-Hankel Matrices. Let Mn be an n × n nonsingular

Toeplitz-plus-Hankel matrix. Then there exists a nonsingular (n + 2) × (n + 2) extension

Mn+2 of Mn such that the (1, 1)- and (n + 2, n + 2)-entries of M−1
n+2 are equal to 1, and the

(n+2, 1)- and (1, n+2)-entries are equal to zero. The matrix Mn+2 will be called normalized

band extension of Mn. Let u−
n be the first and u+

n the last columns of M−1
n , and u−

n+2 the first

and u+
n+2 the last columns of M−1

n+2. Furthermore, let ũ±
n and ũ±

n+2 denote the corresponding

quantities for the transposed matrices.

Theorem 2.2. The inverse of Mn can be expressed in terms of u±
n+2, u±

n , ũ±
n+2 and ũ±

n via

M−1
n (t, s) =

tu+
n (t)ũ+

n+2(s)− u+
n+2(t)sũ

+
n (s) + tu−

n (t)ũ−
n+2(s)− u−

n+2(t)sũ
−
n (s)

(t− s)(1− ts)
.

Let us note that an inversion formula of this type was presented in [9] for the first time.

2.3. Centrosymmetric Toeplitz-plus-Hankel Matrices. A centrosymmetric Toep-

litz-plus-Hankel matrix Cn can be represented in the form Cn = T+
n P+

n + T−
n P−

n , where

T±
n are symmetric Toeplitz matrices and P±

n = 1
2
(In ± Jn). Note that P±

n are projections

onto the subspaces of all symmetric or skewsymmetric vectors, respectively. Let Cn+2 =

T+
n+2P

+
n+2 + T−

n+2P
−
n+2 be a normalized band extension of Cn.

It is remarkable that for the inversion of centrosymmetric Toeplitz-plus-Hankel matrices

only solutions of pure symmetric Toeplitz systems are required: Let x±n and x±n+2 be the

solutions of the equations

T+
n x+

n = P+
n en , T+

n+2x
+
n+2 = P+

n+2en+2 ,

T−
n x−n = P−

n en , T−
n+2x

−
n+2 = P−

n+2en+2 .
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Theorem 2.3. The inverse of Cn can be expressed in terms of x±n , x±n+2 via

C−1
n (t, s) = 2

(
x+

n+2(t)sx
+
n (s)− tx+

n (t)x+
n+2(s)

(t− s)(1− ts)
+

x−n+2(t)sx
−
n (s)− tx−n (t)x−n+2(s)

(t− s)(1− ts)

)
.

Let point out that in the formula of Theorems 2.3 only four polynomials are involved

compared with eight in Theorem 2.2. Furthermore, all vectors in Theorem 2.3 are symmetric

or skewsymmetric.

3 Split Levinson-type Algorithms

From now on, we assume that all matrices A = [ aij ]ni,j=1 under consideration are centro-

nonsingular. This means that all central submatrices An−2l = [ aij ]n−l
i,j=l+1 (l = 1, 2, . . . ) are

nonsingular.

In this section we describe three-term recursions for the quantities occurring in the inversion

formulas for the central submatrices. That means that the corresponding algorithms are

different to the classical Levinson-type algorithms which are based on two-term recursions

for the principal submatrices [ aij ]ki,j=1, (k = 1, 2, . . . ).

3.1. Skewsymmetric Toeplitz Matrices. The central submatrices of a nonsingular

skewsymmetric Toeplitz matrix Tn are just the matrices T2k (k = 1, 2, . . . , n/2). Let u2k−1

denote the vectors spanning the nullspace of T2k−1 with the normalization

[ a2k−1 . . . a1 ]u2k−1 = 1.

Furthermore, we introduce numbers rk = [ a2k . . . a2 ]u2k−1 and r′k = [ a2k+1 . . . a3 ]u2k−1.

Theorem 3.1. The vectors u2k−1 satisfy the recursion

u2k+3(t) =
1

αk

((t2 − (rk − rk−1)t + 1)u2k+1(t)− t2u2k−1(t),

where αk = r′k − r′k−1 − rk(rk − rk−1) .

This theorem leads to an algorithm that computes the parameters in the inversion formula

with 7
8
n2 +O(n) additions and 1

2
n2 +O(n) multiplications. This is approximately the same

amount as for the improved split Levinson algorithm for symmetric Toeplitz matrices in [15]

and for the algorithm in [6]. Note the a comparison with the classical Levinson algorithm is

not possible, since this algorithm cannot be applied to skewsymmetric matrices.

3.2. Centrosymmetric Toeplitz-plus-Hankel Matrices. Now we consider a centro-

nonsingular centrosymmetric Toeplitz-plus-Hankel matrix Cn = T+
n P+

n +T−
n P−

n , where T±
n =

[ c±|i−j| ]
n
i,j=1. For the sake of simplicity of notation we assume that n is even. Then the central

submatrices are given by Ck = T+
k P+

k + T−
k P−

k for k = 2, 4, . . . , n/2.

Let k be even and x±k denote the solutions of the equation T±
k x±k = P±

k ek. We introduce

the numbers r±jk =
[
c±j+k−1 . . . c±j

]
x±k for j = 1, 2.
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Theorem 3.2. The solutions x±k with even k satisfy the recursion

x±k+2(t) =
1

2 α±
k

(
(t2 − 2(r±1,k − r±1,k−2)t + 1)x±k (t)− t2x±k−2(t)

)
where α±

k = r±2,k − r±2,k−2 − 2r±1,k(r
±
1,k − r±1,k−2) + 1

2
.

The algorithm emerging from this theorem requires 7
4
n2 + O(n) additions and n2 + O(n)

multiplications in order to compute the quantities occurring in the inversion formula. Let us

point out that for this kind of matrices the algorithm is preferable compared with classical

ones, because it fully utilizes the centrosymmetry of the matrix.

3.3. General Toeplitz-plus-Hankel Matrices. Now we consider an n × n Toeplitz-

plus-Hankel matrix Mn. Again we assume that n is even. We represent Mn in the form

Mn = Tn(a) + Tn(b)Jn, where Tn(a) = [ ai−j ]ni,j=1 and Tn(b) = [ bi−j ]ni,j=1. Then the central

submatrices of Mn are Mk := Tk(a) + Tk(b)Jk, where k = 2, 4, . . . , n/2.

For even k, let u−
k denote the first and u+

k the last column of M−1
k and

uk(t) = [u−
k (t) u+

k (t) ].

We introduce the notation c(i : j) = [ ai + bj . . . aj + bi ] and numbers

r±−1,k = c(−1 : −k)u±
k , r±−2,k = c(−2 : −k − 1)u±

k ,

r±1,k = c(k : 1)u±
k , r±2,k = c(k + 1 : 2)u±

k ,

α±
j,k = r±j,k − r±j,k−2 (j = −2,−1, 1, 2), and

γ+±
k = α±

2,k + τ± − α±
1,kr

+
1,k − α±

−1,kr
−
1,k ,

γ−±k = α±
−2,k + τ∓ − α±

1,kr
+
−1,k − α±

−1,kr
−
−1,k ,

where τ+ = 1 and τ− = 0. Finally, we introduce matrices

Ak =

[
α−
−1,k α+

−1,k

α−
1,k α+

1,k

]
, Γk =

[
γ−−k γ−+

k

γ+−
k γ++

k

]
.

Theorem 3.3. For even k, the vector polynomials uk(t) satisfy the recursion

uk+2(t) = (uk(t)((t
2 + 1)I2 − tAk)− t2uk−2(t))Γ

−1
k .

The algorithm emerging from this theorem computes the vectors u±
n and u±

n+2 with 9
2
n2 +

O(n) additions and 4n2 + O(n) multiplications. This is less than the cheapest algorithm in

[8], which requires 5n2 + O(n) additions and 11
2
n2 + O(n) multiplications.
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4 Schur-type algorithm

One of several motivations to consider Schur-type algorithms is that the Levinson-type re-

cursions cannot be completely parallelized, since they include inner product calculations.

But the corresponding parameters can be precomputed by a Schur-type algorithm. The

combination of the Levinson-type and Schur-type recursions leads to an algorithm with a

parallel complexity of O(n).

A second, possibly still more important motivation to consider Schur-type recursions is

that they produce a factorization of the matrix. This will be discussed in Section 5. Note

that for ill-conditioned matrices Schur-type recursions behave, as a rule, more stable than

Levinson-type recursions.

4.1. Skewsymmetric Toeplitz Matrices. For k = 1, 2, . . . , n/2, we introduce the

“residual” vectors rk = (rj,k)
n−2k+2
j=1 , where

rj,k = [ aj+2k−2 . . . aj ]u2k−1.

Theorem 4.1. The vectors rk satisfy the recursion

rk+1(t) =
1

αk

((t−2 − (r1,k − r1,k−1)t
−1 + 1)rk(t)− t−2rk−1(t),

where αk is as in Theorem 3.1.

4.2. Centrosymmetric Toeplitz-plus-Hankel Matrices. We extend the definition of

the residuals r±jk =
[
c±j+k−1 . . . c±j

]
x±k to all j = 1, . . . , n + 2− 2k and define

r±k (t) =
n+2−2k∑

j=1

r±jkt
j.

Theorem 3.2 leads to the following.

Theorem 4.2. The polynomials x±k with even k satisfy the recursion

r±k+2(t) =
1

2 α±
k

(
(t−2 − 2(r±1,k − r±1,k−2)t

−1 + 1)r±k (t)− t−2r±k−2(t)
)

where α±
k is as in Theorem 3.2.

4.3. General Toeplitz-plus-Hankel Matrices. We introduce the numbers r±j,k for

j = ±1,±2, . . . ,±(n + 2− k) and k = 2, 4, . . . , n by

r±jk =

{
c(j + k − 1 : j)x±k : j > 0 ,

c(j : j − k + 1)x±k : j < 0 .
(4.2)
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With these numbers we form polynomials

r+±
k (t) =

n+2−k∑
j=1

r±j,kt
j, r−±k (t) =

n+2−k∑
j=1

r±−j,kt
j,

and 2× 2 matrix polynomials

rk(t) =

[
r−−k (t) r−+

k (t)

r+−
k (t) r++

k (t)

]
.

From Theorem 3.3 one can deduce the following.

Theorem 4.3. The matrix polynomials of the residuals rk(t) satisfy the recursion

rk+2(t) = (rk(t)((t
−2 + 1)I2 − t−1Ak)− t−2rk−2(t))Γ

−1
k ,

where Ak and Γk are as in Theorem 3.3.

The amount for computing all rk for even k is 5n2 + O(n) additions and 4n2 + O(n)

multiplications. The combination of the recursions in Theorem 3.3 and Theorem 4.3 requires
15
2

n2 + O(n) additions and 6n2 + O(n) multiplications.

5 ZW-Factorizations

Classical Schur-type algorithms for Toeplitz and Toeplitz-plus-Hankel matrices produce an

LU-factorization of the matrix whereas Levinson-type algorithms produce a UL-factorization

of the inverse. We show now that the split Schur-type algorithms described in the previous

section produce a ZW-factorization of the matrix and the split Levinson-type algorithms

discussed in Section 3 a WZ-factorization of the inverse.
Let us recall some concepts. A matrix A = [ aij ]ni,j=1 is called a W-matrix if aij = 0 for all

(i, j) for which i > j and i + j > n or i < j and i + j ≤ n . The matrix A will be called a
unit W-matrix if in addition aii = 1 for i = 1, . . . , n and ai,n+1−i = 0 for i 6= (n + 1)/2. The
transpose of a W-matrix is called a Z-matrix. A matrix which is both a Z- and a W-matrix
will be called an X-matrix. All these names come from the shapes of the set of all possible
positions for nonzero entries, which are as follows:

W =



• •
• ◦ ◦ •
• ◦ ◦ ◦ ◦ •
• ◦ • • ◦ •
• • • •
• •


, Z =



• • • • • •
◦ ◦ ◦ •

◦ •
• ◦

• ◦ ◦ ◦
• • • • • •


, X =



• •
• •

• •
• •

• •
• •


.

A centro-nonsingular matrix A admits a unique factorization A = ZXW in which Z is a unit

Z-matrix, W is a unit W-matrix and X is an X-matrix. Speaking about ZW-factorization
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we always have in mind this unique representation. The WZ-factorization was introduced by

D. J. Evans and his coauthors in connection with the parallel solution of tridiagonal systems

(see [5], [16]). It turned out that this kind of factorization is in particular appropriate

for centrosymmetric and centroskewsymmetric matrices, since the symmetry properties are

inherited in the factors.

5.1. Skewsymmetric Toeplitz Matrices. The ZW-factorization is in particular nicely

structured for skewsymmetric Toeplitz matrices Tn. Such a matrix admits a factorization

Tn = ZXZT , in which Z is a centrosymmetric unit Z-matrix and X is a skewsymmetric

antidiagonal matrix. Another specific property is that

T2k

[
0 u2k−1

u2k−1 0

]
=

 −1 0

0 0

0 1

 .

Hence the Z-factor has some additional symmetry properties. We illustrate this for the case

n = 6:

Z =



1 r22 r31 −r21 −1 0

0 1 r21 −1 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 −1 r21 1 0

0 −1 −r21 r31 r22 1


.

The Schur-type algorithm in 4.1 produce the ZW-factorization of Tn with 3
4
n2 + O(n)

additions and 1
2
n2 +O(n) multiplications. Note that there is (so far) no analogous algorithm

for the ZW-factorization of a symmetric Toeplitz matrices with this low complexity.

Dividing the vectors u2k−1 by their last component and building up a W-matrix W with

them in an appropriate way we obtain a factorization T−1
n = WΞW T in which W is a

centrosymmetric unit W-matrix (possessing additional symmetry properties like Z) and Ξ

is a skewsymmetric antidiagonal matrix. That means a WZ-factorization of T−1
n can be

obtained with 7
8
n2 + O(n) additions and 1

2
n2 + O(n) multiplications.

5.2. Centrosymmetric Toeplitz-plus-Hankel Matrices. Since every centrosym-

metric Toeplitz-plus-Hankel matrix Cn is also symmetric, it admits a ZW-factorization

Cn = ZXZT , in which all factors, due to central symmetry, are centrosymmetric.

If we build up a W-matrix Ṽ from the solutions x±2k then CnṼ = Z̃ will be a Z-matrix with

symmetric or skewsymmetric columns consisting of the residuals. The unit Z-factor is now

easily obtained by pairwise addition and subtraction of columns. In general, 3
2
n2 + O(n)

additions and n2 + O(n) multiplications are needed.

From the matrix Ṽ one can easily obtain the factors of the WZ-factorization of C−1
n .

5.3. General Toeplitz-plus-Hankel Matrices. For general Toeplitz-plus-Hankel ma-

trices, of course, no special symmetry of the factors of the ZW-factorization can be observed.
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The factor Z in the factorization Mn = ZXW is simply obtained from the first components

of the residual vectors. In order to obtain W T one has to run the split Schur algorithm

a second time for the transpose matrix. The factor X is obtained by an O(n) complexity

recursion.

More efficient from the complexity point of view is to consider a factorization MnU = Z

in which Z is the Z-factor of the ZW-factorization and U is a W-matrix. In fact, this

factorization appears as the result of the application of both the split Levinson and split

Schur algorithm. The solution of a linear system Mnf = b can now be obtained by solving

the system Zg = b and the multiplication of this solution by the W-matrix U , i.e. f = Ug.

6 Final Remarks

• The combination of split Levinson-type and Schur-type algorithms can be speeded up

to a “superfast” algorithm with complexity O(n log2 n) if a divide-and-conquer strategy

and FFT is employed. For skewsymmetric Toeplitz matrices this might be of practical

interest. For more involved structures the practical efficiency is still uncertain.

• The split algorithm for skewsymmetric Toeplitz matrices can be extended to the general

case, i.e. without the condition of centro-nonsingularity. There are two ways of doing

this. The first is to compute recursively the fundamental system (see [11]), the second

is a look-ahead approach. These results will be published elsewhere. For general

Toeplitz-plus-Hankel matrices algorithms working without additional conditions are

proposed in the paper [7].

• It is also possible to design split algorithms for general Toeplitz matrices. The compu-

tational gain is, however, small. Therefore, we refrained from presenting it here.

• There exist split algorithms for Hermitian Toeplitz matrices in the literature (see [1]

and references therein). However, these algorithms do not provide a ZW-factorization.

We realized that split algorithms for ZW-factorization are possible, but with higher

complexity.
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